JPH06294560A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module

Info

Publication number
JPH06294560A
JPH06294560A JP8056593A JP8056593A JPH06294560A JP H06294560 A JPH06294560 A JP H06294560A JP 8056593 A JP8056593 A JP 8056593A JP 8056593 A JP8056593 A JP 8056593A JP H06294560 A JPH06294560 A JP H06294560A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
conversion module
thermoelectric conversion
endothermic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8056593A
Other languages
Japanese (ja)
Inventor
Akira Murai
彰 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8056593A priority Critical patent/JPH06294560A/en
Publication of JPH06294560A publication Critical patent/JPH06294560A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/023Mounting details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas

Abstract

PURPOSE:To achieve higher heat transfer efficiency to the side of a radiation heat exchanger from the side of an endothermic heat exchanger by reducing loss of heat significantly attributed to heat radiation, heat transfer and convection in a space between the high temperature (heat radiation) side and the low temperature (endothermic) side. CONSTITUTION:An airtight member 5 is provided as made up of a heat insulating material 5a with an occupied volume larger than those of an endothermic heat exchanger 2 and a radiation heat exchanger 3 and an airtight cover material 5b bonded on the outer circumferential surface of the heat insulated material 5a. A thermoelectric element 1 is surrounded with the airtight member 5 between the endothermic heat exchanger 2 and the radiation heat exchanger 3 and a space S where the thermoelectric element 1 is kept in a vacuum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば冷蔵庫等の冷却
ユニットに供される熱電変換モジュールに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion module used for a cooling unit such as a refrigerator.

【0002】[0002]

【従来の技術】従来、一般に、熱電素子には、ゼーベッ
ク、ペルチェ、およびトムソンの三効果があることが良
く知られており、このうち熱電素子のペルチェ効果は、
実開昭64−5085号公報、実開昭64−41871
号公報、実開昭64−51176号公報、実開平1−7
5768号公報、および実開平1−109771号公報
に開示されているように、冷蔵庫等の冷却ユニットにお
ける電子冷却に応用されている。以下に、Π形の熱電素
子を使った電子冷却の原理について説明する。
2. Description of the Related Art Conventionally, it is well known that thermoelectric elements have three effects of Seebeck, Peltier, and Thomson. Among them, the Peltier effect of thermoelectric elements is
JP-A-64-5085, JP-A-64-41871
Publication, Japanese Utility Model Publication No. 64-51176, Japanese Utility Model Publication 1-7
As disclosed in Japanese Patent No. 5768 and Japanese Utility Model Laid-Open No. 1-109771, it is applied to electronic cooling in a cooling unit such as a refrigerator. The principle of electronic cooling using a Π-type thermoelectric element will be described below.

【0003】Π形の熱電素子10は、図3に示すよう
に、N形半導体11とP形半導体12との各一端部が金
属電極13に接合されると共に、N形半導体11および
P形半導体12の各他端部にそれぞれ金属電極13・1
4が接合されて構成されている。そして、上記の各金属
電極13・14間に直流電源15を接続して、N形半導
体11からP形半導体12に直流電流Iを流す。これに
より、N形半導体11では、電流Iの向きと逆方向に熱
の移動が起こる一方、P形半導体12では、電流Iの向
きと同一方向に熱の移動が起こる。
As shown in FIG. 3, a Π-type thermoelectric element 10 has an N-type semiconductor 11 and a P-type semiconductor 12 each having one end joined to a metal electrode 13, and also has an N-type semiconductor 11 and a P-type semiconductor. To the other end of each of the metal electrodes 13 and 1
4 are joined together. Then, a DC power supply 15 is connected between the metal electrodes 13 and 14 to flow a DC current I from the N-type semiconductor 11 to the P-type semiconductor 12. As a result, heat transfer occurs in the N-type semiconductor 11 in the direction opposite to the direction of the current I, while heat transfer occurs in the P-type semiconductor 12 in the same direction as the direction of the current I.

【0004】従って、金属電極13が冷却されて周囲か
ら熱を奪い、この吸熱量QC が各半導体11・12を介
して各金属電極13・14から放熱量QH として放散さ
れる。即ち、Π形熱電素子10は、金属電極13側から
各金属電極13・14側に熱を汲み上げるヒートポンプ
として働く。
[0004] Thus, the metal electrode 13 is cooled removes heat from the surroundings, the heat absorption amount Q C is dissipated as heat discharge Q H from the metal electrodes 13 and 14 via each of the semiconductor 11, 12. That is, the Π-type thermoelectric element 10 functions as a heat pump that pumps heat from the metal electrode 13 side to the metal electrodes 13 and 14 side.

【0005】図4は、Π形熱電素子により構成された熱
電変換モジュールを示す。この熱電変換モジュールは、
N形半導体21a、P形半導体21b、および金属電極
21cからなるΠ形熱電素子21を複数個金属電極22
でつなぎ、セラミックやアルマイト等からなる絶縁層2
3を介して、上記のΠ形熱電素子21に吸熱熱交換器2
4と放熱熱交換器25とをそれぞれ密着させて形成され
ている。
FIG. 4 shows a thermoelectric conversion module composed of a Π-type thermoelectric element. This thermoelectric conversion module
A plurality of Π-type thermoelectric elements 21 each including an N-type semiconductor 21a, a P-type semiconductor 21b, and a metal electrode 21c are provided on the metal electrode 22.
Insulation layer 2 made of ceramic, alumite, etc.
3 through the Π-type thermoelectric element 21 through the endothermic heat exchanger 2
4 and the radiation heat exchanger 25 are formed in close contact with each other.

【0006】そして、上記金属電極22…のうち、並設
方向の両端に位置する各金属電極22a・22bに直流
電源(図示せず)を接続して、金属電極22aから金属
電極22bに直流電流を流す。これにより、先に原理を
述べた通り、吸熱熱交換器24は、冷却され周囲から熱
を奪う一方、周囲の空気等で冷却される放熱熱交換器2
5は、吸熱熱交換器24からの熱を連続的に放散する。
A direct current power source (not shown) is connected to each of the metal electrodes 22a and 22b located at both ends of the metal electrodes 22 in parallel, so that a direct current flows from the metal electrode 22a to the metal electrode 22b. Shed. As a result, as described above, the endothermic heat exchanger 24 is cooled and takes heat from the surroundings, while it is cooled by the ambient air or the like.
5 continuously dissipates the heat from the endothermic heat exchanger 24.

【0007】また、上記の熱電変換モジュールの吸熱量
C は次式で表される。尚、実際の熱電変換モジュー
ルでは、吸熱熱交換器24と金属電極21cとの間、お
よび放熱熱交換器25と金属電極22との間にそれぞれ
接触熱抵抗が存在して、図3の原理図に比べ熱伝導効率
が落ちるが、次式では説明の簡略化のため、これを無
視し、図3の原理図と同等と見なしている。
The heat absorption amount Q C of the thermoelectric conversion module is expressed by the following equation. In the actual thermoelectric conversion module, there are contact thermal resistances between the heat absorption heat exchanger 24 and the metal electrode 21c and between the heat radiation heat exchanger 25 and the metal electrode 22, respectively. Although the heat conduction efficiency is lower than that of the above equation, this is ignored in the following equation for the sake of simplification of the explanation, and is regarded as equivalent to the principle diagram of FIG.

【0008】 Qc =nSTc I+(1/2)I2 R+KΔT … ΔT=TH −Tc n :素子数 S :N形およびP形半導体素子の平均ゼーベック係数 Tc :低温(吸熱)側温度 I :電流値 R :モジュールの電気抵抗 K :モジュールの熱貫流率 TH :高温(放熱)側温度 上記式右辺の第1項はペルチェ効果による吸熱量、第
2項はジュール熱による損失の近似値、第3項は熱伝導
等による損失をそれぞれ表している。
[0008] Q c = nST c I + ( 1/2) I 2 R + KΔT ... ΔT = T H -T c n: number of elements S: Average Seebeck coefficient T c of N-type and P-type semiconductor element: a low temperature (heat absorption) side temperature I: current value R: electrical resistance K of the module: heat transmission coefficient of the module T H: high temperature endothermic amount of the first term Peltier effect of (heat radiation) side temperature above the right side of the equation, the second term of loss due to Joule heat The approximate value and the third term represent losses due to heat conduction and the like, respectively.

【0009】[0009]

【発明が解決しようとする課題】ところが、上記従来の
熱電変換モジュールは、小型、軽量、振動騒音がない等
の数多くの特徴を持っているため、一般の冷凍サイクル
に替わるものとして実用化されているが、例えば、圧縮
機を使った冷凍サイクルに比べると、前記式の第2項
目や第3項目のようにエネルギー効率が悪い。
However, since the above-mentioned conventional thermoelectric conversion module has many features such as small size, light weight and no vibration noise, it has been put to practical use as an alternative to a general refrigeration cycle. However, compared with, for example, a refrigeration cycle using a compressor, the energy efficiency is poor as in the second and third items of the above equation.

【0010】即ち、式の第3項目について言えば、熱
電変換モジュールを例えば冷蔵庫に応用しようとする
と、熱電素子が存在する空間には空気が存在し、これに
よる伝導、対流、および放射は高温側から低温側への熱
の移動を生じ、結果として、熱の損失を招来する。ま
た、上記のような空間に断熱材を充填するとしても実際
の組み立てを考慮すれば、若干の空間は必要であり、や
はり上記影響は避けられないという問題を有している。
That is, regarding the third item of the equation, when the thermoelectric conversion module is applied to, for example, a refrigerator, air is present in the space where the thermoelectric element is present, and conduction, convection, and radiation due to this are on the high temperature side. From the low temperature side to the low temperature side, resulting in loss of heat. Further, even if the space as described above is filled with the heat insulating material, a slight space is required in consideration of actual assembly, and there is a problem that the above influence is unavoidable.

【0011】[0011]

【課題を解決するための手段】本発明の請求項1記載の
熱電変換モジュールは、上記の課題を解決するために、
N形半導体とP形半導体とを金属電極にて接合してなる
Π形熱電素子を、吸熱熱交換器と放熱熱交換器との間に
挟装し、Π形熱電素子に直流電流を流すことにより、吸
熱熱交換器での吸熱および放熱熱交換器での放熱を可能
にする熱電変換モジュールにおいて、以下の手段を講じ
ている。
In order to solve the above-mentioned problems, the thermoelectric conversion module according to claim 1 of the present invention comprises:
Inserting a Π-type thermoelectric element formed by joining an N-type semiconductor and a P-type semiconductor with a metal electrode between an endothermic heat exchanger and a radiant heat exchanger, and applying a direct current to the Π-type thermoelectric element. In the thermoelectric conversion module that enables heat absorption in the heat absorption heat exchanger and heat dissipation in the heat dissipation heat exchanger, the following measures are taken.

【0012】即ち、上記吸熱熱交換器と放熱熱交換器と
の間には、熱電素子を囲み、熱電素子の存在する空間を
真空状態に保持する気密部材が配設されている。
That is, an airtight member that surrounds the thermoelectric element and holds the space in which the thermoelectric element exists in a vacuum state is provided between the heat absorption heat exchanger and the heat radiation heat exchanger.

【0013】また、請求項2記載の熱電変換モジュール
は、上記の課題を解決するために、請求項1記載の熱電
変換モジュールにおいて、以下の手段を講じている。
Further, in the thermoelectric conversion module according to the second aspect, in order to solve the above problems, the thermoelectric conversion module according to the first aspect takes the following means.

【0014】即ち、上記気密部材は、外周面に気密性を
有するカバー材が接着された断熱材からなる。
That is, the airtight member is made of a heat insulating material having an airtight cover material adhered to the outer peripheral surface thereof.

【0015】また、請求項3記載の熱電変換モジュール
は、上記の課題を解決するために、請求項2記載の熱電
変換モジュールにおいて、以下の手段を講じている。
Further, in the thermoelectric conversion module according to the third aspect, in order to solve the above problems, the following means are taken in the thermoelectric conversion module according to the second aspect.

【0016】即ち、上記断熱材の占有体積は、吸熱熱交
換器および放熱熱交換器の各占有体積よりも大きく設定
されている。
That is, the occupied volume of the heat insulating material is set to be larger than the occupied volume of each of the heat absorbing heat exchanger and the heat radiating heat exchanger.

【0017】[0017]

【作用】上記請求項1記載の構成によれば、気密部材が
熱電素子の存在する空間を真空状態に保っているため、
空気による伝導、対流、および放射がなくなる。このた
め、上記の伝導、対流、および放射に起因して生じた熱
の損失を回避することができ、結果として、熱電変換モ
ジュールによる熱の伝導効率を向上させることができ
る。
According to the structure described in claim 1, since the airtight member keeps the space where the thermoelectric element exists in a vacuum state,
Eliminates air conduction, convection, and radiation. Therefore, it is possible to avoid the loss of heat caused by the above-mentioned conduction, convection, and radiation, and as a result, it is possible to improve the heat conduction efficiency of the thermoelectric conversion module.

【0018】また、請求項2記載の構成によれば、熱電
素子の存在する空間を真空状態に保つ気密部材を断熱材
により形成して高断熱性の真空断熱とすることで、請求
項1記載での熱損失の回避に加えて、熱電変換モジュー
ルの構造的強度を高めることができる。
According to the second aspect of the present invention, the airtight member for keeping the space in which the thermoelectric element exists in a vacuum state is formed of a heat insulating material to form a highly heat-insulating vacuum heat insulating material. In addition to avoiding heat loss in the above, the structural strength of the thermoelectric conversion module can be increased.

【0019】また、請求項3記載の構成によれば、気密
部材を構成する断熱材の占有体積を吸熱熱交換器および
放熱熱交換器の各占有体積に比べて大きく設定すること
で、例えば冷蔵庫等の断熱ボックスの一部または全部を
構成でき、高断熱性の真空断熱と一体になった熱ロスの
少ない構造を得ることができる。
According to the third aspect of the present invention, the heat-insulating material forming the airtight member is set to have a larger volume than the heat-absorbing heat exchanger and the heat-dissipating heat exchanger. It is possible to form a part or all of the heat insulating box such as, and to obtain a structure with low heat loss that is integrated with high heat insulating vacuum heat insulating.

【0020】[0020]

【実施例】本発明の一実施例について図1および図2に
基づいて説明すれば、以下の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The following will describe one embodiment of the present invention with reference to FIGS. 1 and 2.

【0021】本実施例に係る熱電変換モジュールは、図
1および図2に示すように、複数個のΠ形熱電素子1…
と、吸熱熱交換器2と、放熱熱交換器3とを備えてい
る。
As shown in FIGS. 1 and 2, the thermoelectric conversion module according to this embodiment has a plurality of Π-type thermoelectric elements 1 ...
And an endothermic heat exchanger 2 and a radiant heat exchanger 3.

【0022】熱電素子1は、N形半導体1aとP形半導
体1bとを有し、これら各半導体1a・1bの上端部が
金属電極1cに接合されて形成されている。そして、各
熱電素子1…は、それぞれN形半導体1aとP形半導体
1bとが交互に配置されるように並設されており、隣接
する各熱電素子1・1のP形半導体1bおよびN形半導
体1aの下端部は、それぞれ金属電極1dに接合されて
形成されている。
The thermoelectric element 1 has an N-type semiconductor 1a and a P-type semiconductor 1b, and the upper ends of these semiconductors 1a and 1b are joined to the metal electrode 1c. The thermoelectric elements 1 are arranged side by side so that the N-type semiconductors 1a and the P-type semiconductors 1b are alternately arranged, and the P-type semiconductors 1b and the N-type semiconductors of the adjacent thermoelectric elements 1 and 1 are arranged. The lower ends of the semiconductors 1a are formed by being joined to the metal electrodes 1d, respectively.

【0023】また、並設方向の両端に位置する各熱電素
子1・1のN形半導体1aおよびP形半導体1bの下端
部は、それぞれ直流電源(図示せず)に接続された金属
電極1eが接合されている。これにより、並設された各
熱電素子1…には、金属電極1eが接合された並設方向
一端側のN形半導体1aから金属電極1eが接合された
並設方向他端側のP形半導体1bに向かって直流電流が
流れるようになっている。
The lower ends of the N-type semiconductors 1a and P-type semiconductors 1b of the thermoelectric elements 1.1 located at both ends in the juxtaposed direction have metal electrodes 1e connected to a DC power source (not shown), respectively. It is joined. As a result, in each of the thermoelectric elements 1 arranged in parallel, the N-type semiconductor 1a joined to the metal electrode 1e on one end side in the juxtaposed direction to the P-type semiconductor joined to the metal electrode 1e on the other end side in the juxtaposed direction. A direct current flows toward 1b.

【0024】吸熱熱交換器2は、上面に複数の吸熱フィ
ン2a…が形成されると共に、その下面中央部には断面
台形状をなす凸部2bが形成されている。また、放熱熱
交換器3は、下面に複数の放熱フィン3a…が形成され
ると共に、その上面中央部には断面台形状の凸部3bが
形成されている。そして、上記吸熱熱交換器2の凸部2
bの下端面がセラミックやアルマイト等の材質からなる
絶縁層4を介して熱電素子1の金属電極1cに、また、
放熱熱交換器3の凸部3bの上端面が絶縁層4を介して
熱電素子1の金属電極1d・1eにそれぞれ接合して設
けられることで、各熱交換器2・3が熱電素子1を上下
方向で挟装した状態となっている。
The endothermic heat exchanger 2 has a plurality of endothermic fins 2a formed on the upper surface thereof, and a convex portion 2b having a trapezoidal cross section formed at the center of the lower surface thereof. Further, the radiating heat exchanger 3 has a plurality of radiating fins 3a ... Formed on the lower surface thereof, and a convex portion 3b having a trapezoidal cross section is formed on the central portion of the upper surface thereof. And, the convex portion 2 of the endothermic heat exchanger 2
The lower end surface of b is connected to the metal electrode 1c of the thermoelectric element 1 through the insulating layer 4 made of a material such as ceramic or alumite,
Since the upper end surface of the convex portion 3b of the radiant heat exchanger 3 is provided by being bonded to the metal electrodes 1d and 1e of the thermoelectric element 1 with the insulating layer 4 interposed therebetween, the heat exchangers 2 and 3 connect the thermoelectric element 1 to each other. It is sandwiched vertically.

【0025】さらに、本実施例の熱電変換モジュール
は、吸熱熱交換器2と放熱熱交換器3との間にて熱電素
子1を囲み、熱電素子1の存在する空間Sを真空状態に
保持する気密部材5が配設されている。この気密部材5
は、発泡ポリウレタン等からなる断熱材5aと、空気に
対するバリヤー性の高いプラスチック等が積層してな
り、各熱交換器2・3との当接面を含む断熱材5aの外
周面に接着されるカバー材5bとから構成されている。
また、気密部材5を構成する断熱材5aの占有体積は、
吸熱熱交換器2および放熱熱交換器3の各占有体積より
も大きく設定されているものである。
Further, in the thermoelectric conversion module of this embodiment, the thermoelectric element 1 is surrounded between the heat absorbing heat exchanger 2 and the heat radiating heat exchanger 3, and the space S in which the thermoelectric element 1 exists is kept in a vacuum state. An airtight member 5 is provided. This airtight member 5
Is formed by laminating a heat insulating material 5a made of foamed polyurethane or the like, and a plastic having a high barrier property against air, and is adhered to the outer peripheral surface of the heat insulating material 5a including the contact surface with each heat exchanger 2.3. It is composed of a cover material 5b.
In addition, the occupied volume of the heat insulating material 5a forming the airtight member 5 is
It is set to be larger than the occupied volume of each of the heat absorption heat exchanger 2 and the heat radiation heat exchanger 3.

【0026】尚、上記のカバー部材5bは、空間Sを真
空にした後にフランジ部5b’・5b’同士が接着され
ることで、空間Sの気密性を保持している。
The cover member 5b maintains the airtightness of the space S by bonding the flange portions 5b 'and 5b' to each other after the space S is evacuated.

【0027】上記の構成において、本実施例の熱電変換
モジュールは、並設方向一端側のN形半導体1aから並
設方向他端側のP形半導体1bに向かって直流電流が流
されることにより、熱電素子1…を構成する各N形半導
体1a…では、電流の向きと逆方向に熱の移動が起こる
一方、熱電素子1…を構成する各P形半導体1b…で
は、電流の向きと同一方向に熱の移動が起こる。
In the thermoelectric conversion module of this embodiment having the above structure, a direct current is caused to flow from the N-type semiconductor 1a on one end side in the parallel installation direction to the P-type semiconductor 1b on the other end side in the parallel installation direction. In each N-type semiconductor 1a forming the thermoelectric element 1 ..., heat is transferred in the direction opposite to the direction of the current, while in each P-type semiconductor 1b forming the thermoelectric element 1 ... Heat transfer occurs.

【0028】これにより、各半導体1a・1bの上端側
に接合された金属電極1cは吸熱を行う一方、各半導体
1a・1bの下端側に接合された金属電極1d・1eは
放熱を行い、結果として、吸熱熱交換器2は、冷却され
て周囲から熱を奪い、また、周囲の空気等で冷却される
放熱熱交換器3は、吸熱熱交換器2からの熱を連続的に
放散する。即ち、熱電変換モジュールは、吸熱熱交換器
2から放熱熱交換器3に熱を汲み上げるヒートポンプと
して働く。
As a result, the metal electrodes 1c joined to the upper ends of the semiconductors 1a and 1b absorb heat, while the metal electrodes 1d and 1e joined to the lower ends of the semiconductors 1a and 1b radiate heat. As a result, the endothermic heat exchanger 2 is cooled and takes heat from the surroundings, and the radiant heat exchanger 3 which is cooled by ambient air or the like continuously dissipates the heat from the endothermic heat exchanger 2. That is, the thermoelectric conversion module functions as a heat pump that pumps heat from the endothermic heat exchanger 2 to the radiant heat exchanger 3.

【0029】ところで、上記のように吸熱熱交換器2側
から放熱熱交換器3側に移動される熱は、金属電極1c
での吸熱のみではなく、 (1)N形半導体1aおよびP形半導体1bを通して金
属電極1d・1e等から熱伝導で伝わってくる熱 (2)N形半導体1aおよびP形半導体1bの電気抵抗
によるジュール熱が熱伝導で伝わってくる熱 (3)高温(放熱)側と低温(吸熱)側との間の空間で
の熱放射、熱伝導、および対流による熱 上記(1)〜(3)等の熱がある。これに対して、本実
施例の熱電変換モジュールでは、吸熱熱交換器2および
放熱熱交換器3よりも占有体積が大きく設定された断熱
材5aと、この断熱材5aの外周面に接着された気密性
を有するカバー材5bとから気密部材5を構成し、この
気密部材5により、吸熱熱交換器2と放熱熱交換器3と
の間で熱電素子1を囲み、熱電素子1の存在する空間S
を真空状態に保持している。
By the way, as described above, the heat transferred from the endothermic heat exchanger 2 side to the radiant heat exchanger 3 side is the metal electrode 1c.
(1) Heat transferred by heat conduction from the metal electrodes 1d and 1e through the N-type semiconductor 1a and the P-type semiconductor 1b (2) Due to the electric resistance of the N-type semiconductor 1a and the P-type semiconductor 1b Heat that Joule heat is transferred by heat conduction (3) Heat due to heat radiation, heat conduction, and convection in the space between the high temperature (heat radiation) side and the low temperature (heat absorption) side (1) to (3) above I have a fever. On the other hand, in the thermoelectric conversion module of the present embodiment, the heat insulating material 5a having a larger occupied volume than the heat absorbing heat exchanger 2 and the heat radiating heat exchanger 3 and the outer peripheral surface of the heat insulating material 5a are bonded. The airtight cover member 5b and the airtight member 5 constitute the airtight member. The airtight member 5 surrounds the thermoelectric element 1 between the endothermic heat exchanger 2 and the radiant heat exchanger 3, and the space where the thermoelectric element 1 exists. S
Is kept in a vacuum state.

【0030】このため、上記の熱のうち(1)と(2)
とは、熱電素子1自体の特性によるものであるが、
(3)については、本発明のように熱電素子1が存在す
る空間Sを真空にすることで、その熱の発生を大幅に低
減することができ、結果として、本熱電変換モジュール
における吸熱熱交換器2側から放熱熱交換器3側への熱
伝導効率の向上を招来している。
Therefore, among the above heat, (1) and (2)
Is due to the characteristics of the thermoelectric element 1 itself,
Regarding (3), by generating a vacuum in the space S in which the thermoelectric element 1 is present as in the present invention, it is possible to significantly reduce the generation of heat, and as a result, endothermic heat exchange in the thermoelectric conversion module. This leads to an improvement in heat transfer efficiency from the side of the heat exchanger 2 to the side of the heat radiation heat exchanger 3.

【0031】また、上記(3)については、吸熱熱交換
器2と放熱熱交換器3との間でも熱放射、熱伝導、およ
び対流による熱の移動(=損失)がある。しかしなが
ら、このような熱の損失についても、気密部材5を断熱
材5aにて構成することで、その損失を大幅に低減して
いる。
Regarding the above item (3), there is heat transfer (= loss) between the endothermic heat exchanger 2 and the radiant heat exchanger 3 due to heat radiation, heat conduction, and convection. However, with respect to such heat loss as well, the airtight member 5 is made of the heat insulating material 5a, so that the heat loss is greatly reduced.

【0032】さらに、気密部材5の断熱材5aは、熱電
素子1の外周方向に延伸して設けられている。このた
め、吸熱熱交換器2が冷えて結露するようなことがあっ
ても、水滴が空間S内に浸入する虞れがない。また、断
熱材5aの占有体積を大きくすることにより、例えば冷
蔵庫等の断熱ボックスの一部または全部を構成でき、高
断熱性の真空断熱と一体になった熱ロスの少ない構造が
可能となる。
Further, the heat insulating material 5a of the airtight member 5 is provided so as to extend in the outer peripheral direction of the thermoelectric element 1. Therefore, even if the endothermic heat exchanger 2 cools and dew condensation occurs, there is no risk that water droplets enter the space S. Further, by increasing the occupied volume of the heat insulating material 5a, a part or the whole of a heat insulating box such as a refrigerator can be configured, and a structure with high heat insulating vacuum heat insulation and low heat loss can be realized.

【0033】尚、上記実施例は、本発明を限定するもの
ではなく、本発明の範囲内で種々の変更が可能である。
例えば、上記実施例では、熱電変換モジュールを冷却ユ
ニットにおける電子冷却に適用しているが、特にこれに
限定するものではなく、熱発電に使用される場合等も同
様で、熱電変換全般に適用できることは言うまでもな
い。
The above embodiment is not intended to limit the present invention, and various modifications can be made within the scope of the present invention.
For example, in the above embodiment, the thermoelectric conversion module is applied to electronic cooling in the cooling unit, but the invention is not particularly limited to this, and the same applies to the case of being used for thermoelectric power generation, and it can be applied to thermoelectric conversion in general. Needless to say.

【0034】[0034]

【発明の効果】以上のように、本発明の請求項1記載の
熱電変換モジュールは、吸熱熱交換器と放熱熱交換器と
の間には、熱電素子を囲み、熱電素子の存在する空間を
真空状態に保持する気密部材が配設されている構成であ
る。
As described above, in the thermoelectric conversion module according to claim 1 of the present invention, the thermoelectric element is enclosed between the heat absorption heat exchanger and the heat radiation heat exchanger, and a space where the thermoelectric element exists is provided. This is a configuration in which an airtight member that maintains a vacuum state is provided.

【0035】これにより、気密部材で熱電素子の存在す
る空間を真空状態に保つことができるため、空気による
伝導、対流、および放射がなくなり、これら伝導、対
流、および放射に起因して生じた熱の損失を回避するこ
とができ、結果として、高い熱伝導効率を有する熱電変
換モジュールの実現が可能になるという効果を奏する。
With this, since the space where the thermoelectric element exists can be kept in a vacuum state by the airtight member, conduction, convection, and radiation by air are eliminated, and heat generated by these conduction, convection, and radiation is eliminated. It is possible to avoid the above loss, and as a result, it is possible to realize a thermoelectric conversion module having high heat conduction efficiency.

【0036】また、請求項2記載の熱電変換モジュール
は、上記請求項1記載の熱電変換モジュールにおいて、
気密部材は、外周面に気密性を有するカバー材が接着さ
れた断熱材からなる構成である。
The thermoelectric conversion module according to claim 2 is the thermoelectric conversion module according to claim 1, wherein
The airtight member is composed of a heat insulating material having an airtight cover material adhered to the outer peripheral surface thereof.

【0037】これにより、高断熱性の真空断熱が可能に
なると共に、熱電変換モジュールの構造的強度を高める
ことができるという効果を奏する。
As a result, vacuum insulation having a high heat insulation property can be realized, and the structural strength of the thermoelectric conversion module can be enhanced.

【0038】また、請求項3記載の熱電変換モジュール
は、上記請求項2記載の熱電変換モジュールにおいて、
断熱材の占有体積は、吸熱熱交換器および放熱熱交換器
の各占有体積よりも大きく設定されている構成である。
Further, the thermoelectric conversion module according to claim 3 is the thermoelectric conversion module according to claim 2,
The occupied volume of the heat insulating material is set to be larger than the occupied volume of each of the endothermic heat exchanger and the radiant heat exchanger.

【0039】これにより、本熱電変換モジュールを例え
ば冷蔵庫等の冷却ユニットに適用した場合、気密部材を
構成する断熱材にて断熱ボックスの一部または全部を構
成でき、高断熱性の真空断熱と一体になった熱ロスの少
ない構造を得ることができるという効果を奏する。
Thus, when the present thermoelectric conversion module is applied to a cooling unit such as a refrigerator, a part or all of the heat insulating box can be formed by a heat insulating material that constitutes an airtight member, and is integrated with highly heat insulating vacuum heat insulating material. It is possible to obtain a structure with less heat loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における熱電変換モジュール
を示す縦断面図である。
FIG. 1 is a vertical sectional view showing a thermoelectric conversion module according to an embodiment of the present invention.

【図2】上記の熱電変換モジュールを示す斜視図であ
る。
FIG. 2 is a perspective view showing the thermoelectric conversion module.

【図3】電子冷却の原理を示す説明図である。FIG. 3 is an explanatory diagram showing the principle of electronic cooling.

【図4】従来例における熱電変換モジュールを示す縦断
面図である。
FIG. 4 is a vertical cross-sectional view showing a thermoelectric conversion module in a conventional example.

【符号の説明】[Explanation of symbols]

1 Π形熱電素子 1a N形半導体 1b P形半導体 1c 金属電極 2 吸熱熱交換器 3 放熱熱交換器 5 気密部材 5a 断熱材 5b カバー材 1 Π-type thermoelectric element 1a N-type semiconductor 1b P-type semiconductor 1c Metal electrode 2 Endothermic heat exchanger 3 Radiant heat exchanger 5 Airtight member 5a Heat insulating material 5b Cover material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】N形半導体とP形半導体とを金属電極にて
接合してなるΠ形熱電素子を、吸熱熱交換器と放熱熱交
換器との間に挟装し、Π形熱電素子に直流電流を流すこ
とにより、吸熱熱交換器での吸熱および放熱熱交換器で
の放熱を可能にする熱電変換モジュールにおいて、 上記吸熱熱交換器と放熱熱交換器との間には、熱電素子
を囲み、熱電素子の存在する空間を真空状態に保持する
気密部材が配設されていることを特徴とする熱電変換モ
ジュール。
1. A Π-type thermoelectric element formed by joining an N-type semiconductor and a P-type semiconductor with a metal electrode is sandwiched between an endothermic heat exchanger and a radiant heat exchanger to form a Π-type thermoelectric element. In the thermoelectric conversion module that enables heat absorption in the endothermic heat exchanger and heat dissipation in the radiant heat exchanger by passing a direct current, a thermoelectric element is provided between the endothermic heat exchanger and the radiant heat exchanger. A thermoelectric conversion module, characterized in that an airtight member that surrounds a space in which a thermoelectric element exists is kept in a vacuum state.
【請求項2】上記気密部材は、外周面に気密性を有する
カバー材が接着された断熱材からなることを特徴とする
請求項1記載の熱電変換モジュール。
2. The thermoelectric conversion module according to claim 1, wherein the airtight member is made of a heat insulating material having an airtight cover material adhered to an outer peripheral surface thereof.
【請求項3】上記断熱材の占有体積は、吸熱熱交換器お
よび放熱熱交換器の各占有体積よりも大きく設定されて
いることを特徴とする請求項2記載の熱電変換モジュー
ル。
3. The thermoelectric conversion module according to claim 2, wherein the volume occupied by the heat insulating material is set to be larger than the volume occupied by each of the heat absorption heat exchanger and the heat radiation heat exchanger.
JP8056593A 1993-04-07 1993-04-07 Thermoelectric conversion module Pending JPH06294560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8056593A JPH06294560A (en) 1993-04-07 1993-04-07 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8056593A JPH06294560A (en) 1993-04-07 1993-04-07 Thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JPH06294560A true JPH06294560A (en) 1994-10-21

Family

ID=13721864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8056593A Pending JPH06294560A (en) 1993-04-07 1993-04-07 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JPH06294560A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034451A1 (en) * 1997-12-25 1999-07-08 Eco 21, Inc. Thermoelectric converter
KR20020019786A (en) * 2000-09-07 2002-03-13 박호군 Thermoelectric cooling module with temperature sensor
WO2017176073A3 (en) * 2016-04-07 2018-08-02 엘지전자 주식회사 Refrigerator
KR102210735B1 (en) * 2020-05-16 2021-02-02 주식회사 티엠아이 Thermoelectric element assembly

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034451A1 (en) * 1997-12-25 1999-07-08 Eco 21, Inc. Thermoelectric converter
US6185941B1 (en) 1997-12-25 2001-02-13 Eco 21, Inc. Thermoelectric converter
AU750519B2 (en) * 1997-12-25 2002-07-18 Eco 21, Inc. Thermoelectric converter
KR20020019786A (en) * 2000-09-07 2002-03-13 박호군 Thermoelectric cooling module with temperature sensor
WO2017176073A3 (en) * 2016-04-07 2018-08-02 엘지전자 주식회사 Refrigerator
US11112160B2 (en) 2016-04-07 2021-09-07 Lg Electronics Inc. Refrigerator
KR102210735B1 (en) * 2020-05-16 2021-02-02 주식회사 티엠아이 Thermoelectric element assembly
WO2021235756A1 (en) * 2020-05-16 2021-11-25 주식회사 티엠아이 Thermoelectric element assembly

Similar Documents

Publication Publication Date Title
US5715684A (en) Thermoelectric converter
JPH10178216A (en) Thermoelectric element and thermoelectric cooling device
JPWO2004001865A1 (en) Thermoelectric element and electronic component module and portable electronic device using the same
JP4131029B2 (en) Thermoelectric conversion module
JPH05219765A (en) Thermo electric generator
JP3920403B2 (en) Thermoelectric converter
JPH06294560A (en) Thermoelectric conversion module
JPH0791796A (en) Electronic refrigeration type cold storage box
JPH0430586A (en) Thermoelectric device
JP2787803B2 (en) Electronic cooling device
JP2000286459A (en) Thermoelectric conversion device
KR101177266B1 (en) Heat Exchanger using Thermoelectric Modules
JPH04256397A (en) Heat pipe type semiconductor stack
JPH0714029B2 (en) Power semiconductor device
JPH08236819A (en) Thermal electronic element
WO2022018989A1 (en) Thermoelectric power generation module and method for producing thermoelectric power generation module
JPH02271683A (en) Thermoelectric element and manufacture thereof
JP2011082272A (en) Thermoelectric cooling device
JPH06257923A (en) Refrigerator
JPH02155281A (en) Thermoelectric device
JP2879671B2 (en) Thermoelectric cooling device
JP3235185B2 (en) Heat dissipation device for thermoelectric conversion element
JPH0391272A (en) Thermomodule
JP3172502B2 (en) Thermoelectric converters such as coolers, heaters, temperature regulators, and generators using Peltier modules, coolers using Peltier modules, heaters using Peltier modules, and generators using Peltier modules
JP3546491B2 (en) Fluid cooling device using thermoelectric conversion element