JPH06294403A - Hydraulic circuit structure for construction machine - Google Patents

Hydraulic circuit structure for construction machine

Info

Publication number
JPH06294403A
JPH06294403A JP7921393A JP7921393A JPH06294403A JP H06294403 A JPH06294403 A JP H06294403A JP 7921393 A JP7921393 A JP 7921393A JP 7921393 A JP7921393 A JP 7921393A JP H06294403 A JPH06294403 A JP H06294403A
Authority
JP
Japan
Prior art keywords
pressure
valve
pilot
oil
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7921393A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Arii
一善 有井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7921393A priority Critical patent/JPH06294403A/en
Publication of JPH06294403A publication Critical patent/JPH06294403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

PURPOSE:To smooth the shifting behavior from direct advancing travel to turning direction by connecting an opening/closing valve to respective pilot pressure supply oil passages through non-return circuits allowing the flow in the direction from the pilot pressure supply oil passages to the opening/closing valve, and bringing the respective pilot pressure supply oil passages to a state where they are non-connected with each other. CONSTITUTION:An opening/closing valve 29 is connected to respective pilot pressure supply oil passages 6j, 6j, 9j, 9j for control valves 6, 9 through non- return circuits F allowing the flow in the direction from the supply oil passages 6j, 6j, 9j, 9j to the opening/closing valve 29 and bringing the respective supply oil passages 6j, 6j, 9j, 9j to a state where they are non-connected with each other. Throttles 32 provided on the pressurized oil supplying upper course side of leading places which lead an oil passage 31 to the non-return circuits F of the respective supply oil passages 6j, 6j, 9j, 9j, are also equivalent to an adjusting means C. Thus, the ratio of the amount of stroke of a control valve spool to the pilot pressure can be totally changed, or the amount of spool stroke at the time of maximum lever-tilting can be changed to newly set.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バックホウ等の建機に
おける負荷制御型の油圧回路構造に係り、詳しくは、直
進走行から旋回走行への移行挙動を円滑化させる技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load control type hydraulic circuit structure in a construction machine such as a backhoe, and more particularly to a technique for smoothing the transition behavior from straight running to turning running.

【0002】[0002]

【従来の技術】この種の油圧回路としては、特開平2−
144419号公報で示されたバックホウ用のロードセ
ンシング回路が知られている。この技術では、アクチュ
エータ通過後における制御弁に対する圧油供給経路下手
側部分どうしを連通する油路と、各制御弁に対する圧油
供給経路下手側における油圧ポンプの吐出側油路とを流
量制御弁の各油室に接続させることによって、該流量制
御弁の切換作動を司る状態に構成してあり、作業装置の
いずれのアクチュエータを駆動する場合であっても良好
な負荷制御が行えるようにしてある。
2. Description of the Related Art A hydraulic circuit of this type is disclosed in Japanese Unexamined Patent Publication No.
A load sensing circuit for a backhoe shown in Japanese Patent No. 144419 is known. In this technique, the oil passage that connects the lower side portions of the pressure oil supply path to the control valve after passing through the actuator and the discharge side oil passage of the hydraulic pump on the lower side of the pressure oil supply path to each control valve are connected to the flow control valve. By connecting to each oil chamber, it is configured to control the switching operation of the flow rate control valve, and good load control can be performed regardless of which actuator of the working device is driven.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術では以下に示すような不都合の生じることがあ
る。すなわち、ロードセンシングでは各アクチュエータ
への最大供給油量を、制御基準である差圧(制御弁通過
前と通過後の回路圧の差)の設定によって予め設定され
るので、例えば、左右の走行用油圧モータへの単位時間
当たりの最大供給油量が60Lに設定され、かつ、単位
時間当たりのポンプの最大吐出量が120Lであると、
走行レバーを最大操作すれば各油圧モータに60Lずつ
流れるのであるが、エンジン回転数が低められてポンプ
の最大吐出量が60Lになると、走行レバーを最大操作
しても各油圧モータへは30Lずつしか流れず速度が半
減するようになる。ところが、この状態で旋回するべく
片側の油圧モータへの圧油供給を断つと、60Lの圧油
は全て片側の油圧モータに流れることになって旋回外側
の走行装置が直進時に比べて増速駆動されてしまい、本
来、走行速度が直進時より遅くなるのが感覚的に望まし
いのに反して、旋回速度が速過ぎるものとなって操縦し
難い、といったことが起き得るのである。又、制御弁を
機械的な連係機構によって人為操作する構造上、操作力
が重く疲れ易い傾向があるため、油圧パイロット操作に
よって軽快に制御弁を操作することも計画されている。
本発明の目的は、パイロット圧で軽快に操作できるよう
にしながら、負荷制御型の油圧回路で生じる上記不都合
を、パイロット圧を利用した状態で改善できる操作性に
優れた合理的なものとして実現させる点にある。
However, the above-mentioned prior art may cause the following inconveniences. That is, in load sensing, the maximum amount of oil supplied to each actuator is preset by setting the differential pressure (difference between the circuit pressure before and after passing the control valve), which is a control reference. If the maximum amount of oil supplied to the hydraulic motor per unit time is set to 60 L and the maximum discharge amount of the pump per unit time is 120 L,
If the travel lever is operated to the maximum, 60L flows to each hydraulic motor. However, when the engine speed is lowered and the maximum discharge amount of the pump reaches 60L, even if the travel lever is operated to the maximum, 30L is supplied to each hydraulic motor. It only flows and the speed is halved. However, if the pressure oil supply to the hydraulic motor on one side is cut off in order to make a turn in this state, all the pressure oil of 60L will flow to the hydraulic motor on one side, and the traveling device on the outside of the turn will be driven at a higher speed than when traveling straight ahead. Although it is sensuously desirable that the traveling speed be slower than when traveling straight ahead, it is possible that the turning speed becomes too fast and it is difficult to control. In addition, since the control valve has a structure in which it is manually operated by a mechanical linkage mechanism, the operating force tends to be heavy and tired easily. Therefore, it is also planned to operate the control valve lightly by hydraulic pilot operation.
An object of the present invention is to realize the above-mentioned inconvenience occurring in a load control type hydraulic circuit as a rational one having excellent operability, which can be improved in a state in which the pilot pressure is utilized, while allowing light operation by the pilot pressure. In point.

【0004】[0004]

【課題を解決するための手段】上記目的の達成のために
本発明は、複数の油圧駆動型のアクチュエータと、これ
らに圧油を供給する可変容量型の油圧ポンプと、油圧ポ
ンプから吐出される圧油の供給方向を制御してアクチュ
エータに供給する制御弁と、油圧ポンプの単位時間当た
りの吐出油量を可変設定する調節アクチュエータと、油
圧ポンプの圧油供給下手側であり、かつ、アクチュエー
タの圧油供給上手側に位置する油路の回路圧を検出する
圧検出手段とを備え、圧検出手段による検出圧が高くな
ると油圧ポンプの吐出圧を増加させるとともに、検出圧
が低くなると油圧ポンプの吐出圧を減少させる負荷制御
状態に、圧検出手段と調節アクチュエータとを連係して
ある建機の油圧回路構造において、 制御弁のうちの左右の走行用制御弁をパイロット圧
で操作するべく、これら走行用制御弁を切換移動する操
作アクチュエータと、これら操作アクチュエータを制御
するパイロット弁とを設け、パイロット弁の単位操作量
に対する走行用制御弁の作動ストローク量の割合を変更
設定可能な調節手段を設け、 調節手段を、走行用制御弁が所定の開き量以上にな
ると走行用制御弁への供給パイロット圧を絞り油路を介
してドレン路に接続する連通状態と、走行用制御弁が所
定の開き量未満になるとドレン路への接続を断つ閉塞状
態とを現出する開閉弁で構成するとともに、この開閉弁
を、両制御弁に対する各パイロット圧供給油路夫々に、
これらパイロット圧供給油路から開閉弁に向かう方向へ
の流れは許容し、かつ、各パイロット圧供給油路どうし
は非連通状態とする逆止回路を介して接続してあること
を特徴とするものである。
In order to achieve the above object, the present invention provides a plurality of hydraulic drive type actuators, a variable displacement type hydraulic pump for supplying pressure oil to these actuators, and a discharge from the hydraulic pumps. A control valve that controls the direction of pressure oil supply and supplies it to the actuator, an adjustment actuator that variably sets the amount of oil discharged per unit time of the hydraulic pump, and a hydraulic oil supply lower side of the hydraulic pump, and Pressure detection means for detecting the circuit pressure of the oil passage located on the upstream side of the pressure oil supply is provided.When the detection pressure by the pressure detection means increases, the discharge pressure of the hydraulic pump increases, and when the detection pressure decreases, the hydraulic pump In the load control state in which the discharge pressure is reduced, in the hydraulic circuit structure of the construction machine in which the pressure detection means and the adjustment actuator are linked, the left and right traveling control valves among the control valves are In order to operate with pilot pressure, an operating actuator that switches and moves these traveling control valves and a pilot valve that controls these operating actuators are provided, and the ratio of the operating stroke amount of the traveling control valve to the unit operation amount of the pilot valve is set. A changeable setting means is provided, and when the travel control valve is equal to or larger than a predetermined opening amount, the adjustment means is in a communication state in which the pilot pressure supplied to the travel control valve is connected to the drain passage through the throttle oil passage, When the traveling control valve becomes less than the predetermined opening amount, it is composed of an on-off valve that opens and closes the connection to the drain passage, and this on-off valve is connected to each pilot pressure supply oil passage for both control valves. ,
A feature is that these pilot pressure supply oil passages are allowed to flow in the direction toward the on-off valve, and that each pilot pressure supply oil passage is connected via a check circuit that does not communicate with each other. Is.

【0005】[0005]

【作用】つまり、前提構成により、アクチュエータに作
用する負荷に応じて油圧ポンプの吐出圧が調節される負
荷制御が行えるのであるが、特徴構成によれば、パイ
ロット弁の単位操作量に対する制御弁の作動ストローク
量の割合を変更設定可能である。例えば、図6に示すよ
うに、走行用制御弁6とパイロット弁24との一対のパ
イロット油路6j,6jに、2個の逆止弁30とパイロ
ット式の開閉弁29とで構成される調節手段Cを介して
ドレン路28に接続して旋回用回路を構成する。この旋
回用回路によると、パイロット弁24の操作量に対する
制御弁6の移動量は、図7に示すグラフのように、調節
手段Cを接続しない場合での所定圧以上ではラインa
(仮想線)であるに対し、調節手段Cを接続した場合に
はラインb(実線)に変化し、所定値以上のパイロット
圧での制御弁の最大開度を狭く規制できる。つまり、調
節手段の機能によって制御弁の最大開度を絞ることがで
きるから、前述したようにエンジン回転数を遅くしてポ
ンプ出力が低下したときには、走行用制御弁6の開度を
絞ることで最大走行速度を低くすることができる。これ
により、直進走行状態から旋回走行状態に移行しても旋
回外側の走行装置の駆動速度が変わらない、或いは少し
速くなる程度といった具合に、従来に比べて油圧モータ
への供給油量の増加率を抑制できるようになる。
That is, according to the premise structure, the load control in which the discharge pressure of the hydraulic pump is adjusted according to the load acting on the actuator can be performed. According to the characteristic structure, the control valve of the control valve with respect to the unit operation amount of the pilot valve can be controlled. The ratio of the working stroke amount can be changed and set. For example, as shown in FIG. 6, a pair of pilot oil passages 6j and 6j of the traveling control valve 6 and the pilot valve 24 are provided with two check valves 30 and a pilot-type on-off valve 29. It connects to the drain path 28 via the means C and comprises a circuit for turning. According to this turning circuit, the amount of movement of the control valve 6 with respect to the amount of operation of the pilot valve 24, as shown in the graph of FIG.
In contrast to the (phantom line), when the adjusting means C is connected, the line changes to the line b (solid line), and the maximum opening degree of the control valve at the pilot pressure equal to or higher than a predetermined value can be narrowed. That is, since the maximum opening of the control valve can be reduced by the function of the adjusting means, as described above, when the engine speed is slowed and the pump output is reduced, the opening of the traveling control valve 6 can be reduced. The maximum running speed can be reduced. As a result, the rate of increase in the amount of oil supplied to the hydraulic motor is higher than in the past, such as the drive speed of the traveling device on the outside of the turn does not change or slightly increases even when the straight running state is changed to the turning traveling state. Can be suppressed.

【0006】そして、特徴構成が加わると、上記作用
がさらに促進されるようになる。例えば、図4に示すよ
うに、左右の走行用制御弁6,9の一対のパイロット油
路6j,6j,9j,9j夫々に介装される計4個の逆
止弁30と、これら逆止弁30と開閉弁29とを連通す
る枝状油路31とで逆止回路Fを構成する。先ず、両パ
イロット弁24,26が共に最大操作されると開閉弁2
9が開き、各走行用制御弁6,9にNkg/cm 、逆止回路
Fには絞り27による分圧Mkg/cmのパイロット圧が夫
々作用する。次に、旋回走行によって右側の走行用制御
弁9を中立操作すると、左走行用制御弁6にN−αkg/c
m 、逆止回路Fには分圧M+αkg/cm のパイロット圧が
夫々作用し、左走行用制御弁6のスプール移動量が直進
時よりも少なくなる。何故なら、開閉弁29での分圧M
kg/cm は双方のパイロット弁24,26のパイロット圧
油の和の流量が通過したときの絞り作用による値である
から、片側のパイロット圧油の通過時では相対的に絞り
作用が緩くなることになり、αkg/cm だけ分圧が上昇す
るからである。つまり、旋回時での旋回外側の走行装置
の駆動速度は直進時よりも少し遅くなることになり、旋
回時では走行速度が直進時より遅くなるのが感覚的に望
ましいことにより合致するようになる。
When the characteristic constitution is added, the above-mentioned action is further promoted. For example, as shown in FIG. 4, a total of four check valves 30 provided in each of the pair of pilot oil passages 6j, 6j, 9j, 9j of the left and right traveling control valves 6, 9 and these check valves. A check circuit F is formed by the branch oil passage 31 that connects the valve 30 and the opening / closing valve 29. First, when both pilot valves 24 and 26 are operated at maximum, the on-off valve 2
9 is opened, and the pilot pressure of Nkg / cm 2 acts on each of the traveling control valves 6 and 9 and the partial pressure Mkg / cm by the throttle 27 acts on the check circuit F. Next, when the right side traveling control valve 9 is neutrally operated by turning, the left traveling control valve 6 has N-αkg / c.
The pilot pressure of partial pressure M + αkg / cm acts on m and the non-return circuit F, respectively, and the spool movement amount of the left traveling control valve 6 becomes smaller than that during straight traveling. Because the partial pressure M at the on-off valve 29
Since kg / cm is the value due to the throttling action when the sum of the flow rates of the pilot pressure oil of both pilot valves 24 and 26 passes, the throttling action will become relatively slow when the pilot pressure oil on one side passes. This is because the partial pressure increases by αkg / cm 2. In other words, the driving speed of the traveling device on the outside of the turn during turning will be slightly slower than when driving straight, and it will be more consistent that it is perceptually desirable that the running speed be slower than when driving straight. .

【0007】[0007]

【発明の効果】従って、エンジン回転数ダウンに伴って
旋回外側走行装置の駆動速度が速くなる不都合が解消さ
れるとともに、寧ろ若干駆動速度が低下し、直進走行か
ら旋回走行へ円滑に移行できるようになる油圧回路が得
られた。又、そのための開閉弁が少数個で済む経済性に
優れた利点もある。
As a result, the disadvantage that the driving speed of the turning outside traveling device increases with the decrease of the engine speed is solved, and the driving speed rather decreases slightly so that the straight traveling can be smoothly changed to the turning traveling. A hydraulic circuit was obtained. Further, there is an advantage that the number of opening / closing valves for that purpose is excellent and the economy is excellent.

【0008】[0008]

【実施例】以下に、本発明の実施例を、建機の一例であ
るバックホウの場合について図面に基づいて説明する。
図11にバックホウの側面図が、かつ、図1〜図3には
油圧駆動ユニットAと弁ブロックBと複数の油圧アクチ
ュエータとで構成された負荷制御用の油圧回路が示され
ている。油圧駆動ユニットAは、エンジンEn駆動され
る2連の可変容量型油圧ポンプ1、油圧ポンプ1の斜板
の角度を変更して単位時間当たりの吐出量を調節する調
節シリンダ2、調節シリンダ2に対する圧力補償型の圧
力調節弁(パイロット減圧弁)3等から構成されてい
る。弁ブロックBは、ブレード用制御弁4、バケット用
制御弁5、左走行用制御弁6、ブーム用制御弁7、アー
ム用制御弁8、右走行用制御弁9、旋回用制御弁10、
スウィング用制御弁11、サービスポート用制御弁12
の各制御弁と、これら各制御弁毎に装備されるコンペン
セータ(圧力補償弁)4a,5a,6a,7a,8a,
9a,10a,11a,12aとを備えて構成されてお
り、ブレード昇降用シリンダ4c、バケットシリンダ5
c、左右の走行用油圧モータ6c,9c、ブームシリン
ダ7c、アームシリンダ8c、旋回用油圧モータ10
c、スウィングシリンダ11c,サービス用アクチュエ
ータ(例えば、油圧ハンマー)12cの各アクチュエー
タに夫々接続されている。そして、各制御弁には夫々絞
り弁4s,5s,6s,7s,8s,9s,10s,1
1s,12sが装備されている。尚、各制御弁には、こ
れらのスプールを切換操作するために、後述するパイロ
ット圧で作動する一対の切換シリンダ5b,6b,7
b,8b,9b,10b,11bが装備されている。
Embodiments of the present invention will be described below with reference to the drawings in the case of a backhoe which is an example of a construction machine.
FIG. 11 is a side view of the backhoe, and FIGS. 1 to 3 show a hydraulic circuit for load control, which includes a hydraulic drive unit A, a valve block B, and a plurality of hydraulic actuators. The hydraulic drive unit A has two sets of variable displacement hydraulic pumps 1 driven by the engine En, an adjusting cylinder 2 that changes the angle of the swash plate of the hydraulic pump 1 to adjust the discharge amount per unit time, and an adjusting cylinder 2. It is composed of a pressure compensation type pressure control valve (pilot pressure reducing valve) 3 and the like. The valve block B includes a blade control valve 4, a bucket control valve 5, a left traveling control valve 6, a boom control valve 7, an arm control valve 8, a right traveling control valve 9, a turning control valve 10,
Swing control valve 11 and service port control valve 12
Control valves and compensators (pressure compensating valves) 4a, 5a, 6a, 7a, 8a, which are provided for each control valve.
9a, 10a, 11a, 12a, and a blade lifting cylinder 4c and a bucket cylinder 5
c, left and right traveling hydraulic motors 6c and 9c, boom cylinder 7c, arm cylinder 8c, turning hydraulic motor 10
c, a swing cylinder 11c, and a service actuator (for example, a hydraulic hammer) 12c are connected to the respective actuators. Then, each control valve has a throttle valve 4s, 5s, 6s, 7s, 8s, 9s, 10s, 1 respectively.
It is equipped with 1s and 12s. It should be noted that each control valve has a pair of switching cylinders 5b, 6b, 7 operated by pilot pressure, which will be described later, for switching these spools.
b, 8b, 9b, 10b, 11b are equipped.

【0009】各コンペンセータ4a〜12aは、各絞り
弁4s〜12sに対する圧油供給下手側であり、かつ、
各アクチュエータ4c〜12cに対する圧油供給上手側
に配備されている。そして、各コンペンセータ4a〜1
2aのバネ側油室4x〜12xと各アクチュエータ4c
〜12cに対する圧油供給下手側部分とを連通する低圧
側油路4t〜12t、及び各コンペンセータ4a〜12
aのバネ側油室4x〜12xに対向する反バネ側油室4
y〜12yと、各コンペンセータ4a〜12aに対する
圧油供給上手側であり、かつ、各絞り弁4s〜12sに
対する圧油供給下手側とを連通する高圧側油路4k〜1
2kを夫々設けてある。これにより、アフターオリフィ
ス型のロードセンシング回路を構成してある。
The compensators 4a to 12a are on the lower side of the pressure oil supply to the throttle valves 4s to 12s, and
The actuators 4c to 12c are arranged on the pressure oil supply side. And each compensator 4a-1
2a spring side oil chambers 4x to 12x and each actuator 4c
To 12c, the low pressure side oil passages 4t to 12t communicating with the lower side portion of the pressure oil supply, and the compensators 4a to 12
a. opposite to the spring side oil chamber 4x to 12x of a.
High pressure side oil passages 4k to 1 which connect y to 12y and the pressure oil supply upper side to each compensator 4a to 12a and the pressure oil supply lower side to each throttle valve 4s to 12s.
2k are provided respectively. This constitutes an after-orifice type load sensing circuit.

【0010】圧力調節弁3のバネ側油室3xと各絞り弁
4s〜12sに対する圧油供給下手側部分とを連通する
低圧側油路3tを設け、かつ、各制御弁4〜12の圧油
供給ポート4p〜12pに連絡される弁ブロックBと油
圧駆動ユニットAとの連通油路13における弁ブロック
Bへの入力ポート15と、圧力調節弁3のバネ側油室3
xに対向する反バネ側油室3yとを専用の接続油路14
で連通してある。この接続油路14により、機種毎に油
圧駆動ユニットAと弁ブロックBとの配管長さが異なっ
てもその外部配管での圧損値を一定のものにでき、機種
毎に圧力調節弁3のバネ力を微調整する必要がなく好都
合である。
A low pressure side oil passage 3t is provided which connects the spring side oil chamber 3x of the pressure control valve 3 and the pressure oil supply lower side portion to each throttle valve 4s to 12s, and the pressure oil of each control valve 4 to 12 is provided. The input port 15 to the valve block B in the communication oil passage 13 between the valve block B and the hydraulic drive unit A, which is connected to the supply ports 4p to 12p, and the spring side oil chamber 3 of the pressure control valve 3.
x is connected to the opposite spring-side oil chamber 3y facing x.
It is in communication with. With this connecting oil passage 14, the pressure loss value in the external pipe can be made constant even if the pipe lengths of the hydraulic drive unit A and the valve block B are different for each model, and the spring of the pressure control valve 3 can be made different for each model. It is convenient because there is no need to fine-tune the force.

【0011】図5に示すように、バケット用制御弁5、
ブーム用制御弁7、アーム用制御弁8、旋回用制御弁1
0、スウィング用制御弁11、及び左右の走行用制御弁
6,9については補助ポンプ16のパイロット圧で操作
される油圧パイロット操作構造を採り、バケット・ブー
ム用の十字操作自在な第1レバー17とそれらのパイロ
ット弁18、アーム・旋回用の十字操作自在な第2レバ
ー19とそれらのパイロット弁20、スウィング用の第
3レバー21とそのパイロット弁22、及び左右走行用
の第4,第5レバー23,25とそれらのパイロット弁
24,26が装備されている。
As shown in FIG. 5, the bucket control valve 5,
Boom control valve 7, arm control valve 8, turning control valve 1
0, the swing control valve 11, and the left and right traveling control valves 6 and 9 have a hydraulic pilot operation structure that is operated by the pilot pressure of the auxiliary pump 16, and the cross lever first lever 17 for bucket and boom can be operated. And those pilot valves 18, a cross-operable second lever 19 for arm / turning and those pilot valves 20, a third lever 21 for swing and its pilot valve 22, and fourth and fifth for left and right traveling. Equipped with levers 23, 25 and their pilot valves 24, 26.

【0012】図4に示すように、走行用パイロット弁2
4,26の単位操作量に対する走行用制御弁6,9の作
動ストローク量の割合を変更設定可能な調節手段Cを設
けてある。調節手段Cは、走行用制御弁6,9が所定の
開き量以上になるとこれらのパイロットシリンダ(操作
アクチュエータに相当)6b,9bへの供給パイロット
圧を絞り油路27を介してドレン路28に接続する連通
状態と、走行用制御弁6,9が所定の開き量未満になる
とドレン路28への接続を断つ閉塞状態とを現出する開
閉弁29から構成してある。そして、開閉弁29を、両
制御弁6,9に対する各パイロット圧供給油路6j,6
j,9j,9j夫々に、これらパイロット圧供給油路6
j,6j,9j,9jから開閉弁29に向かう方向への
流れは許容し、かつ、各パイロット圧供給油路6j,6
j,9j,9jどうしは非連通状態とする逆止回路Fを
介して接続してある。逆止回路Fは、4個のチェック弁
30と各チェック弁30と開閉弁とを連通させる枝状油
路31とで構成されている。
As shown in FIG. 4, the traveling pilot valve 2
There is provided an adjusting means C capable of changing and setting the ratio of the operation stroke amounts of the traveling control valves 6, 9 to the unit operation amounts of 4, 26. When the traveling control valves 6 and 9 reach a predetermined opening amount or more, the adjusting means C directs the pilot pressure supplied to these pilot cylinders (corresponding to operation actuators) 6b and 9b to the drain passage 28 via the throttle oil passage 27. It is composed of an on-off valve 29 that presents a connected communication state and a closed state in which the traveling control valves 6 and 9 are disconnected from the drain passage 28 when the travel control valves 6 and 9 are less than a predetermined opening amount. The open / close valve 29 is connected to the pilot pressure supply oil passages 6j, 6 for both control valves 6, 9.
j, 9j, 9j respectively, these pilot pressure supply oil passage 6
The flow from j, 6j, 9j, 9j toward the on-off valve 29 is allowed, and the pilot pressure supply oil passages 6j, 6
The j, 9j, and 9j are connected to each other via a check circuit F that is in a non-communication state. The check circuit F includes four check valves 30 and a branch oil passage 31 that connects the check valves 30 with the open / close valves.

【0013】つまり、図7に示すグラフように、絞り油
路27の絞り調節によってレバー傾倒量、すなわちパイ
ロット弁からのパイロット圧Ppに対する制御弁スプー
ルのストローク量Ssの割合を所定パイロット圧を境に
変化させることができる。又、図4、図6において、各
パイロット圧供給油路6j,6j,9j,9jにおける
逆止回路Fへの油路引出し箇所の圧油供給上手側に備え
られた絞り32も調節手段Cに相当し、これによるとパ
イロット圧Ppに対する制御弁スプールのストローク量
Ssの割合を全体的に変えたり、或いは、レバー最大傾
倒時のスプールストローク量を変更設定したりができ
る。
That is, as shown in the graph of FIG. 7, by adjusting the throttle of the throttle oil passage 27, the lever tilt amount, that is, the ratio of the stroke amount Ss of the control valve spool to the pilot pressure Pp from the pilot valve is set at a predetermined pilot pressure. Can be changed. Further, in FIGS. 4 and 6, the throttle 32 provided on the pressure oil supply upstream side of the oil passage leading-out point to the check circuit F in each pilot pressure supply oil passage 6j, 6j, 9j, 9j is also included in the adjusting means C. According to this, the ratio of the stroke amount Ss of the control valve spool to the pilot pressure Pp can be changed as a whole, or the spool stroke amount at the time of maximum lever tilt can be changed and set.

【0014】尚、特許請求の範囲の項においては、ブー
ムシリンダ7cや旋回モータ10c等を総称して油圧駆
動型のアクチュエータD、バケット用制御弁5やアーム
用制御弁8等を総称して制御弁Eと夫々表現するもので
ある。
In the claims, the boom cylinder 7c, the swing motor 10c and the like are collectively referred to as a hydraulically driven actuator D, the bucket control valve 5, the arm control valve 8 and the like are collectively referred to as control. These are expressed as valve E, respectively.

【0015】〔別実施例〕開閉弁29における戻しバネ
29aの付勢力を可変できるようにして、図7に示す変
化点Qの位置をずらせるようにすると好都合である。そ
して、戻しバネ29aの付勢力を調節する手段と、エン
ジン回転数を検出する手段と、これら調節手段と検出手
段とを連係制御する制御装置とを設け、エンジン回転数
が高いと前記変化点Qが高い値の方へ設定され、回転数
が低いと変化点Qが低い値の方へ設定されるように自動
的に調節する制御回路を構成すれば、尚好都合である。
又、図10に示すように、開閉弁29を絞り27を備え
た圧力制御弁として構成しても良い。又、本発明を作業
装置付き運搬車、ドーザ作業車等の他のクローラ型又は
多輪型の走行装置を備えた建機に適用しても良い。
[Other Embodiments] It is convenient to change the biasing force of the return spring 29a in the on-off valve 29 so as to shift the position of the change point Q shown in FIG. A means for adjusting the urging force of the return spring 29a, a means for detecting the engine speed, and a controller for controlling the adjusting means and the detecting means in cooperation are provided, and when the engine speed is high, the change point Q is set. It is more convenient to construct a control circuit that automatically adjusts so that the change point Q is set to a low value when the rotational speed is low.
Further, as shown in FIG. 10, the on-off valve 29 may be configured as a pressure control valve having the throttle 27. Further, the present invention may be applied to a construction machine equipped with another crawler type or multi-wheel type traveling device such as a carrier with a working device and a dozer working vehicle.

【0016】本発明を、図8に示すクローズドセンター
システム(要部を示す)による負荷制御回路や、図9に
示すネガティヴコントロールシステム(要部を示す)に
よる負荷制御回路に適用しても良く、図9においては、
制御弁4通過後に配置されるネガコン絞り3aと、これ
の圧油供給上手側部分と調節シリンダ2のピストン室と
を連通する検出油路3bとで圧検出手段3が構成されて
いる。
The present invention may be applied to the load control circuit by the closed center system (showing the main part) shown in FIG. 8 and the load control circuit by the negative control system (showing the main part) shown in FIG. In FIG.
The negative control throttle 3a arranged after passing the control valve 4 and the detection oil passage 3b which connects the pressure oil supply upper side portion thereof and the piston chamber of the adjusting cylinder 2 constitute the pressure detection means 3.

【0017】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】油圧回路を示す系統図その1FIG. 1 is a system diagram showing a hydraulic circuit, part 1

【図2】油圧回路を示す系統図その2FIG. 2 is a system diagram showing a hydraulic circuit, part 2

【図3】油圧回路を示す系統図その3FIG. 3 is a system diagram showing a hydraulic circuit, part 3

【図4】走行用のパイロット回路を示す系統図FIG. 4 is a system diagram showing a pilot circuit for traveling.

【図5】走行用以外のパイロット回路を示す系統図FIG. 5 is a system diagram showing pilot circuits other than those for traveling.

【図6】旋回用回路の原理図[Fig. 6] Principle diagram of circuit for turning

【図7】旋回用回路によるパイロット操作特性グラフを
示す図
FIG. 7 is a diagram showing a pilot operation characteristic graph by a turning circuit.

【図8】クローズドセンターシステムの要部回路図FIG. 8 is a circuit diagram of main parts of a closed center system.

【図9】ネガティヴコントロールシステムの要部回路図FIG. 9 is a circuit diagram of essential parts of a negative control system.

【図10】調節手段の別構造を示す図FIG. 10 is a view showing another structure of the adjusting means.

【図11】バックホウの側面図FIG. 11 is a side view of the backhoe.

【符号の説明】[Explanation of symbols]

1 可変容量型油圧ポンプ 2 調節アクチュエータ 3 調節弁 6,9 走行用制御弁 6b,9b 操作アクチュエータ 6j,9j パイロット圧供給油路 24,26 パイロット弁 27 絞り油路 28 ドレン路 29 開閉弁 C 調節手段 D アクチュエータ E 制御弁 F 逆止回路 1 Variable displacement hydraulic pump 2 Control actuator 3 Control valve 6,9 Travel control valve 6b, 9b Operation actuator 6j, 9j Pilot pressure supply oil passage 24, 26 Pilot valve 27 Throttle oil passage 28 Drain passage 29 Open / close valve C Adjusting means D Actuator E Control valve F Check circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の油圧駆動型のアクチュエータ
(D)と、これらに圧油を供給する可変容量型の油圧ポ
ンプ(1)と、該油圧ポンプ(1)から吐出される圧油
の供給方向を制御して前記アクチュエータ(D)に供給
する制御弁(E)と、前記油圧ポンプ(1)の単位時間
当たりの吐出油量を可変設定する調節アクチュエータ
(2)と、前記油圧ポンプ(1)の圧油供給下手側であ
り、かつ、前記アクチュエータ(D)の圧油供給上手側
に位置する油路の回路圧を検出する圧検出手段(3)と
を備え、前記圧検出手段(3)による検出圧が高くなる
と前記油圧ポンプ(1)の吐出圧を増加させるととも
に、検出圧が低くなると前記油圧ポンプ(1)の吐出圧
を減少させる負荷制御状態に、前記圧検出手段(3)と
前記調節アクチュエータ(2)とを連係してある建機の
油圧回路構造であって、 前記制御弁(E)のうちの左右の走行用制御弁(6),
(9)をパイロット圧で操作するべく、これら走行用制
御弁(6),(9)を切換移動する操作アクチュエータ
(6b),(9b)と、これら操作アクチュエータ(6
b),(9b)を制御するパイロット弁(24),(2
6)とを設け、該パイロット弁(24),(26)の単
位操作量に対する前記走行用制御弁(6),(9)の作
動ストローク量の割合を変更設定可能な調節手段(C)
を設けるに、 該調節手段(C)を、前記走行用制御弁(6),(9)
が所定の開き量以上になると該走行用制御弁(6),
(9)への供給パイロット圧を絞り油路(27)を介し
てドレン路(28)に接続する連通状態と、前記走行用
制御弁(6),(9)が所定の開き量未満になると前記
ドレン路(28)への接続を断つ閉塞状態とを現出する
開閉弁(29)から構成するとともに、この開閉弁(2
9)を、前記両制御弁(6),(9)に対する各パイロ
ット圧供給油路(6j),(9j)夫々に、これらパイ
ロット圧供給油路(6j),(9j)から前記開閉弁
(29)に向かう方向への流れは許容し、かつ、各パイ
ロット圧供給油路(6j),(9j)どうしは非連通状
態とする逆止回路(F)を介して接続してある建機の油
圧回路構造。
1. A plurality of hydraulic drive type actuators (D), a variable displacement hydraulic pump (1) for supplying pressure oil to these, and a supply direction of pressure oil discharged from the hydraulic pump (1). And a control valve (E) for controlling and supplying the actuator (D) to the actuator (D), an adjusting actuator (2) for variably setting a discharge oil amount of the hydraulic pump (1) per unit time, and the hydraulic pump (1). Pressure detection means (3) for detecting the circuit pressure of an oil passage located on the pressure oil supply lower side of the actuator (D) and on the pressure oil supply upper side of the actuator (D). When the pressure detected by the hydraulic pump (1) increases, the discharge pressure of the hydraulic pump (1) increases, and when the detected pressure decreases, the discharge pressure of the hydraulic pump (1) decreases. The adjusting actuator (2 ) Is associated with the hydraulic circuit structure of the construction machine, wherein left and right traveling control valves (6) of the control valve (E),
Operation actuators (6b) and (9b) for switching and moving these traveling control valves (6) and (9) to operate (9) with pilot pressure, and these operation actuators (6).
b), (9b) controlling pilot valves (24), (2
6) and adjusting means (C) capable of changing and setting the ratio of the operation stroke amount of the traveling control valves (6) and (9) to the unit operation amount of the pilot valves (24) and (26).
The adjusting means (C) is provided with the traveling control valves (6), (9).
Is greater than or equal to a predetermined opening amount, the traveling control valve (6),
When the pilot pressure supplied to (9) is connected to the drain passage (28) via the throttle oil passage (27) and the travel control valves (6) and (9) are less than a predetermined opening amount. The on-off valve (2) is composed of an on-off valve (29) that opens and closes by disconnecting the connection to the drain passage (28).
9) to the pilot pressure supply oil passages (6j) and (9j) for the control valves (6) and (9), respectively, and to the open / close valve (6j) and (9j) from the pilot pressure supply oil passages (6j) and (9j). 29) is allowed and the pilot pressure supply oil passages (6j) and (9j) are connected to each other through a check circuit (F) that is in a non-communication state. Hydraulic circuit structure.
JP7921393A 1993-04-06 1993-04-06 Hydraulic circuit structure for construction machine Pending JPH06294403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7921393A JPH06294403A (en) 1993-04-06 1993-04-06 Hydraulic circuit structure for construction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7921393A JPH06294403A (en) 1993-04-06 1993-04-06 Hydraulic circuit structure for construction machine

Publications (1)

Publication Number Publication Date
JPH06294403A true JPH06294403A (en) 1994-10-21

Family

ID=13683662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7921393A Pending JPH06294403A (en) 1993-04-06 1993-04-06 Hydraulic circuit structure for construction machine

Country Status (1)

Country Link
JP (1) JPH06294403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317802A (en) * 2001-04-20 2002-10-31 Shin Caterpillar Mitsubishi Ltd Bleeder structure for pilot operation control valve
CN109723693A (en) * 2019-01-15 2019-05-07 江苏徐工工程机械研究院有限公司 Load-sensitive multi-way valve and hydraulic system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317802A (en) * 2001-04-20 2002-10-31 Shin Caterpillar Mitsubishi Ltd Bleeder structure for pilot operation control valve
CN109723693A (en) * 2019-01-15 2019-05-07 江苏徐工工程机械研究院有限公司 Load-sensitive multi-way valve and hydraulic system
CN109723693B (en) * 2019-01-15 2023-10-03 江苏徐工工程机械研究院有限公司 Load-sensitive multi-way valve and hydraulic system

Similar Documents

Publication Publication Date Title
US7305821B2 (en) Hydraulic control apparatus
JP6776334B2 (en) Excavator and control valve for excavator
JP7263003B2 (en) Excavators and control valves for excavators
JPH06294403A (en) Hydraulic circuit structure for construction machine
JP3692009B2 (en) Control device for work machine
JP2758335B2 (en) Hydraulic circuit structure of construction machinery
JP2002005109A (en) Operation control device
JP2716607B2 (en) Hydraulic circuit of construction machinery
JPH06221305A (en) Oil pressure circuit structure for construction machine
JP3511504B2 (en) Hydraulic circuit of construction machinery
JP3321551B2 (en) Construction machine hydraulic circuit
JP3053987B2 (en) Hydraulic circuit structure of working machine
JPH0734489A (en) Hydraulic circuit structure for construction machinery
JP2945556B2 (en) Hydraulic circuit structure of construction machinery
JP2983120B2 (en) Backhoe hydraulic circuit structure
JP2813651B2 (en) Backhoe hydraulic circuit structure
JP2758334B2 (en) Hydraulic circuit structure of construction machinery
JP2843729B2 (en) Hydraulic circuit structure
JP2963374B2 (en) Hydraulic control circuit for construction machinery
JP2002021809A (en) Hydraulic circuit for construction machine
JPS5857636B2 (en) Hydraulic control circuit device for construction machinery
JPH10219753A (en) Accelerator controller of construction machinery
JPH03287928A (en) Oil hydraulic circuit for hydraulic shovel
JP3391620B2 (en) Construction machine hydraulic circuit
JPH09100554A (en) Hydraulic pressure circuit of construction machinery