JPH0629177A - Semiconductor exposure apparatus - Google Patents

Semiconductor exposure apparatus

Info

Publication number
JPH0629177A
JPH0629177A JP4182001A JP18200192A JPH0629177A JP H0629177 A JPH0629177 A JP H0629177A JP 4182001 A JP4182001 A JP 4182001A JP 18200192 A JP18200192 A JP 18200192A JP H0629177 A JPH0629177 A JP H0629177A
Authority
JP
Japan
Prior art keywords
optical system
laser
light
exposure apparatus
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4182001A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kajiki
善裕 梶木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4182001A priority Critical patent/JPH0629177A/en
Publication of JPH0629177A publication Critical patent/JPH0629177A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a semiconductor exposure apparatus which ensures a longer operation life of lens material and does not require complicated and large size highly repetitive laser. CONSTITUTION:Intensity of light passing through a lens can be reduced to extend operation life of the lens, without using a complicated and large size highly repetitive laser, by dividing, with a delaying optical system 3, the light beam emitted from an excimer laser 1 into a plurality of luminous fluxes having time difference almost equal to pulse width of laser beam and then combining again these light beam at the surface of reticle 5 with a combining optical system 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超LSIの製造等に用
いる半導体露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor exposure apparatus used for manufacturing a VLSI or the like.

【0002】[0002]

【従来の技術】従来の半導体露光装置については、文献
「半導体リソグラフィ技術」、鳳紘一郎編著、昭和59
年、産業図書(株)、89頁から93頁に記載されてい
るので詳細は省略する。図3に従来の半導体露光装置の
光路図を示す。図では、露光光源にエキシマレーザを用
いた例を記した。エキシマレーザ1を出た光をビーム整
形光学系2でビーム拡がり等を補正し、フライズアイレ
ンズ4aに入射する。フライズアイレンズを透過するレ
ーザ光は空間的に分割され、コンデンサレンズ4bにて
各々の光束がレチクル5の面で重なり合うように導かれ
る。投影光学系6はレチクルの像をウェハ7に縮小投影
し、ウェハ表面に塗布されたレジストを感光する。図4
に図3に示した従来の半導体露光装置のレンズを透過す
る光強度の典型的な波形を示す。エキシマレーザは通
常、パルス幅12ns程度の短パルスな光源で、高い強
度の光がレンズを透過する。
2. Description of the Related Art Regarding a conventional semiconductor exposure apparatus, reference is made to "Semiconductor Lithography Technology", edited by Koichiro Hotori, Showa 59.
Details are omitted because they are described on pages 89 to 93 of Sangyo Tosho Co., Ltd. FIG. 3 shows an optical path diagram of a conventional semiconductor exposure apparatus. In the figure, an example using an excimer laser as an exposure light source is described. The beam expanding optical system 2 corrects the beam divergence of the light emitted from the excimer laser 1 and makes it incident on the fly's eye lens 4a. The laser light transmitted through the fly's eye lens is spatially divided and guided by the condenser lens 4b so that the respective light fluxes overlap with each other on the surface of the reticle 5. The projection optical system 6 projects the image of the reticle on the wafer 7 in a reduced scale, and exposes the resist applied on the surface of the wafer. Figure 4
FIG. 3 shows a typical waveform of the light intensity transmitted through the lens of the conventional semiconductor exposure apparatus shown in FIG. The excimer laser is usually a short-pulse light source with a pulse width of about 12 ns, and high-intensity light passes through the lens.

【0003】[0003]

【発明が解決しようとする課題】ところで、エキシマレ
ーザ光は波長が短い為に微細な加工に有用なのである
が、波長が短いということは同時に光子エネルギが大き
いという側面をも有している。例えば、波長193nm
のArFエキシマレーザ光の光子エネルギは約6.3e
Vもあり、物質を構成する原子間の結合エネルギに近い
値である。この為、半導体露光装置のレンズ材料に極め
て高い品質の結晶材料を用いても、レーザ光を長時間照
射すると、結晶材料中に残存する格子欠陥が結合解離し
て欠陥が増大し、非常に高価なレンズが使用不能になる
という問題がある。近年、この問題に対処するために結
晶材料の製造技術の改善が行われた結果、1個の光子が
衝突する過程で欠陥が増大する確率は大幅に減少した。
しかしながら、2個以上の光子が関与する多光子過程で
生じる損傷については、メカニズムの解明さえ満足にで
きていなく、問題解決は極めて困難である。
By the way, excimer laser light is useful for fine processing because of its short wavelength, but its short wavelength also has a large photon energy. For example, wavelength 193nm
Photon energy of ArF excimer laser light is about 6.3e
There is also V, which is a value close to the binding energy between the atoms constituting the substance. Therefore, even if a crystal material of extremely high quality is used as the lens material of the semiconductor exposure apparatus, when laser light is irradiated for a long time, lattice defects remaining in the crystal material are bonded and dissociated to increase defects, which is very expensive. There is a problem that a large lens becomes unusable. In recent years, as a result of improvement in manufacturing technology of crystalline materials in order to deal with this problem, the probability that defects increase in the process of collision of one photon is greatly reduced.
However, regarding the damage caused in the multiphoton process in which two or more photons are involved, even the elucidation of the mechanism is not satisfactory, and it is extremely difficult to solve the problem.

【0004】一方、この問題を緩和する為に強度の弱い
レーザ光を使用することが検討され、強度の弱いレーザ
を用いても生産ラインのスループットが低下することが
ないように、数kHz程度の高繰り返しレーザが求めら
れているが、高繰り返し化を行うためにダクト構造等の
複雑で大型のレーザが必要となる問題がある。
On the other hand, in order to alleviate this problem, it has been studied to use a laser beam having a weak intensity, and even if a laser beam having a weak intensity is used, the throughput of the production line is not lowered so that the throughput is about several kHz. A high repetition rate laser is required, but there is a problem that a complicated and large size laser such as a duct structure is required to achieve high repetition rate.

【0005】本発明の目的は、レンズ材料の寿命が長
く、複雑で大型の高繰り返しレーザを必要としない半導
体露光装置を提供することにある。
An object of the present invention is to provide a semiconductor exposure apparatus in which the lens material has a long life and does not require a complicated and large high repetition laser.

【0006】[0006]

【課題を解決するための手段】本発明の半導体露光装置
は、少なくとも、レーザ光を複数の光束に分割して各々
の光束の光路長に差をつける遅延光学系と、遅延光学系
を出射した各々の光束が再びレチクル面で重なり合うよ
うに照明する合成光学系を具備した照明光学系を有する
ことを特徴とする。
In the semiconductor exposure apparatus of the present invention, at least a delay optical system that divides a laser beam into a plurality of light fluxes to make an optical path length of each light flux different, and a delay optical system is emitted. It is characterized by having an illuminating optical system including a synthesizing optical system that illuminates the respective light fluxes so that they are overlapped again on the reticle surface.

【0007】[0007]

【作用】本発明の半導体露光装置は、レーザ光を複数の
光束に、分割し、各々の光束がレチクルに到達するまで
にレーザのパルス幅程度の時間差を持つように各々の光
路長に差を持たせて、再び各々の光束がレチクル面で重
なり合うように照明する。従って、各々の光束の強度は
光束の分割数に逆比例して減少する。ここで、多光子過
程が発生する確率は強度の累乗に比例するので、分割し
た光束が同時に入射しない限り1つの光束により損傷を
受ける確率は分割数の累乗に逆比例する。例えば2光子
過程の場合、レーザ光をN分割すると各々の光束の強度
はN分の1になり、損傷の発生確率はNの2乗分の1に
なる。従って、N本の光束が時間差をおいて入射する場
合、2光子過程による損傷の発生確率はN分の1にな
る。損傷の発生確率が減少する結果、レンズ材料の寿命
が長くなる。見かけ上のレーザパルスの繰り返しが高繰
り返しになるにもかかわらず、実際のレーザの繰り返し
は変化していないために、複雑で大型な高繰り返しレー
ザは必要ない。
According to the semiconductor exposure apparatus of the present invention, the laser light is divided into a plurality of luminous fluxes, and the respective optical path lengths are varied so that each luminous flux has a time difference of about the pulse width of the laser before reaching the reticle. The light is held and illuminated again so that the respective light fluxes overlap on the reticle surface. Therefore, the intensity of each luminous flux decreases in inverse proportion to the number of divisions of the luminous flux. Here, since the probability that the multiphoton process occurs is proportional to the power of the intensity, the probability of being damaged by one light beam is inversely proportional to the power of the number of divisions unless the divided light beams are incident at the same time. For example, in the case of the two-photon process, when the laser light is divided into N, the intensity of each luminous flux becomes 1 / N, and the damage occurrence probability becomes 1 / N 2. Therefore, when N light fluxes are incident with a time difference, the probability of occurrence of damage due to the two-photon process is 1 / N. The reduced probability of damage results in longer lens material life. Despite the apparent high repetition rate of the laser pulse, the actual repetition rate of the laser has not changed, so a complicated and large high repetition rate laser is not required.

【0008】[0008]

【実施例】次に、図面を用いて本発明の実施例を説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0009】図1に、本発明の半導体露光装置の一実施
例を示す。エキシマレーザ1から出た光をビーム整形光
学系2でビーム形状等を補正し、遅延光学系3に入射す
る。遅延光学系は5対の部分反射鏡3aと折り返し鏡3
bからなるミラーシンバルの構成で、各々の部分反射鏡
はレーザ光を光量の等しい6本の光束に分割する。ここ
で、レーザ光のパルス幅が12nsであるのに対し、1
対のハーフミラーと折り返しミラーの間は1.8m離れ
ており、各々の光束には往復で12nsの遅延が生じ
る。さらに、分割した各々の光束を対応するフライズア
イレンズ群4aとコンデンサレンズ4bを有する合成光
学系4に導き、各々の光束をレチクル5の面で合成す
る。投影光学系6は、これらの照明光学系によって照ら
されたレチクルの像をウェハ7上に縮小投影し、ウェハ
7に塗布したレジストを感光させる。
FIG. 1 shows an embodiment of a semiconductor exposure apparatus of the present invention. The beam shaping optical system 2 corrects the beam shape and the like of the light emitted from the excimer laser 1, and enters the delay optical system 3. The delay optical system includes five pairs of partial reflecting mirrors 3a and folding mirrors 3.
In the structure of the mirror cymbal b, each partial reflecting mirror splits the laser light into six light beams having the same light amount. Here, while the pulse width of the laser light is 12 ns, 1
The pair of half mirrors and the folding mirror are separated from each other by 1.8 m, and a delay of 12 ns occurs in each light flux in a round trip. Further, each divided light beam is guided to a combining optical system 4 having a corresponding fly's eye lens group 4a and condenser lens 4b, and each light beam is combined on the surface of the reticle 5. The projection optical system 6 reduces and projects the image of the reticle illuminated by these illumination optical systems onto the wafer 7, and exposes the resist applied to the wafer 7.

【0010】図2に図1に示した本発明の半導体露光装
置のレンズを透過する光強度を示す。縦軸は従来例の図
4に合わせて規格化した。パルス幅12nsのレーザ光
を12nsづつの遅延を設けて6のパルスに分割したた
めに、光強度は従来の1/6になっている。従って、1
本の光束が入射したことによりレンズが2光子過程で損
傷する確率は従来の1/36であり、6本の光束を加え
ても従来の6倍のレンズ寿命が得られる。ここで、レジ
ストを照射する光量は従来と同じであり、複雑で大型の
高繰り返しレーザを用いなくても同じスループットが得
られる。
FIG. 2 shows the light intensity transmitted through the lens of the semiconductor exposure apparatus of the present invention shown in FIG. The vertical axis is standardized according to FIG. 4 of the conventional example. Since the laser beam having a pulse width of 12 ns is delayed by 12 ns and divided into 6 pulses, the light intensity is ⅙ of the conventional intensity. Therefore, 1
The probability that the lens will be damaged in the two-photon process due to the incidence of the four light fluxes is 1/36 of that of the conventional one, and even if six light fluxes are added, the life of the lens can be six times that of the conventional one. Here, the amount of light for irradiating the resist is the same as the conventional one, and the same throughput can be obtained without using a complicated and large high repetition laser.

【0011】以上のように、本発明により、レンズ材料
の寿命が長く、複雑で大型の高繰り返しレーザを必要と
しない半導体露光装置を提供することができる。
As described above, according to the present invention, it is possible to provide a semiconductor exposure apparatus in which a lens material has a long life and which does not require a complicated and large-sized high repetition laser.

【0012】なお、上記実施例では部分反射鏡と折り返
し鏡からなる遅延光学系を用いたが、ビームを空間的に
分割する等の上記とは異なる構成を用いてもよい。
Although the delay optical system including the partial reflection mirror and the folding mirror is used in the above embodiment, a configuration different from the above, such as spatially dividing the beam, may be used.

【0013】また、分割した光束の各々にフライズアイ
レンズ群を対応させた合成光学系を用いたが、同一のフ
ライズアイレンズに各々の光束を近接した角度で入射す
る等の上記とは異なる構成を用いてもよい。
Further, although a synthetic optical system in which a fly's eye lens group is made to correspond to each of the divided light fluxes is used, a configuration different from the above such that the respective light fluxes are incident on the same fly's eye lens at close angles. May be used.

【0014】さらに、上記実施例では分割する光束の強
度を全て等しくしたが、光束がレチクルを照明する角度
に依存して、各々の拘束を分割する際の光量に分布を持
たせて、照明光学系のコヒーレンス印紙を調節したり、
照明光の空間周波数に分布を与えて、輪帯照明や斜入射
照明等に相当する超解像露光を行うこともできる。
Further, in the above embodiment, the intensity of the light beams to be split are all made equal, but depending on the angle at which the light beams illuminate the reticle, the light amount at the time of splitting each constraint is given a distribution, and the illumination optics is distributed. Adjust the coherence stamp of the system,
It is also possible to give a distribution to the spatial frequency of the illumination light and perform super-resolution exposure corresponding to annular illumination, oblique incidence illumination, or the like.

【0015】[0015]

【発明の効果】以上のように、本発明により、レンズ材
料の寿命が長く、複雑で大型の高繰り返しレーザを必要
としない半導体露光装置を提供することができる。
As described above, according to the present invention, it is possible to provide a semiconductor exposure apparatus in which the life of the lens material is long and which does not require a complicated and large high repetition laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体露光装置の一実施例を示す図。FIG. 1 is a diagram showing an embodiment of a semiconductor exposure apparatus of the present invention.

【図2】図1の半導体露光装置のレンズを透過する光強
度を示す図。
FIG. 2 is a diagram showing a light intensity transmitted through a lens of the semiconductor exposure apparatus of FIG.

【図3】従来の半導体露光装置を示す図。FIG. 3 is a diagram showing a conventional semiconductor exposure apparatus.

【図4】従来の半導体露光装置のレンズを透過する光強
度を示す図。
FIG. 4 is a diagram showing a light intensity transmitted through a lens of a conventional semiconductor exposure apparatus.

【符号の説明】[Explanation of symbols]

1 エキシマレーザ 2 ビーム整形光学系 3 遅延光学系 3a 部分反射鏡 3b 折り返し鏡 4 合成光学系 4a フライズアイレンズ 4b コンデンサレンズ 5 レチクル 6 投影光学系 7 ウェハ 1 Excimer Laser 2 Beam Shaping Optical System 3 Delay Optical System 3a Partial Reflecting Mirror 3b Folding Mirror 4 Synthetic Optical System 4a Frying Eye Lens 4b Condenser Lens 5 Reticle 6 Projection Optical System 7 Wafer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 照明光源にエキシマレーザを用い、照明
光学系と投影光学系を有する半導体露光装置において、
少なくとも、レーザ光を複数の光束に分割して各々の前
記光束の光路長に差をつける遅延光学系と、前記遅延光
学系を出射した各々の前記光束が再びレチクル面で重な
り合うように照明する合成光学系を具備した照明光学系
を有することを特徴とする半導体露光装置。
1. A semiconductor exposure apparatus that uses an excimer laser as an illumination light source and has an illumination optical system and a projection optical system,
At least a delay optical system that divides a laser beam into a plurality of light beams to make an optical path length difference between the respective light beams, and a composite that illuminates each of the light beams emitted from the delay optical system so as to overlap again on the reticle surface. A semiconductor exposure apparatus having an illumination optical system including an optical system.
JP4182001A 1992-07-09 1992-07-09 Semiconductor exposure apparatus Withdrawn JPH0629177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4182001A JPH0629177A (en) 1992-07-09 1992-07-09 Semiconductor exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4182001A JPH0629177A (en) 1992-07-09 1992-07-09 Semiconductor exposure apparatus

Publications (1)

Publication Number Publication Date
JPH0629177A true JPH0629177A (en) 1994-02-04

Family

ID=16110590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4182001A Withdrawn JPH0629177A (en) 1992-07-09 1992-07-09 Semiconductor exposure apparatus

Country Status (1)

Country Link
JP (1) JPH0629177A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549267B1 (en) 1996-02-22 2003-04-15 Nikon Corporation Pulse-width extending optical systems, projection-exposure apparatus comprising same, and manufacturing methods using same
WO2003049175A1 (en) * 2001-12-07 2003-06-12 Sony Corporation Beam irradiator and laser anneal device
US7432517B2 (en) 2004-11-19 2008-10-07 Asml Netherlands B.V. Pulse modifier, lithographic apparatus, and device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549267B1 (en) 1996-02-22 2003-04-15 Nikon Corporation Pulse-width extending optical systems, projection-exposure apparatus comprising same, and manufacturing methods using same
WO2003049175A1 (en) * 2001-12-07 2003-06-12 Sony Corporation Beam irradiator and laser anneal device
US7109435B2 (en) 2001-12-07 2006-09-19 Sony Corporation Beam irradiator and laser anneal device
US7432517B2 (en) 2004-11-19 2008-10-07 Asml Netherlands B.V. Pulse modifier, lithographic apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
KR930002513B1 (en) Lighting method and apparatus the before and projection type exposure method and there apparatus
JP2655465B2 (en) Reflection type homogenizer and reflection type illumination optical device
US5453814A (en) Illumination source and method for microlithography
KR100305657B1 (en) Illumination system and exposure apparatus having the same
JPS63110722A (en) Exposure illuminating system
JP2003045797A (en) Lithographic apparatus, device-manufacturing method, and device manufactured thereby
JPS63193130A (en) Light quantity controller
JPH09288251A (en) Pulse width lengthening optical system and exposure device provided therewith
JPH06181153A (en) Optical drawing apparatus
US5359388A (en) Microlithographic projection system
JP2002176006A (en) Apparatus and method for laser processing
JP2003218026A (en) Lithographic apparatus and device manufacturing method
JPH01114035A (en) Aligner
JP2011187930A (en) Lithography apparatus and method
JPH0629177A (en) Semiconductor exposure apparatus
CN113515016B (en) Double-beam laser direct writing method and device based on DMD digital mask
JPS60158449A (en) Exposing device
JP7223129B2 (en) Optical system, especially for microlithography
JPH1062710A (en) Illumination optical system
JPH0666246B2 (en) Illumination optics
US6295123B1 (en) Multiple photon absorption for high resolution lithography
US7787104B2 (en) Illumination optics for a microlithographic projection exposure apparatus
JPS62187815A (en) Light quantity controller
JPH07135145A (en) Aligner
JPH04250455A (en) Arcuate illuminator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005