JPH04250455A - Arcuate illuminator - Google Patents

Arcuate illuminator

Info

Publication number
JPH04250455A
JPH04250455A JP3008205A JP820591A JPH04250455A JP H04250455 A JPH04250455 A JP H04250455A JP 3008205 A JP3008205 A JP 3008205A JP 820591 A JP820591 A JP 820591A JP H04250455 A JPH04250455 A JP H04250455A
Authority
JP
Japan
Prior art keywords
light beam
parallel light
mirror
arc
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3008205A
Other languages
Japanese (ja)
Inventor
Takeshi Kawakami
川上 威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3008205A priority Critical patent/JPH04250455A/en
Publication of JPH04250455A publication Critical patent/JPH04250455A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems

Abstract

PURPOSE:To offer the arcuate illuminator having a mechanism which can easily adjust a coherence coefficient by removing a speckle when a laser such as, specially, an excimer laser is used as the light source of a reflection projection optical system used to manufacture an integrated circuit. CONSTITUTION:This illuminator consists of a rectangular aperture stop 11, a cylindrical total reflecting mirror 14, a half-mirror 15, an arcuate aperture 16, and a cylindrical half-mirror 17. A part of illumination light which gives an optical path difference longer than the coherent length of laser beam is mixed again with 2nd parallel luminous flux as incident light by using the cylindrical half-mirror 17 to reduce the coherence of the illumination light, thereby evading the formation of the speckle. Further, the width of the 2nd parallel luminous flux 13 is varied through the rectangular aperture stop 11 to obtain an optional spread of a light source image and the coherence coefficient is adjusted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は集積回路製造用の微細パ
ターン焼付け装置に用いる照明光学系に関するものであ
る。集積回路を製造するために微細パターンをウェハに
焼き付けるのに投影光学系が使用される。なかでも反射
投影光学系あるいは反射屈折投影光学系は、複数枚の反
射鏡を含み、円弧状照明光束を使用して焼付けを行う光
学系である。本発明は、この種の光学系の照明系として
、特にエキシマレーザ等のレーザを光源とした円弧状照
明光束をつくる装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination optical system used in a fine pattern printing apparatus for manufacturing integrated circuits. Projection optics are used to print fine patterns onto wafers to produce integrated circuits. Among these, a catoptric projection optical system or a catadioptric projection optical system is an optical system that includes a plurality of reflecting mirrors and performs printing using an arcuate illumination beam. The present invention relates to an illumination system for this type of optical system, and particularly to an apparatus for creating an arcuate illumination beam using a laser such as an excimer laser as a light source.

【0002】0002

【従来の技術】近年、半導体集積回路はますます高集積
化が進み、露光装置の微細パターン焼付けの精度に関し
ても高度のものが要求されてきている。図6は、例えば
、1:1の反射型投影露光装置の結像光学系構成を示し
たものである。凹面鏡61、凸面鏡62からなり、マス
ク63に円弧状の照明光64を照射し、マスク状のパタ
ーンをウェハ65に投影し、マスク63とウェハ65を
逆方向に走査して露光するものである。一方、周知のよ
うに、露光に関してはより短い波長の光を用いて分解能
を上げてきているが、遠紫外線露光を行う場合、従来の
超高圧水銀灯に比べて高い出力を有するエキシマレーザ
等を光源とすることが有望視されている。ここで、エキ
シマレーザ等のレーザを光源とする場合には、レーザ光
の可干渉性に起因するスペックルを除去し、均一にマス
クを照明することが必要となる。また、光源像が結像光
学系の入射瞳において適度な広がりを持つようにするこ
とも必要である。ここで、入射瞳の系をR、光源の像の
大きさをrとすると、照明光学系のコヒーレンス係数σ
は、 σ=r/R で表される。一般に、光露光方式においては、このコヒ
ーレンス係数が0.5程度と大きい方が望ましい。一方
、位相マスク法などの超解像マスクを用いた場合は、0
.2程度と比較的小さいほうが適している。従って、マ
スクの種類に応じて所望の光源像の広がりを与え得る照
明光学系が望ましい。
2. Description of the Related Art In recent years, semiconductor integrated circuits have become increasingly highly integrated, and a high degree of precision has been required for the printing of fine patterns by exposure devices. FIG. 6 shows, for example, the configuration of an imaging optical system of a 1:1 reflection type projection exposure apparatus. It consists of a concave mirror 61 and a convex mirror 62, and illuminates a mask 63 with arc-shaped illumination light 64, projects a mask-like pattern onto a wafer 65, and scans the mask 63 and wafer 65 in opposite directions for exposure. On the other hand, as is well known, when it comes to exposure, resolution has been improved by using light with shorter wavelengths, but when performing far ultraviolet exposure, light sources such as excimer lasers, which have higher output than conventional ultra-high pressure mercury lamps, are used as light sources. It is seen as promising. Here, when a laser such as an excimer laser is used as a light source, it is necessary to remove speckles due to the coherence of the laser beam and uniformly illuminate the mask. It is also necessary to ensure that the light source image has an appropriate spread in the entrance pupil of the imaging optical system. Here, if the entrance pupil system is R and the size of the light source image is r, then the coherence coefficient σ of the illumination optical system is
is expressed as σ=r/R. Generally, in a light exposure method, it is desirable that the coherence coefficient be as large as about 0.5. On the other hand, when using a super-resolution mask such as the phase mask method, 0
.. A relatively small value of around 2 is suitable. Therefore, it is desirable to have an illumination optical system that can provide a desired spread of the light source image depending on the type of mask.

【0003】図7に特開昭59−216118において
開示された、コリメートされた光束を光源とする従来の
円弧照明装置を示す。図に示すように、球面レンズ71
,72、反射鏡73、円柱型レンズ74、円筒型反射鏡
75、拡散板76からなり、平行光束77を拡散板76
の位置において円弧状に集光するものである。ここで、
円柱型反射鏡75により均一な照明を図り、拡散板76
によって光源像に広がりを与えるものである。
FIG. 7 shows a conventional arc illumination device disclosed in Japanese Patent Application Laid-Open No. 59-216118, which uses a collimated light beam as a light source. As shown in the figure, a spherical lens 71
, 72, a reflecting mirror 73, a cylindrical lens 74, a cylindrical reflecting mirror 75, and a diffuser plate 76.
The light is focused in an arc shape at the position. here,
A cylindrical reflector 75 provides uniform illumination, and a diffuser plate 76
This gives the light source image more breadth.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記の
従来例においては、光源像の広がりが拡散板によって決
ってしまうため、各種のマスクに応じた所望のコヒーレ
ンス係数を得ることはできない。そこで本発明は、エキ
シマレーザのような高強度の遠紫外コヒーレント光源を
用いた露光装置において、所望のコヒーレンス係数を得
ることができる機構を有する露光用照明装置を提供する
ものである。
However, in the conventional example described above, the spread of the light source image is determined by the diffuser plate, and therefore it is not possible to obtain a desired coherence coefficient corresponding to various masks. Therefore, the present invention provides an exposure illumination device that uses a high-intensity far-ultraviolet coherent light source such as an excimer laser and has a mechanism that can obtain a desired coherence coefficient.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明の円弧照明装置は、矩形の断面を持つ第1
の平行光束を第2の平行光束へと幅を変換する光学手段
と、前記第2の平行光束中に配置され、前記平行光束を
所定の光路に向け線状に集束する光学手段と、前記光路
に配置され、円弧状に成形された開口を有する半透過鏡
と、前記半透過鏡からの反射光を前記第2の平行光束と
一致させる光学手段を備えたものである。また、第1の
平行光束を第2の平行光束へと幅を変換する光学手段が
変換の倍率を変化させる手段を備えている。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the arc illumination device of the present invention provides a first lamp having a rectangular cross section.
an optical means for converting the width of the parallel light beam into a second parallel light beam; an optical means disposed in the second parallel light beam for linearly converging the parallel light beam toward a predetermined optical path; A semi-transmissive mirror having an arc-shaped aperture arranged in the semi-transmissive mirror, and an optical means for making the reflected light from the semi-transmissive mirror coincide with the second parallel light beam. Further, the optical means for converting the width of the first parallel light beam into the second parallel light beam includes means for changing the conversion magnification.

【0006】[0006]

【作用】本発明は、特にエキシマレーザ等の矩形の形状
を持つビームを円弧状に成形した出射開口に導くもので
ある。この出射開口により、マスク面の上に結像光学系
の良像域、すなわち、収差の補正された円弧状の領域に
厳密に一致した照射域をつくる。従って、本発明は円弧
状の良像域を用いてマスクとウェハを同期走査してパタ
ーンの転写を行う半導体露光装置に使用するのに好都合
である。
[Operation] The present invention is particularly directed to guiding a rectangular beam such as an excimer laser beam to an arc-shaped exit aperture. This exit aperture creates a good image area of the imaging optical system on the mask surface, that is, an irradiation area that exactly corresponds to an arcuate area in which aberrations have been corrected. Therefore, the present invention is suitable for use in a semiconductor exposure apparatus that transfers a pattern by synchronously scanning a mask and a wafer using an arc-shaped good image area.

【0007】エキシマレーザを露光光源として用いる場
合に、まず懸念されることは上述のようにスペックルの
発生である。これはエキシマレーザ光の可干渉性に起因
するものであり、照明系においてレーザ光のコヒーレン
ト長よりも長い光路差を与えた光束を混合することによ
り回避し得る。本発明においては、半透過鏡により照明
光の一部を再び入射光に混合することによりこれらを実
現することが可能である。さらに、入射光の幅を変換す
る手段により、光源像が結像光学系の入射瞳において任
意の広がりを持たせることにより、簡便に所望のコヒー
レンス係数を得ることができる。
When using an excimer laser as an exposure light source, the first concern is the occurrence of speckles as described above. This is due to the coherence of excimer laser light, and can be avoided by mixing light beams with an optical path difference longer than the coherent length of the laser light in the illumination system. In the present invention, these can be achieved by mixing part of the illumination light back into the incident light using a semi-transmissive mirror. Furthermore, a desired coherence coefficient can be easily obtained by allowing the light source image to have an arbitrary spread in the entrance pupil of the imaging optical system by means of converting the width of the incident light.

【0008】[0008]

【実施例】次に、図面を用いて本発明の実施例について
説明する。簡単のため主にエキシマレーザを光源とする
場合を考える。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings. For simplicity, we will mainly consider the case where an excimer laser is used as the light source.

【0009】図1は本発明の第1の実施例における断面
図である。図1において例えば、矩形開口絞り11によ
って、第1の平行光束12を第2の平行光束13へと変
換する。つぎに、第2の平行光束13を曲率を与えたシ
リンドリカル反射鏡14によって半透過鏡15上に線状
に集束する。ここで、図8(a)にエキシマレーザのビ
ームの強度分布の測定例、図8(b)にこれを励起放電
と平行な方向(X方向)を垂直な方向(Y方向)からみ
た強度分布の測定例をそれぞれ示す。これによりエキシ
マレーザのビーム強度分布は、レーザの励起放電と平行
な方向では比較的均一であり、励起放電と垂直な方向で
はガウス分布状の分布であることがわかる。従って、図
1に示すY方向と図8のY方向とが合致するように、第
1の平行光束12としてエキシマレーザのビームを入射
することにより均一な強度の線状集光が得られる。ここ
で半透過鏡15の裏面に円弧状の開口16を設け、シリ
ンドリカル反射鏡14の曲率と半透過鏡15の位置を図
1のような焦点位置に配置することにより、円弧状の照
明を得ることができる。図3に円弧状の開口16を設け
た半透過鏡15の実施例を示す。さらに、円弧状の開口
16と半透過鏡15は一体である必要はなく、円弧状の
開口16は、図2(a),(b)のように、光軸に対し
て垂直な面内等に配置してもよい。さらに、半透過鏡1
5より反射した光束を、曲率を与えたシリンドリカル半
透過鏡17により第2の平行光束13と一致させる。こ
れにより、半透過鏡15により反射された光が複数回、
シリンドリカル半透過鏡17、シリンドリカル反射鏡1
4、半透過鏡15より構成される光路を周回し、半透過
鏡15を透過する照明光はその1回周回、2回周回〜光
の混合となる。この過程において周回光はレーザ光のコ
ヒーレント長よりも長い光路差が与えられ、それらの混
合である照明光のコヒーレンシィは低減し、スペックル
の発生を回避することができる。また、本実施例におい
て任意の光源像の広がりを得るためには、第2の平行光
束13の幅を変えるだけでよく、所望の広がりに応じた
矩形開口絞り11を設ければよい。
FIG. 1 is a sectional view of a first embodiment of the present invention. In FIG. 1, for example, a rectangular aperture diaphragm 11 converts a first parallel light beam 12 into a second parallel light beam 13. Next, the second parallel light beam 13 is linearly focused onto a semi-transmissive mirror 15 by a cylindrical reflecting mirror 14 having a curvature. Here, Fig. 8(a) shows an example of measuring the intensity distribution of the excimer laser beam, and Fig. 8(b) shows the intensity distribution as seen from the direction (Y direction) parallel to the excited discharge (X direction) and perpendicular to it. Examples of measurement are shown below. This shows that the beam intensity distribution of the excimer laser is relatively uniform in the direction parallel to the excitation discharge of the laser, and has a Gaussian distribution in the direction perpendicular to the excitation discharge. Therefore, by inputting the excimer laser beam as the first parallel light beam 12 so that the Y direction shown in FIG. 1 and the Y direction shown in FIG. 8 coincide, linear convergence with uniform intensity can be obtained. Here, by providing an arc-shaped opening 16 on the back surface of the semi-transmissive mirror 15 and arranging the curvature of the cylindrical reflecting mirror 14 and the position of the semi-transmissive mirror 15 at the focal position as shown in FIG. 1, arc-shaped illumination is obtained. be able to. FIG. 3 shows an embodiment of a semi-transparent mirror 15 provided with an arc-shaped opening 16. Further, the arc-shaped aperture 16 and the semi-transparent mirror 15 do not need to be integrated, and the arc-shaped aperture 16 can be formed in a plane perpendicular to the optical axis, etc., as shown in FIGS. 2(a) and 2(b). It may be placed in Furthermore, semi-transparent mirror 1
The light beam reflected from the second parallel light beam 13 is made to coincide with the second parallel light beam 13 by a cylindrical semi-transmissive mirror 17 having a curvature. As a result, the light reflected by the semi-transparent mirror 15 is transmitted multiple times.
Cylindrical semi-transmitting mirror 17, cylindrical reflecting mirror 1
4. The illumination light that goes around the optical path constituted by the semi-transmissive mirror 15 and passes through the semi-transmissive mirror 15 becomes a mixture of the light that goes around once, goes around twice, and so on. In this process, the circulating light is given an optical path difference that is longer than the coherence length of the laser light, and the coherency of the illumination light that is a mixture of them is reduced, making it possible to avoid speckles. Further, in this embodiment, in order to obtain an arbitrary spread of the light source image, it is sufficient to simply change the width of the second parallel light beam 13, and it is sufficient to provide a rectangular aperture stop 11 according to the desired spread.

【0010】図4は本発明の第2の実施例で、アフォー
カル変倍光学系41を備えている。第1の平行光束12
を第2の平行光束13へと変換する手段として矩形開口
11を用いると、第2の平行光束13の幅が第1の平行
光束12の幅に比べて十分に小さいことが必要となった
場合に、矩形開口11においてけられが生じ、第1の平
行光束12を有効に利用することができなくなる。こう
した場合にアフォーカル変倍光学系41が有効である。 アフォーカル変倍光学系41としては従来のシリンドリ
カルレンズの組合せによるビームエクスパンダーが周知
である。しかし、エキシマレーザを用いた場合、そのビ
ームは強力な遠紫外線であるため、硝材による吸収や材
料自体の劣化などが問題となり、透過光学系の数が多く
なることは得策ではない。そこで、反射型のアフォーカ
ル変倍光学系がさらに有効であり、一例として、図4中
に示した共焦点放物面鏡42が挙げられる。このとき、
上述のようにエキシマレーザのビームの強度分布から放
物面は回転対称である必要はなく、図4の断面の示す方
向にのみ放物面であればよい。
FIG. 4 shows a second embodiment of the present invention, which is equipped with an afocal variable magnification optical system 41. First parallel light beam 12
When the rectangular aperture 11 is used as a means for converting the parallel light beam 13 into the second parallel light beam 13, the width of the second parallel light beam 13 needs to be sufficiently smaller than the width of the first parallel light beam 12. Furthermore, vignetting occurs in the rectangular aperture 11, making it impossible to effectively utilize the first parallel light beam 12. In such a case, the afocal variable magnification optical system 41 is effective. As the afocal variable magnification optical system 41, a beam expander using a combination of conventional cylindrical lenses is well known. However, when an excimer laser is used, the beam is a powerful deep ultraviolet ray, which causes problems such as absorption by the glass material and deterioration of the material itself, so it is not a good idea to increase the number of transmission optical systems. Therefore, a reflective afocal variable magnification optical system is more effective, and one example is the confocal parabolic mirror 42 shown in FIG. At this time,
As mentioned above, the paraboloid does not need to be rotationally symmetrical because of the intensity distribution of the excimer laser beam, and it is sufficient if it is a paraboloid only in the direction shown in the cross section of FIG.

【0011】図5は、第1の平行光束12を第2の平行
光束13へと変換する際に、変換の倍率を変化させる手
段の実施例である、回転板に軸対称に矩形開口52を配
置した回転矩形開口板51である。回転矩形開口板51
を回転し、適当な矩形開口52を選択して、第1の平行
光束を入射することにより、所望の光源像の広がりを得
ることを実現するものである。矩形開口51の替わりに
共焦点放物面鏡42を配置しても同様の効果が得られる
FIG. 5 shows an embodiment of a means for changing the conversion magnification when converting the first parallel light beam 12 into the second parallel light beam 13, in which a rectangular aperture 52 is formed axially symmetrically on a rotary plate. A rotating rectangular aperture plate 51 is arranged. Rotating rectangular opening plate 51
By rotating the rectangular aperture 52, selecting an appropriate rectangular aperture 52, and allowing the first parallel light beam to enter, it is possible to obtain a desired spread of the light source image. A similar effect can be obtained by arranging a confocal parabolic mirror 42 instead of the rectangular aperture 51.

【0012】0012

【発明の効果】以上のように本発明の円弧照明装置によ
れば、エキシマレーザ等のレーザを光源とする露光にお
いて、結像光学系の入射瞳における光源像の広がりを、
簡便に所望の広がりにすることが可能となり、マスクに
応じて所望のコヒーレンス係数を得ることができる。
As described above, according to the arc illumination device of the present invention, in exposure using a laser such as an excimer laser as a light source, the spread of the light source image at the entrance pupil of the imaging optical system can be
It becomes possible to easily set the desired spread, and it is possible to obtain a desired coherence coefficient depending on the mask.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例における断面図。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】円弧状の開口を設けた半透過鏡の実施例を示す
図。
FIG. 2 is a diagram showing an example of a semi-transparent mirror provided with an arc-shaped opening.

【図3】円弧状の開口の配置例を示す図。FIG. 3 is a diagram showing an example of arrangement of arc-shaped openings.

【図4】本発明の第2の実施例における断面図。FIG. 4 is a sectional view of a second embodiment of the invention.

【図5】平行光束の幅を変換する手段の実施例の図。FIG. 5 is a diagram of an embodiment of means for converting the width of a parallel beam of light;

【図6】反射型露光装置の結像光学系の従来例を示す図
FIG. 6 is a diagram showing a conventional example of an imaging optical system of a reflective exposure apparatus.

【図7】コリメートされた光束を光源とする従来の円弧
照明装置の図。
FIG. 7 is a diagram of a conventional arc illumination device using a collimated luminous flux as a light source.

【図8】エキシマレーザのビームの強度分布の測定を示
す図。
FIG. 8 is a diagram showing measurement of the intensity distribution of an excimer laser beam.

【符号の説明】[Explanation of symbols]

11    矩形開口絞り 12    第1の平行光束 13    第2の平行光束 14    シリンドリカル全反射鏡 15    半透過鏡 16    円弧状の開口 17    シリンドリカル半透過鏡 41    アフォーカル変倍光学系 42    共焦点放物面鏡 51    回転矩形開口板 52    矩形開口 61    凹面鏡 62    凸面鏡 63    マスク 64    円弧状の照明光 65    ウェハ 71,72    球面鏡 73    反射鏡 74    円柱型レンズ 75    円筒型反射鏡 76    拡散板 11 Rectangular aperture diaphragm 12 First parallel light beam 13 Second parallel light beam 14 Cylindrical total reflection mirror 15 Semi-transparent mirror 16 Arc-shaped opening 17 Cylindrical semi-transparent mirror 41 Afocal variable magnification optical system 42 Confocal parabolic mirror 51 Rotating rectangular opening plate 52 Rectangular opening 61 Concave mirror 62 Convex mirror 63 Mask 64 Arc-shaped illumination light 65 Wafer 71, 72 Spherical mirror 73 Reflector 74 Cylindrical lens 75 Cylindrical reflector 76 Diffusion plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  矩形の断面を持つ第1の平行光束を第
2の平行光束へと光束幅を変換する光学手段と、前記第
2の平行光束中に配置され、前記平行光束を所定の光路
に向け線状に集束する光学手段と、前記光路に配置され
、円弧状に成形された開口を有する半透過鏡と、前記半
透過鏡からの反射光を前記第2の平行光束と一致させる
光学手段を備えたことを特徴とする円弧照明装置。
1. An optical means for converting a beam width from a first parallel light beam having a rectangular cross section into a second parallel light beam, and an optical means disposed in the second parallel light beam to direct the parallel light beam along a predetermined optical path. an optical means for linearly converging the light toward the optical path, a semi-transmissive mirror disposed in the optical path and having an arc-shaped aperture, and optics for making the reflected light from the semi-transmissive mirror coincide with the second parallel beam. An arc lighting device characterized by comprising means.
【請求項2】  矩形の断面を持つ第1の平行光束を第
2の平行光束への光束幅を変換する光学手段と、前記第
2の平行光束中に配置され、前記平行光束を所定の光路
に向け線状に集束する光学手段と、前記光路に配置され
、円弧状に成形された開口を有する半透過鏡と、前記半
透過鏡からの反射光を前記第2の平行光束と一致させる
光学手段を備えたことを特徴とする円弧照明装置におい
て、前記第1の平行光束を第2の平行光束へと幅を変換
する光学手段が変換の倍率を変化させる手段を備えたこ
とを特徴とする円弧照明装置。
2. An optical means for converting a beam width from a first parallel light beam having a rectangular cross section into a second parallel light beam, and an optical means disposed in the second parallel light beam to direct the parallel light beam along a predetermined optical path. an optical means for linearly converging the light toward the optical path, a semi-transmissive mirror disposed in the optical path and having an arc-shaped aperture, and optics for making the reflected light from the semi-transmissive mirror coincide with the second parallel beam. The arc illumination device is characterized in that the optical means for converting the width of the first parallel light beam into the second parallel light beam includes means for changing the magnification of the conversion. Arc lighting device.
JP3008205A 1991-01-28 1991-01-28 Arcuate illuminator Pending JPH04250455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3008205A JPH04250455A (en) 1991-01-28 1991-01-28 Arcuate illuminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3008205A JPH04250455A (en) 1991-01-28 1991-01-28 Arcuate illuminator

Publications (1)

Publication Number Publication Date
JPH04250455A true JPH04250455A (en) 1992-09-07

Family

ID=11686749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3008205A Pending JPH04250455A (en) 1991-01-28 1991-01-28 Arcuate illuminator

Country Status (1)

Country Link
JP (1) JPH04250455A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480262B1 (en) 1993-06-30 2002-11-12 Nikon Corporation Illumination optical apparatus for illuminating a mask, method of manufacturing and using same, and field stop used therein
KR100588941B1 (en) * 2004-08-03 2006-06-09 주식회사 대우일렉트로닉스 Cylindrical type holographic data recoding apparatus and method for controlling thereof
JP2007227973A (en) * 2007-05-29 2007-09-06 Nikon Corp Optical delay element, illumination optical device, exposure device and method, and method for manufacturing semiconductor device
JP2007306007A (en) * 2007-05-29 2007-11-22 Nikon Corp Lighting optical device and exposure equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480262B1 (en) 1993-06-30 2002-11-12 Nikon Corporation Illumination optical apparatus for illuminating a mask, method of manufacturing and using same, and field stop used therein
US6795169B2 (en) 1993-06-30 2004-09-21 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US7023527B2 (en) 1993-06-30 2006-04-04 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US7088425B2 (en) 1993-06-30 2006-08-08 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
KR100588941B1 (en) * 2004-08-03 2006-06-09 주식회사 대우일렉트로닉스 Cylindrical type holographic data recoding apparatus and method for controlling thereof
JP2007227973A (en) * 2007-05-29 2007-09-06 Nikon Corp Optical delay element, illumination optical device, exposure device and method, and method for manufacturing semiconductor device
JP2007306007A (en) * 2007-05-29 2007-11-22 Nikon Corp Lighting optical device and exposure equipment
JP4534210B2 (en) * 2007-05-29 2010-09-01 株式会社ニコン Optical delay device, illumination optical device, exposure apparatus and method, and semiconductor device manufacturing method
JP4548449B2 (en) * 2007-05-29 2010-09-22 株式会社ニコン Illumination optical apparatus and exposure apparatus

Similar Documents

Publication Publication Date Title
JP2655465B2 (en) Reflection type homogenizer and reflection type illumination optical device
JP3005203B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JP3264224B2 (en) Illumination apparatus and projection exposure apparatus using the same
US7714983B2 (en) Illumination system for a microlithography projection exposure installation
JP2007150295A (en) Optical device comprising raster element, and irradiation system comprising the optical device
JP2004510340A (en) Illumination optics especially for microlithography
JP2852169B2 (en) Projection exposure method and apparatus
JPH07283133A (en) Irradiation light source and irradiation method for microlithography
JP3413160B2 (en) Illumination apparatus and scanning exposure apparatus using the same
JP2001284240A (en) Illuminating optical system, projection exposure system equipped therewith, method of manufacturing device by use of projection exposure system
JPH07230949A (en) Lighting device and projection exposing device
US8149386B2 (en) Illumination optical system, exposure apparatus using the same and device manufacturing method
JP2002198309A (en) Illumination system with less heat load
US7064806B2 (en) Illumination optical system and exposure apparatus
JP2005141158A (en) Illumination optical system and aligner
JP5283928B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2004055856A (en) Lighting device, manufacturing method for exposure device and for device utilizing the same
JPH01114035A (en) Aligner
JPH04250455A (en) Arcuate illuminator
JP2004140390A (en) Illumination optical system, exposure device and device manufacturing method
JP2001332489A (en) Lighting optical system, projection aligner, and device- manufacturing method
JP2003232901A (en) Optical device, illuminator and exposure device
JP2001110713A (en) Reflection optical element, lighting optical device having the same, projection aligner, and device manufacturing method
JP2002057081A (en) Illumination optical apparatus, exposure apparatus and exposure method
JP3521506B2 (en) Illumination device and exposure device