JPH06289401A - Production of liquid crystal display device - Google Patents

Production of liquid crystal display device

Info

Publication number
JPH06289401A
JPH06289401A JP7778793A JP7778793A JPH06289401A JP H06289401 A JPH06289401 A JP H06289401A JP 7778793 A JP7778793 A JP 7778793A JP 7778793 A JP7778793 A JP 7778793A JP H06289401 A JPH06289401 A JP H06289401A
Authority
JP
Japan
Prior art keywords
polyimide
film
alignment film
based organic
pressure plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7778793A
Other languages
Japanese (ja)
Other versions
JP3274217B2 (en
Inventor
Yoichiro Miyaguchi
耀一郎 宮口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7778793A priority Critical patent/JP3274217B2/en
Publication of JPH06289401A publication Critical patent/JPH06289401A/en
Application granted granted Critical
Publication of JP3274217B2 publication Critical patent/JP3274217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)
  • Chemical Vapour Deposition (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain good film quality to substantially prevent the entering of impurities and pinholes by forming polyimide org. oriented films on inorg. oxidized films formed on substrates by an atm. pressure plasma method. CONSTITUTION:The inorg. oxidized films 3 of SiOx of about 50 to 1000Angstrom and the polyimide org. oriented films 4 of about 300 to 3000Angstrom film thickness are successively formed on the plastic film substrates 1 formed with ITO electrodes 2 by the atm. pressure plasma method and thereafter, the polyimide org. oriented films 4 are subjected to a rubbing treatment. A liquid crystal 5 is formed between the upper and lower substrates formed with the inorg. oxidized films 3 and the polyimide org. oriented films 4 on the substrates 1, by which the liquid crystal display device is obtd. The inorg. oxidized films 3 and the polyimide org. oriented films 4 are continuously formed within the same reaction chamber by the dry process of the atm. pressure plasma method and, therefore, the inorg. oxidized films 3 and polyimide org. oriented films 4 having the good film quality to substantially prevent the entering of the impurities and pinholes are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置の製造方
法に係り、詳しくは、液晶表示装置の配向膜を形成する
技術に適用することができ、特に、不純物及びピンホー
ル等の入り難い良質な膜質のポリイミド系有機配向膜及
び無機酸化膜を得ることができる液晶表示装置の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a liquid crystal display device, and more particularly, it can be applied to a technique for forming an alignment film of a liquid crystal display device, and in particular, impurities and pinholes are difficult to enter The present invention relates to a method for manufacturing a liquid crystal display device capable of obtaining a polyimide-based organic alignment film and an inorganic oxide film of good quality.

【0002】[0002]

【従来の技術】従来、電気光学セルについては、例えば
特開昭52−27654号公報で報告されたものがあ
り、ここでは、電極被膜を有する面の少なくともシール
部に無機質電極保護膜を形成し、更に電極被膜上に配向
処理されたポリイミド糸配向膜を形成して構成すること
により、優れた特性の液晶セルを得ることができるとい
う利点を有する。
2. Description of the Related Art Conventionally, there is an electro-optical cell reported in, for example, Japanese Unexamined Patent Publication (Kokai) No. 52-27654, in which an inorganic electrode protective film is formed on at least a seal portion of a surface having an electrode film. Further, by forming an alignment-treated polyimide thread alignment film on the electrode coating film, there is an advantage that a liquid crystal cell having excellent characteristics can be obtained.

【0003】また、例えば特開昭58−9126号公報
で報告された液晶セルの製造方法では、絶縁基板上にシ
ール材を所定形状に塗布した後、配向処理剤を塗布して
セルを形成し、シール部と配向膜塗布部分を分割分離し
て形成し構成することにより、シール接着力と配向膜特
性を良好にできるという利点を有する。また、例えば特
開昭59−113416号公報で報告された液晶表示装
置では、PbO2 とSiO2 の混合物で透明絶縁膜を絶
縁基板上の透明電極全面に塗布して形成し、この透明絶
縁膜上に配向処理膜を形成して構成することにより、劣
化の小さい液晶セルを得ることができるという利点を有
する。
In the method of manufacturing a liquid crystal cell reported in, for example, Japanese Patent Application Laid-Open No. 58-9126, a sealing material is applied in a predetermined shape on an insulating substrate, and then an alignment treatment agent is applied to form the cell. By forming and forming the seal portion and the portion to which the alignment film is applied separately, there is an advantage that the seal adhesive force and the characteristics of the alignment film can be improved. Further, in the liquid crystal display device reported in, for example, Japanese Patent Laid-Open No. 59-113416, a transparent insulating film is formed by applying a mixture of PbO 2 and SiO 2 on the entire surface of a transparent electrode on an insulating substrate. By forming the alignment treatment film on the upper side, there is an advantage that a liquid crystal cell with little deterioration can be obtained.

【0004】[0004]

【発明が解決しようとする課題】上記したような従来の
液晶表示装置の製造方法では、基板上に有機配向膜を塗
布して形成した後、熱処理し、ラビング処理することで
チルト角を設定していたが、有機配向膜中に溶剤系を含
むため、熱処理した後も若干溶剤系が膜中に存在し、こ
の結果、熱処理や湿度変化が加わると、有機配向膜の膜
質が劣化し易かった。
In the conventional method for manufacturing a liquid crystal display device as described above, a tilt angle is set by applying an organic alignment film on a substrate, forming it, then heat-treating it and rubbing it. However, since the organic alignment film contains a solvent system, the solvent system is still present in the film even after the heat treatment, and as a result, the quality of the organic alignment film is likely to deteriorate when the heat treatment or humidity change is applied. .

【0005】また、下地効果についても無機物の絶縁膜
を試みているが、塗布法で形成していたため、上記と同
様無機絶縁膜中に有機溶媒を含み、この結果、ピンホー
ルやその脱気が不充分であると、膜質の劣化や接着力の
劣化が生じ易い他、シール接着の充分な接着力を得られ
難かった。以下、従来の液晶表示装置を構成する有機配
向膜には次のような欠点が挙げられる。 有機溶剤を含む配向膜形成のため、脱溶媒が不足とな
り、配向膜が劣化(膨潤、溶出、可動イオン−オリゴマ
ーの拡散が液晶中に発生)する。ラビング効果による
チルト角が熱劣化する。湿度による膨潤と高透湿性が
生じる。熱乾時の膜収縮によるストレス発生とピンホ
ールが生じる。低温処理では結晶性のコントロールが
不足で、特にPF(プラスチックフィルム)の場合は致
命的であり、溶剤を含むことになる。配向膜と基板の
密着力が不足して剥がれる場合が起こり、シール部に渡
ってこの配向膜が存在すると、シール接着力は顕著に小
さくなる。電気特性としては配向膜の膨潤、湿気の透
過、可動イオンの拡散によって比抵抗が小さくなって耐
圧が小さくなり、絶縁破壊が起こって重欠点を発生する
場合がある。
An inorganic insulating film has also been tried for the base effect, but since it is formed by a coating method, the organic solvent is contained in the inorganic insulating film as described above, and as a result, pinholes or degassing of the pinhole occurs. If it is insufficient, the film quality and the adhesive strength are likely to deteriorate, and it is difficult to obtain sufficient adhesive strength for seal adhesion. Hereinafter, the organic alignment film forming the conventional liquid crystal display device has the following drawbacks. Since the alignment film containing the organic solvent is formed, desolvation becomes insufficient, and the alignment film is deteriorated (swelling, elution, mobile ion-oligomer diffusion occurs in the liquid crystal). The tilt angle due to the rubbing effect is thermally deteriorated. Swelling due to humidity and high moisture permeability occur. Generation of stress and pinholes due to film shrinkage during heat drying. Crystallinity control is insufficient in low-temperature treatment, and it is fatal particularly in the case of PF (plastic film), and a solvent is included. The adhesive force between the alignment film and the substrate may be insufficient and the substrate may be peeled off. If the alignment film is present over the seal portion, the seal adhesive force is significantly reduced. As the electrical characteristics, there are cases where swelling of the alignment film, moisture permeation, and diffusion of mobile ions reduce the specific resistance and the withstand voltage, resulting in dielectric breakdown and causing serious defects.

【0006】そこで本発明は、不純物及びピンホール等
の入り難い良質な膜質のポリイミド系有機配向膜及び無
機酸化膜を得ることができる液晶表示装置の製造方法を
提供することを目的としている。
Therefore, an object of the present invention is to provide a method of manufacturing a liquid crystal display device, which can obtain a polyimide type organic alignment film and an inorganic oxide film of high quality which are hard to contain impurities and pinholes.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は、
大気圧プラズマ法により基板上に無機酸化膜を形成する
工程と、次いで、大気圧プラズマ法により該無機酸化膜
上にポリイミド系有機配向膜を形成する工程とを含むこ
とを特徴とするものである。請求項2記載の発明は、上
記請求項1記載の発明において、成膜後の前記ポリイミ
ド系有機配向膜をラビング処理する工程と、次いで、大
気圧プラズマ法により該ポリイミド系有機配向膜上に無
機酸化膜を形成する工程とを含むことを特徴とするもの
である。
The invention according to claim 1 is
The method is characterized by including a step of forming an inorganic oxide film on a substrate by an atmospheric pressure plasma method, and then a step of forming a polyimide-based organic alignment film on the inorganic oxide film by an atmospheric pressure plasma method. . The invention according to claim 2 is the invention according to claim 1, wherein the polyimide-based organic alignment film after the film formation is rubbed, and then an inorganic film is formed on the polyimide-based organic alignment film by an atmospheric pressure plasma method. And a step of forming an oxide film.

【0008】請求項3記載の発明は、上記請求項2記載
の発明において、成膜後の前記無機酸化膜をラビング処
理する工程を含むことを特徴とするものである。請求項
4記載の発明は、大気圧プラズマ法により基板上にポリ
イミド系有機配向膜を形成する工程と、次いで、該ポリ
イミド系有機配向膜をラビング処理する工程と、次い
で、大気圧プラズマ法により該ポリイミド系有機配向膜
上に無機酸化膜を形成する工程とを含むことを特徴とす
るものである。
According to a third aspect of the present invention, in the above-mentioned second aspect of the invention, the method further comprises the step of rubbing the inorganic oxide film after the film formation. In the invention according to claim 4, a step of forming a polyimide-based organic alignment film on a substrate by an atmospheric pressure plasma method, a step of rubbing the polyimide-based organic alignment film, and a step of subsequently performing an atmospheric pressure plasma method. And a step of forming an inorganic oxide film on the polyimide-based organic alignment film.

【0009】請求項5記載の発明は、上記請求項4記載
の発明において、成膜後の前記無機酸化膜をラビング処
理する工程を含むことを特徴とするものである。請求項
6記載の発明は、塗布法により基板上にポリイミド系有
機配向膜を形成する工程と、次いで、該ポリイミド系有
機配向膜表面を大気圧プラズマで生成した不活性ガスに
よるスパッタ及び酸素プラズマで処理する工程と、次い
で、該ポリイミド系有機配向膜をラビング処理する工程
とを含むことを特徴とするものである。
A fifth aspect of the present invention is characterized in that, in the fourth aspect of the invention, the method includes a step of rubbing the inorganic oxide film after film formation. According to a sixth aspect of the present invention, there is provided a step of forming a polyimide-based organic alignment film on a substrate by a coating method, followed by sputtering by an inert gas generated by atmospheric pressure plasma and oxygen plasma on the surface of the polyimide-based organic alignment film. The method is characterized by including a treatment step and then a step of rubbing the polyimide-based organic alignment film.

【0010】請求項7記載の発明は、上記請求項6記載
の発明において、大気圧プラズマ法によりラビング処理
後の前記ポリイミド系有機配向膜上に無機酸化膜を形成
する工程を含むことを特徴とするものである。
The invention according to claim 7 is characterized in that, in the invention according to claim 6, the method further comprises the step of forming an inorganic oxide film on the polyimide-based organic alignment film after the rubbing treatment by an atmospheric pressure plasma method. To do.

【0011】[0011]

【作用】請求項1記載の発明では、大気圧プラズマ法に
より基板上に無機酸化膜を形成した後、大気圧プラズマ
法により該無機酸化膜上にポリイミド系有機配向膜を形
成するように構成している。このため、大気圧プラズマ
法によるドライ工程により同一反応室内で無機酸化膜及
びポリイミド系有機配向膜を連続的に成膜することがで
きるので、工程数を減らすことができるとともに、不純
物及びピンホールの入り難い良質な膜質の無機酸化膜及
びポリイミド有機配向膜を形成することができる。しか
も、大気圧プラズマ法を用いているため、膜厚制御を容
易に行うことができる。
According to the first aspect of the present invention, after the inorganic oxide film is formed on the substrate by the atmospheric pressure plasma method, the polyimide-based organic alignment film is formed on the inorganic oxide film by the atmospheric pressure plasma method. ing. Therefore, since the inorganic oxide film and the polyimide-based organic alignment film can be continuously formed in the same reaction chamber by the dry process by the atmospheric pressure plasma method, the number of processes can be reduced and impurities and pinholes can be eliminated. It is possible to form an inorganic oxide film and a polyimide organic alignment film which are hard to enter and have good film quality. Moreover, since the atmospheric pressure plasma method is used, the film thickness can be easily controlled.

【0012】請求項2記載の発明では、上記請求項1記
載の発明において、成膜後の前記ポリイミド系有機配向
膜をラビング処理した後、大気圧プラズマ法により該ポ
リイミド系有機配向膜上に無機酸化膜を形成するように
構成している。このため、ポリイミド系有機配向膜をラ
ビング処理しているので、表面のポリイミド系分子に方
向性を持たせて表面状態を整えることができる。そし
て、このラビング処理後のポリイミド系有機配向膜上に
大気圧プラズマ法により無機酸化膜を形成しているた
め、下地の結晶方向になぞって無機酸化膜を形成するこ
とができる。従って、ラビング形状を固定化して安定し
た配向特性を得ることができるとともに、耐熱性及び絶
縁破壊の耐性を向上させることができる。
According to a second aspect of the present invention, in the above-mentioned first aspect of the invention, after rubbing the polyimide-based organic alignment film after film formation, an inorganic film is formed on the polyimide-based organic alignment film by an atmospheric pressure plasma method. It is configured to form an oxide film. For this reason, since the polyimide-based organic alignment film is rubbed, the surface state can be adjusted by giving directionality to the polyimide-based molecules on the surface. Since the inorganic oxide film is formed on the polyimide organic alignment film after the rubbing treatment by the atmospheric pressure plasma method, the inorganic oxide film can be formed by tracing the crystal direction of the base. Therefore, the rubbing shape can be fixed and stable alignment characteristics can be obtained, and heat resistance and dielectric breakdown resistance can be improved.

【0013】請求項3記載の発明では、上記請求項2記
載の発明において、成膜後の前記無機酸化膜をラビング
処理するように構成している。このため、ラビング処理
後のポリイミド系有機配向膜上に大気圧プラズマ法によ
り形成された無機酸化膜をラビング処理しているので、
上記請求項2記載の発明の場合よりも更に安定した配向
特性を得ることができるとともに、耐熱性及び絶縁破壊
の耐性を向上させることができる。
According to a third aspect of the invention, in the second aspect of the invention, the inorganic oxide film after the film formation is rubbed. Therefore, since the inorganic oxide film formed by the atmospheric pressure plasma method is rubbed on the polyimide-based organic alignment film after the rubbing treatment,
It is possible to obtain a more stable orientation characteristic than that in the case of the invention described in claim 2, and to improve heat resistance and resistance to dielectric breakdown.

【0014】請求項4記載の発明では、大気圧プラズマ
法により基板上にポリイミド系有機配向膜を形成し、該
ポリイミド系有機配向膜をラビング処理した後、大気圧
プラズマ法により該ポリイミド系有機配向膜上に無機酸
化膜を形成するように構成している。このため、大気圧
プラズマ法によるドライ工程により、ポリイミド系有機
配向膜及び無機酸化膜を形成しているので、不純物及び
ピンホールの入り難い良質な膜質のポリイミド系有機配
向膜及び無機酸化膜を形成することができる。しかも、
大気圧プラズマ法を用いているため、膜厚制御を容易に
行うことができる。更には、ラビング処理後のポリイミ
ド系有機配向膜上に大気圧プラズマ法により無機酸化膜
を形成しているため、下地の結晶方向になぞって無機酸
化膜を形成することができ、ラビング形状を固定化して
安定した配向特性を得ることができるとともに、耐熱性
及び絶縁破壊の耐性を向上させることができる。
According to a fourth aspect of the present invention, a polyimide-based organic alignment film is formed on a substrate by the atmospheric pressure plasma method, the polyimide-based organic alignment film is rubbed, and then the polyimide-based organic alignment layer is processed by the atmospheric pressure plasma method. An inorganic oxide film is formed on the film. Therefore, since the polyimide-based organic alignment film and the inorganic oxide film are formed by a dry process using the atmospheric pressure plasma method, a high-quality polyimide-based organic alignment film and an inorganic oxide film in which impurities and pinholes hardly enter are formed. can do. Moreover,
Since the atmospheric pressure plasma method is used, the film thickness can be easily controlled. Furthermore, since the inorganic oxide film is formed on the polyimide-based organic alignment film after the rubbing treatment by the atmospheric pressure plasma method, the inorganic oxide film can be formed by tracing the crystal direction of the base and fixing the rubbing shape. And stable orientation characteristics can be obtained, and heat resistance and dielectric breakdown resistance can be improved.

【0015】請求項5記載の発明では、上記請求項4記
載の発明において、成膜後の前記無機酸化膜をラビング
処理するように構成している。このため、ラビング処理
後のポリイミド系有機配向膜上に大気圧プラズマ法によ
り形成された無機酸化膜をラビング処理しているので、
上記請求項4記載の発明の場合よりも、更に安定した配
向特性を得ることができるとともに、耐熱性及び絶縁破
壊の耐性を向上させることができる。
According to a fifth aspect of the invention, in the above-mentioned fourth aspect of the invention, the inorganic oxide film after the film formation is rubbed. Therefore, since the inorganic oxide film formed by the atmospheric pressure plasma method is rubbed on the polyimide-based organic alignment film after the rubbing treatment,
As compared with the case of the invention described in claim 4, more stable alignment characteristics can be obtained, and heat resistance and resistance to dielectric breakdown can be improved.

【0016】請求項6記載の発明では、塗布法により基
板上にポリイミド系有機配向膜を形成し、該ポリイミド
系有機配向膜表面を大気圧プラズマで生成した不活性ガ
スによるスパッタと酸素プラズマで処理した後、該ポリ
イミド系有機配向膜をラビング処理するように構成して
いる。このため、塗布法により基板上に形成されたポリ
イミド系有機配向膜を大気圧プラズマ雰囲気で処理した
ため、不純物及びピンホールの入り難い良質な膜質のポ
リイミド系有機配向膜を得ることができる。そして、ポ
リイミド系有機配向膜をラビング処理しているため、表
面のポリイミド系分子に方向性を持たせて表面状態を整
えることができる。
In a sixth aspect of the present invention, a polyimide-based organic alignment film is formed on a substrate by a coating method, and the surface of the polyimide-based organic alignment film is treated by sputtering with an inert gas generated by atmospheric pressure plasma and oxygen plasma. Then, the polyimide-based organic alignment film is rubbed. Therefore, since the polyimide-based organic alignment film formed on the substrate by the coating method is processed in the atmospheric pressure plasma atmosphere, it is possible to obtain a high-quality polyimide-based organic alignment film in which impurities and pinholes hardly enter. Since the polyimide-based organic alignment film is rubbed, the surface state can be adjusted by giving directionality to the polyimide-based molecules on the surface.

【0017】請求項7記載の発明では、上記請求項6記
載の発明において、大気圧プラズマ法によりラビング処
理後の前記ポリイミド系有機配向膜上に無機酸化膜を形
成するように構成している。このため、ラビング処理後
のポリイミド系有機配向膜上に大気圧プラズマ法により
無機酸化膜を形成しているので、下地の結晶方向性にな
ぞって無機酸化膜を形成することができ、ラビング形状
を固定化して安定した配向特性を得ることができるとと
もに、耐熱性及び絶縁破壊の耐性を向上させることがで
きる。
According to the invention of claim 7, in the invention of claim 6, the inorganic oxide film is formed on the polyimide-based organic alignment film after the rubbing treatment by the atmospheric pressure plasma method. Therefore, since the inorganic oxide film is formed by the atmospheric pressure plasma method on the polyimide-based organic alignment film after the rubbing treatment, the inorganic oxide film can be formed by tracing the crystal orientation of the base, and the rubbing shape can be obtained. It is possible to fix and obtain stable orientation characteristics, and improve heat resistance and dielectric breakdown resistance.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 (実施例1)まず、本実施例における大気圧プラズマ法
について説明する。大気圧プラズマ発生法は、不活性ガ
スAr,He,N2 (dry air)等に−OH(水
酸基),−NH(アミン基),−C=O(ケトン基),
−CO−(エーテル基),−C(=O)−O−(エステ
ル基)等を含む有機ガスを0.5 〜10%含ませて、周波数
1000〜10kHz、電圧500 〜3000Vを負荷することで、
グロー放電疑似のプラズマが発生する。この大気圧プラ
ズマ法では、低温プラズマで行うことができ、かつプラ
スチックスィルム等の処理に良好に適用させることがで
きる。この大気圧プラズマ法によれば、不活性ガスイオ
ンのスパッタ効果と有機ガスの分子、更に電極材料から
スパッタされた分子のプラズマが交互反応を伴って被処
理基板の表面改質と薄膜形成を乾式で、しかも無溶剤の
状態で行うことができる。また、この大気圧プラズマ法
による成膜によれば、周波数と電圧、更に成膜速度を遅
く適宜調整することで、結晶化度の大きい安定した良質
な膜質の無機酸化膜及びポリイミド系有機配向膜を得る
ことができる。このため、上記の如く、電極表面にポリ
イミド系有機配向膜を被膜したり、無機酸化膜をコーテ
ィングすることで、その薄膜形成材料と結晶化度を適宜
選択することができる。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) First, the atmospheric pressure plasma method in this embodiment will be described. The atmospheric pressure plasma generation method, an inert gas Ar, He, in N 2 (dry air) such as -OH (hydroxyl group), - NH (amine group), - C = O (ketone group),
0.5% to 10% of an organic gas containing -CO- (ether group), -C (= O) -O- (ester group), etc.
By applying 1000 to 10kHz and voltage 500 to 3000V,
Glow discharge pseudo plasma is generated. In this atmospheric pressure plasma method, low temperature plasma can be used, and it can be favorably applied to the processing of plastic film and the like. According to this atmospheric pressure plasma method, the sputtering effect of the inert gas and the molecules of the organic gas, and the plasma of the molecules sputtered from the electrode material are accompanied by an alternating reaction to perform surface modification and thin film formation on the substrate to be processed. Moreover, it can be performed in a solvent-free state. Further, according to the film formation by the atmospheric pressure plasma method, the frequency and voltage, and further, the film formation rate is adjusted to be slow, so that the inorganic oxide film and the polyimide-based organic alignment film having a stable and good quality with large crystallinity can be obtained. Can be obtained. Therefore, as described above, by coating the surface of the electrode with a polyimide-based organic alignment film or an inorganic oxide film, the thin film forming material and crystallinity can be appropriately selected.

【0019】そこで本実施例では、大気圧プラズマ法に
よる乾式薄膜形成法により、透明電極パターンが形成さ
れた基板上に無機酸化膜を形成する。なお、基板はガラ
ス基板でもプラスチックフィルム(PF)基板でもどち
らでもよいが、該大気圧プラズマ法では、低温成膜を行
うことができるので、特にPF基板に有効である。無機
酸化膜を構成する材料にSiOxを用いると、高透明性
及び高絶縁性を得ることができる。しかも、大気圧プラ
ズマ法で行うので、囲り込みが大きく、かつ電極パター
ンの端部段差(800 〜1500Å)のステップカバーもテー
パ状となり、ボイドやクラックの発生がほとんどない良
質な膜質の無機酸化膜を得ることができる。また、無機
酸化膜を構成するSiOxによれば、結晶性と非結晶性
の両方を兼備しているので、柔軟性があり、PF基板の
屈曲に対しても順応させることができ、クラックの発生
をほとんど生じないようにできる。このSiOxは、N
a,K,Ca等のイオンのゲッター材にもなるので、液
晶への可動イオンの混入防止膜としても機能させること
ができる。
Therefore, in this embodiment, the inorganic oxide film is formed on the substrate on which the transparent electrode pattern is formed by the dry thin film forming method by the atmospheric pressure plasma method. Although the substrate may be either a glass substrate or a plastic film (PF) substrate, the atmospheric pressure plasma method is particularly effective for a PF substrate because low-temperature film formation can be performed. When SiOx is used as the material forming the inorganic oxide film, high transparency and high insulation can be obtained. Moreover, since it is performed by the atmospheric pressure plasma method, the surrounding area is large, and the step cover of the end step (800-1500Å) of the electrode pattern also has a taper shape, which is a good quality inorganic oxide with almost no voids or cracks. A membrane can be obtained. In addition, since SiOx forming the inorganic oxide film has both crystallinity and non-crystallinity, it has flexibility and can adapt to bending of the PF substrate, resulting in cracking. Can almost never occur. This SiOx is N
Since it also serves as a getter material for ions of a, K, Ca, etc., it can also function as a film for preventing mixing of mobile ions into the liquid crystal.

【0020】次に、上記と同様の大気圧プラズマ法を用
い、低温でポリイミド系有機配向膜を該無機酸化膜上に
成膜する。この時、高電圧3000V程度で、不活性ガス成
分を多くし、スパッタ効果を大きくして、遅い成膜速度
(50〜100Å/分)程度で行うと、結晶性の高い良質な
膜質のポリイミド系有機配向膜を得ることができる。そ
して、この成膜後のポリイミド系有機配向膜をラビング
処理することで、耐熱性が大きく、かつ高チルト角にす
ることができるとともに、可動イオンを防止することが
でき、しかも破壊電圧を大きくすることができ、信頼性
の高い液晶装置を得ることができる。以下、具体的に図
面を用いて説明する。
Next, using the same atmospheric pressure plasma method as above, a polyimide type organic alignment film is formed on the inorganic oxide film at a low temperature. At this time, when the high voltage is about 3000 V, the inert gas component is increased, the sputtering effect is increased, and the film formation is performed at a slow film formation rate (50 to 100 Å / min), a high quality polyimide system with high crystallinity is obtained. An organic alignment film can be obtained. By rubbing the polyimide-based organic alignment film after the film formation, the heat resistance is large, the tilt angle is high, and movable ions can be prevented, and the breakdown voltage is increased. Therefore, a highly reliable liquid crystal device can be obtained. Hereinafter, a specific description will be given with reference to the drawings.

【0021】図1は本発明の実施例1に則した液晶表示
装置の製造方法を示す図である。本実施例では、まず、
図1(a)〜(c)に示す如く、大気圧プラズマ法によ
りITO電極2が形成されたPF基板1上に膜厚50〜10
00Å程度のSiOx無機酸化膜3及び膜厚300〜30
00Å程度のポリイミド系有機配向膜4を順次形成した
後、ポリイミド系有機配向膜4をラビング処理する。そ
して、基板1上に無機酸化膜3及びポリイミド系有機配
向膜4が形成された上下基板間に液晶5を形成すること
により、図1(d)に示すような液晶表示装置を得るこ
とができる。
FIG. 1 is a diagram showing a method of manufacturing a liquid crystal display device according to the first embodiment of the present invention. In this embodiment, first,
As shown in FIGS. 1A to 1C, a film thickness of 50 to 10 is formed on a PF substrate 1 on which an ITO electrode 2 is formed by an atmospheric pressure plasma method.
SiOx inorganic oxide film 3 having a thickness of about 00Å and a film thickness of 300 to 30
After the polyimide-based organic alignment film 4 having a thickness of about 00Å is sequentially formed, the polyimide-based organic alignment film 4 is rubbed. Then, by forming the liquid crystal 5 between the upper and lower substrates in which the inorganic oxide film 3 and the polyimide-based organic alignment film 4 are formed on the substrate 1, a liquid crystal display device as shown in FIG. 1D can be obtained. .

【0022】このように、本実施例では、大気圧プラズ
マ法により基板1上に無機酸化膜3を形成した後、大気
圧プラズマ法により無機酸化膜3上にポリイミド系有機
配向膜4を形成するように構成している。このため、大
気圧プラズマ法によるドライ工程により同一反応室内で
無機酸化膜3及びポリイミド系有機配向膜4を連続的に
成膜することができるので、工程数を減らすことができ
るとともに、不純物及びピンホールの入り難い良質な膜
質の無機酸化膜3及びポリイミド有機配向膜4を形成す
ることができる。しかも、大気圧プラズマ法を用いてい
るため、膜厚制御を容易に行うことができる。 (実施例2)本実施例では、上記実施例1の成膜後の前
記ポリイミド系有機配向膜4をラビング処理した後、大
気圧プラズマ法によりポリイミド系有機配向膜4上に膜
厚50〜1000Å程度のSiOx無機酸化膜を形成するよう
に構成する。このため、ポリイミド系有機配向膜4をラ
ビング処理しているので、表面のポリイミド系分子に方
向性を持たせて表面状態を整えることができる。そし
て、このラビング処理後のポリイミド系有機配向膜4上
に大気圧プラズマ法によりSiOx無機酸化膜を形成し
ているため、下地の結晶方向になぞってSiOx無機酸
化膜を形成することができる。従って、ラビング形状を
固定化して安定した配向特性を得ることができるととも
に、耐熱性及び絶縁破壊の耐性を向上させることができ
る。また、有機配向膜4をSiOx無機酸化膜で挟むよ
うに構成しているため、可動イオンや湿気、有機配向膜
の膨潤及び溶出を防止することができ、電気的及び熱的
安定性を向上させることができる。
As described above, in this embodiment, after the inorganic oxide film 3 is formed on the substrate 1 by the atmospheric pressure plasma method, the polyimide organic alignment film 4 is formed on the inorganic oxide film 3 by the atmospheric pressure plasma method. Is configured as follows. Therefore, since the inorganic oxide film 3 and the polyimide-based organic alignment film 4 can be continuously formed in the same reaction chamber by a dry process using the atmospheric pressure plasma method, the number of processes can be reduced and impurities and pins can be removed. It is possible to form the inorganic oxide film 3 and the polyimide organic alignment film 4 which are of good quality and have less holes. Moreover, since the atmospheric pressure plasma method is used, the film thickness can be easily controlled. (Example 2) In this example, after rubbing the polyimide-based organic alignment film 4 after the film formation in Example 1, the film thickness of 50 to 1000Å was formed on the polyimide-based organic alignment film 4 by atmospheric pressure plasma method. It is configured so as to form a SiOx inorganic oxide film of a certain degree. Therefore, since the polyimide-based organic alignment film 4 is subjected to rubbing treatment, the surface state can be adjusted by giving directionality to the polyimide-based molecules on the surface. Since the SiOx inorganic oxide film is formed on the polyimide-based organic alignment film 4 after the rubbing treatment by the atmospheric pressure plasma method, the SiOx inorganic oxide film can be formed by tracing the crystal direction of the base. Therefore, the rubbing shape can be fixed and stable alignment characteristics can be obtained, and heat resistance and dielectric breakdown resistance can be improved. Moreover, since the organic alignment film 4 is configured to be sandwiched by the SiOx inorganic oxide film, it is possible to prevent mobile ions, moisture, swelling and elution of the organic alignment film, and improve electrical and thermal stability. be able to.

【0023】なお、ポリイミド系有機配向膜4上に成膜
するSiOx無機酸化膜を、1000Åより厚膜で成膜する
と、結晶方向性が緩和されて配向特性が劣化するので、
1000Åより膜厚を薄くするのが望ましい。 (実施例3)本実施例では、上記実施例2の成膜後の前
記無機酸化膜をラビング処理するように構成する。この
ため、ラビング処理後のポリイミド系有機配向膜4上に
大気圧プラズマ法により形成された無機酸化膜をラビン
グ処理しているので、上記実施例2の場合よりも更に安
定した配向特性を得ることができるとともに、耐熱性及
び絶縁破壊の耐性を向上させることができる。 (実施例4)本実施例では、上記実施例1〜3の透明電
極とポリイミド系有機配向膜間の無機酸化膜を除いた構
成である。この構成では、ポリイミド系有機配向膜を直
接透明電極部及びシール部にも付与成膜する。この時、
この大気圧プラズマ処理では、基板表面の官能基の成
長、即ち−C−OH,−C=O,Si−OH,−C−O
H等がESCAにより確認することができる。このた
め、高結晶のポリイミド成膜が基板界面と化学結合を伴
い接着(被着)しているので、耐湿性や耐熱性を良好に
することができる他、可動イオンに対しては最上面のS
iOx膜等防止することができるので、液晶へのダメー
ジを少なくすることができる。
If the SiOx inorganic oxide film formed on the polyimide-based organic alignment film 4 is thicker than 1000 Å, the crystal orientation is relaxed and the alignment characteristics deteriorate.
It is desirable to make the film thickness thinner than 1000Å. (Embodiment 3) In this embodiment, the inorganic oxide film after the film formation in Embodiment 2 is subjected to a rubbing treatment. For this reason, since the inorganic oxide film formed by the atmospheric pressure plasma method is rubbed on the polyimide-based organic alignment film 4 after the rubbing treatment, it is possible to obtain a more stable alignment characteristic than in the case of Example 2 above. It is possible to improve heat resistance and resistance to dielectric breakdown. (Example 4) In this example, the inorganic oxide film between the transparent electrode and the polyimide-based organic alignment film of Examples 1 to 3 is removed. In this structure, the polyimide-based organic alignment film is directly formed on the transparent electrode portion and the seal portion. At this time,
In this atmospheric pressure plasma treatment, functional group growth on the substrate surface, that is, -C-OH, -C = O, Si-OH, -C-O.
H etc. can be confirmed by ESCA. For this reason, since the highly crystalline polyimide film is adhered (adhered) to the substrate interface with a chemical bond, moisture resistance and heat resistance can be improved, and in addition to the mobile ion, the uppermost surface can be used. S
Since the iOx film or the like can be prevented, damage to the liquid crystal can be reduced.

【0024】このように、本実施例では、大気圧プラズ
マ法により透明電極が形成された基板上にポリイミド系
有機配向膜を形成し、このポリイミド系有機配向膜をラ
ビング処理した後、大気圧プラズマ法により該ポリイミ
ド系有機配向膜上に無機酸化膜を形成するように構成す
る。このため、大気圧プラズマ法によるドライ工程によ
り、ポリイミド系有機配向膜及び無機酸化膜を形成して
いるので、不純物及びピンホールの入り難い良質な膜質
のポリイミド系有機配向膜及び無機酸化膜を形成するこ
とができる。しかも、大気圧プラズマ法を用いているた
め、膜厚制御を容易に行うことができる。更には、ラビ
ング処理後のポリイミド系有機配向膜上に大気圧プラズ
マ法により無機酸化膜を形成しているため、下地の結晶
方向性になぞって無機酸化膜を形成することができ、ラ
ビング形状を固定化して安定した配向特性を得ることが
できるとともに、耐熱性及び絶縁破壊の耐性を向上させ
ることができる。 (実施例5)本実施例では、上記実施例の成膜後の前記
無機酸化膜をラビング処理するように構成する。この
時、ラビング加圧を大きくし、回転数を400 〜800 rpm
とする。このため、ラビング処理後のポリイミド系有機
配向膜上に大気圧プラズマ法により形成された無機酸化
膜をラビング処理しているので、上記実施例4の場合よ
りも、更にチルト角を大きく取って安定した配向特性を
得ることができるとともに、耐熱性及び絶縁破壊の耐性
を向上させることができる。 (実施例6)本実施例では、通常の配向膜形成プロセス
の塗布法で得られたポリイミド系有機配向膜を大気圧プ
ラズマ雰囲気で処理することで、ポリイミドの再結晶化
と結合の弱い分子部分非晶質部をスパッタ効果で除去
し、かつ有機溶剤等の不揮発材料をプラズマとイオン種
や電子を含む分子熱(ローカルヒーティング=局所加
熱)により揮発除去することができる。そして、不活性
ガスを95〜98%として有機ガスを2〜5%程度にして、
ArやHeによるスパッタ効果を大にして、周波数と電
圧を選択することで、塗布有機膜の弱い結合部を切断し
て飛散させることができる。
As described above, in this embodiment, the polyimide organic alignment film is formed on the substrate on which the transparent electrode is formed by the atmospheric pressure plasma method, the polyimide organic alignment film is rubbed, and then the atmospheric pressure plasma is formed. By the method, an inorganic oxide film is formed on the polyimide-based organic alignment film. Therefore, since the polyimide-based organic alignment film and the inorganic oxide film are formed by a dry process using the atmospheric pressure plasma method, a high-quality polyimide-based organic alignment film and an inorganic oxide film in which impurities and pinholes hardly enter are formed. can do. Moreover, since the atmospheric pressure plasma method is used, the film thickness can be easily controlled. Furthermore, since the inorganic oxide film is formed on the polyimide-based organic alignment film after the rubbing treatment by the atmospheric pressure plasma method, the inorganic oxide film can be formed by tracing the crystal orientation of the base, and the rubbing shape can be obtained. It is possible to fix and obtain stable orientation characteristics, and improve heat resistance and dielectric breakdown resistance. (Embodiment 5) In this embodiment, the inorganic oxide film after the film formation in the above embodiment is rubbed. At this time, increase the rubbing pressure and increase the rotation speed from 400 to 800 rpm.
And For this reason, since the inorganic oxide film formed by the atmospheric pressure plasma method is rubbed on the polyimide-based organic alignment film after the rubbing treatment, the tilt angle is made larger than that in the case of Example 4 described above, and the stability is improved. It is possible to obtain the above-mentioned alignment characteristics and to improve the heat resistance and the resistance to dielectric breakdown. (Embodiment 6) In this embodiment, a polyimide-based organic alignment film obtained by a coating method of a normal alignment film formation process is treated in an atmospheric pressure plasma atmosphere to recrystallize the polyimide and bind a weak molecular portion. The amorphous part can be removed by the sputtering effect, and the non-volatile material such as an organic solvent can be volatilized and removed by plasma and molecular heat containing ion species and electrons (local heating = local heating). And the inert gas is 95-98% and the organic gas is about 2-5%,
By increasing the sputtering effect of Ar or He and selecting the frequency and voltage, it is possible to cut and scatter the weak bonding portion of the coated organic film.

【0025】この方法によれば、結晶性の高い部分を残
すことができる。ポリイミドの弱い結合側鎖分子も除く
ことができるので、直鎖方向性の大きい結晶性の大なる
ポリイミド系有機配向膜を得ることができる。しかも、
同時に有機溶剤や溶媒和水分もプラズマ効果と分子熱効
果の相乗性で脱離することができる。このため、熱硬化
後の膜ストレスを緩和することができ、応力歪みの小さ
なポリイミド系有機配向膜を得ることができる。
According to this method, a portion having high crystallinity can be left. Since the weakly bonded side chain molecule of polyimide can be removed, a polyimide-based organic alignment film having a large linearity and a large crystallinity can be obtained. Moreover,
At the same time, organic solvents and solvated water can be desorbed by the synergistic effect of plasma effect and molecular heat effect. Therefore, the film stress after thermosetting can be relieved, and a polyimide-based organic alignment film with small stress strain can be obtained.

【0026】なお、このポリイミド系有機配向膜の塗布
前に透明電極上に無機酸化膜(SiOx,TiOx,P
bOx,SnOx,ZnOx)を成膜すれば、更に配向
膜の電気的、熱的、環境雰囲気性を含めて安定な信頼性
の高い配向膜とすることができる。そして、プラズマ処
理を行った後でラビング工程を行うので、配向膜の結晶
性と直鎖方向性を並べることができる。このため、安定
なチルト角を得ることができる。
Before applying the polyimide-based organic alignment film, an inorganic oxide film (SiOx, TiOx, P) is formed on the transparent electrode.
By forming a film of bOx, SnOx, ZnOx), a stable and highly reliable alignment film including electrical, thermal and environmental atmosphere properties of the alignment film can be obtained. Since the rubbing step is performed after the plasma treatment, the crystallinity and the linear orientation of the alignment film can be aligned. Therefore, a stable tilt angle can be obtained.

【0027】このように本実施例では、塗布法により基
板上にポリイミド系有機配向膜を形成し、該ポリイミド
系有機配向膜表面を大気圧プラズマで生成した不活性ガ
スによるスパッタと酸素プラズマで処理した後、該ポリ
イミド系有機配向膜をラビング処理するように構成す
る。このため、塗布法により基板上に形成されたポリイ
ミド系有機配向膜を大気圧プラズマ雰囲気で処理するた
め、不純物及びピンホールの入り難い良質な膜質のポリ
イミド系有機配向膜を得ることができる。そして、ポリ
イミド系有機配向膜をラビング処理しているため、表面
のポリイミド系分子に方向性を持たせて表面状態を整え
ることができる。 (実施例7)実施例6で得られたポリイミド系有機配向
膜は、その直鎖性が具現化した結晶性と、再結晶化、溶
媒の除去、弱結合側鎖分子の除去で電気的にも熱的にも
環境雰囲気性も良好なフィルムとなっており、そのラビ
ング後の分子形状安定性は良好である。このため、この
ポリイミド系有機配向膜上に更に無機酸化膜を1000Å以
下成膜することで、この無機酸化膜を配向膜結晶性にな
ぞって結晶成膜することができる。この結果、可動イオ
ンの防止膜と配向膜特性を兼備し、液晶への配向膜の膨
潤及び溶出を防止することができる。以下、具体的に図
面を用いて本実施例の製造方法を説明する。
As described above, in this embodiment, the polyimide-based organic alignment film is formed on the substrate by the coating method, and the surface of the polyimide-based organic alignment film is treated by sputtering with an inert gas generated by atmospheric pressure plasma and oxygen plasma. After that, the polyimide-based organic alignment film is rubbed. Therefore, since the polyimide-based organic alignment film formed on the substrate by the coating method is processed in the atmospheric pressure plasma atmosphere, it is possible to obtain a high-quality polyimide-based organic alignment film in which impurities and pinholes hardly enter. Since the polyimide-based organic alignment film is rubbed, the surface state can be adjusted by giving directionality to the polyimide-based molecules on the surface. (Example 7) The polyimide-based organic alignment film obtained in Example 6 is electrically crystallized by its linearity and electrically recrystallized, solvent is removed, and weakly bonded side chain molecules are removed. The film is also excellent in thermal and environmental atmosphere, and its molecular shape stability after rubbing is good. Therefore, by further forming an inorganic oxide film of 1000 liters or less on this polyimide-based organic alignment film, the inorganic oxide film can be formed into a crystal film by tracing the alignment film crystallinity. As a result, it is possible to prevent the swelling and elution of the alignment film into the liquid crystal by providing the property of the mobile ion prevention film and the alignment film. Hereinafter, the manufacturing method of this embodiment will be specifically described with reference to the drawings.

【0028】図2は本発明の実施例7に則した液晶表示
装置の製造方法を示す図である。図2において、図1と
同一符号は同一又は相当部分を示す。本実施例ではま
ず、図2(a)〜(c)に示す如く、ITO電極2が形
成された基板1上にスピンコート法によりポリイミド系
有機配向膜4を形成する。この時、電極段差部(800 〜
1200Å)での膜切れやボイドの発生、乾燥成膜時に膜ス
トレスのためピンホールが発生する。そして、図2
(d)示す如く、大気圧プラズマ法によりポリイミド系
有機配向膜4上に無機酸化膜3を成膜する。このため、
プラズマの囲り込み現象により、これ等の欠陥が被膜カ
バーすることができるので、デスバイスダメージを防止
することができる。
FIG. 2 is a diagram showing a method of manufacturing a liquid crystal display device according to the seventh embodiment of the present invention. 2, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts. In this embodiment, first, as shown in FIGS. 2A to 2C, the polyimide organic alignment film 4 is formed on the substrate 1 on which the ITO electrode 2 is formed by spin coating. At this time, the electrode step (800 ~
At 1200Å) film breakage and voids occur, and pinholes occur due to film stress during dry film formation. And FIG.
As shown in (d), the inorganic oxide film 3 is formed on the polyimide-based organic alignment film 4 by the atmospheric pressure plasma method. For this reason,
Due to the enclosing phenomenon of plasma, these defects can cover the film, so that the device damage can be prevented.

【0029】このように、本実施例では、大気圧プラズ
マ法により上記実施例6のラビング処理後の前記ポリイ
ミド系有機配向膜4上に無機酸化膜3を形成するように
構成する。このため、ラビング処理後のポリイミド系有
機配向膜4上に大気圧プラズマ法により無機酸化膜3を
形成しているので、下地の結晶方向になぞって無機酸化
膜3を形成することができ、ラビング形状を固定化して
安定した配向特性を得ることができるとともに、耐熱性
及び絶縁破壊の耐性を向上させることができる。
As described above, in this embodiment, the inorganic oxide film 3 is formed on the polyimide-based organic alignment film 4 after the rubbing treatment of the embodiment 6 by the atmospheric pressure plasma method. Therefore, since the inorganic oxide film 3 is formed on the polyimide-based organic alignment film 4 after the rubbing treatment by the atmospheric pressure plasma method, the inorganic oxide film 3 can be formed by tracing the crystal direction of the base. It is possible to fix the shape and obtain stable orientation characteristics, and improve heat resistance and resistance to dielectric breakdown.

【0030】[0030]

【発明の効果】本発明によれば、不純物及びピンホール
等の入り難い良質な膜質のポリイミド系有機配向膜及び
無機酸化膜を得ることができるという効果がある。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a polyimide-based organic alignment film and an inorganic oxide film of good quality which are less likely to contain impurities and pinholes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に則した液晶表示装置の製造
方法を示す図である。
FIG. 1 is a diagram showing a method of manufacturing a liquid crystal display device according to a first embodiment of the present invention.

【図2】本発明の実施例7に則した液晶表示装置の製造
方法を示す図である。
FIG. 2 is a diagram showing a method of manufacturing a liquid crystal display device according to a seventh embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 ITO電極 3 無機酸化膜 4 ポリイミド系有機配向膜 5 液晶 1 substrate 2 ITO electrode 3 inorganic oxide film 4 polyimide-based organic alignment film 5 liquid crystal

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】大気圧プラズマ法により基板上に無機酸化
膜を形成する工程と、次いで、大気圧プラズマ法により
該無機酸化膜上にポリイミド系有機配向膜を形成する工
程とを含むことを特徴とする液晶表示装置の製造方法。
1. A method comprising the steps of forming an inorganic oxide film on a substrate by an atmospheric pressure plasma method, and then forming a polyimide-based organic alignment film on the inorganic oxide film by an atmospheric pressure plasma method. A method for manufacturing a liquid crystal display device.
【請求項2】成膜後の前記ポリイミド系有機配向膜をラ
ビング処理する工程と、次いで、大気圧プラズマ法によ
り該ポリイミド系有機配向膜上に無機酸化膜を形成する
工程とを含むことを特徴とする請求項1記載の液晶表示
装置の製造方法。
2. The method comprises the steps of rubbing the polyimide-based organic alignment film after film formation, and then forming an inorganic oxide film on the polyimide-based organic alignment film by an atmospheric pressure plasma method. The method for manufacturing a liquid crystal display device according to claim 1.
【請求項3】成膜後の前記無機酸化膜をラビング処理す
る工程を含むことを特徴とする請求項2記載の液晶表示
装置の製造方法。
3. The method of manufacturing a liquid crystal display device according to claim 2, further comprising a step of rubbing the inorganic oxide film after the film formation.
【請求項4】大気圧プラズマ法により基板上にポリイミ
ド系有機配向膜を形成する工程と、次いで、該ポリイミ
ド系有機配向膜をラビング処理する工程と、次いで、大
気圧プラズマ法により該ポリイミド系有機配向膜上に無
機酸化膜を形成する工程とを含むことを特徴とする液晶
表示装置の製造方法。
4. A step of forming a polyimide-based organic alignment film on a substrate by an atmospheric pressure plasma method, a step of rubbing the polyimide-based organic alignment film, and then a step of rubbing the polyimide-based organic alignment film by an atmospheric pressure plasma method. And a step of forming an inorganic oxide film on the alignment film.
【請求項5】成膜後の前記無機酸化膜をラビング処理す
る工程を含むことを特徴とする請求項4記載の液晶表示
装置の製造方法。
5. The method of manufacturing a liquid crystal display device according to claim 4, further comprising a step of rubbing the inorganic oxide film after the film formation.
【請求項6】塗布法により基板上にポリイミド系有機配
向膜を形成する工程と、次いで、該ポリイミド系有機配
向膜表面を大気圧プラズマで生成した不活性ガスによる
スパッタ及び酸素プラズマで処理する工程と、次いで、
該ポリイミド系有機配向膜をラビング処理する工程とを
含むことを特徴とする液晶表示装置の製造方法。
6. A step of forming a polyimide-based organic alignment film on a substrate by a coating method, and then a step of treating the surface of the polyimide-based organic alignment film with sputtering by an inert gas generated by atmospheric pressure plasma and oxygen plasma. And then
A step of rubbing the polyimide-based organic alignment film, the method for manufacturing a liquid crystal display device.
【請求項7】大気圧プラズマ法によりラビング処理後の
前記ポリイミド系有機配向膜上に無機酸化膜を形成する
工程を含むことを特徴とする請求項6記載の液晶表示装
置の製造方法。
7. The method of manufacturing a liquid crystal display device according to claim 6, further comprising the step of forming an inorganic oxide film on the polyimide-based organic alignment film after the rubbing treatment by the atmospheric pressure plasma method.
JP7778793A 1993-04-05 1993-04-05 Manufacturing method of liquid crystal display device Expired - Fee Related JP3274217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7778793A JP3274217B2 (en) 1993-04-05 1993-04-05 Manufacturing method of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7778793A JP3274217B2 (en) 1993-04-05 1993-04-05 Manufacturing method of liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH06289401A true JPH06289401A (en) 1994-10-18
JP3274217B2 JP3274217B2 (en) 2002-04-15

Family

ID=13643692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7778793A Expired - Fee Related JP3274217B2 (en) 1993-04-05 1993-04-05 Manufacturing method of liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3274217B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534421B2 (en) 1999-12-27 2003-03-18 Seiko Epson Corporation Method to fabricate thin insulating film
JP2003179234A (en) * 2001-09-05 2003-06-27 Konica Corp Organic semiconductor element and manufacturing method thereof
JP2004207331A (en) * 2002-12-24 2004-07-22 Konica Minolta Holdings Inc Organic semiconductor device and its manufacturing method
JP2007180561A (en) * 1995-12-05 2007-07-12 Applied Materials Inc Antireflective coating and its deposition method
JP2009539754A (en) * 2006-06-16 2009-11-19 サン−ゴバン グラス フランス Method for depositing hydrophobic / oleophobic lining with improved durability using atmospheric pressure plasma
US7733451B2 (en) 2005-07-12 2010-06-08 Samsung Electronics Co., Ltd. Liquid crystal display, method of manufacturing the same, and apparatus manufacturing the same
JP4610069B2 (en) * 2000-11-14 2011-01-12 積水化学工業株式会社 Semiconductor device manufacturing equipment
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US10016338B2 (en) 2013-03-11 2018-07-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180561A (en) * 1995-12-05 2007-07-12 Applied Materials Inc Antireflective coating and its deposition method
US6534421B2 (en) 1999-12-27 2003-03-18 Seiko Epson Corporation Method to fabricate thin insulating film
JP4610069B2 (en) * 2000-11-14 2011-01-12 積水化学工業株式会社 Semiconductor device manufacturing equipment
JP2003179234A (en) * 2001-09-05 2003-06-27 Konica Corp Organic semiconductor element and manufacturing method thereof
JP2004207331A (en) * 2002-12-24 2004-07-22 Konica Minolta Holdings Inc Organic semiconductor device and its manufacturing method
US7733451B2 (en) 2005-07-12 2010-06-08 Samsung Electronics Co., Ltd. Liquid crystal display, method of manufacturing the same, and apparatus manufacturing the same
JP2009539754A (en) * 2006-06-16 2009-11-19 サン−ゴバン グラス フランス Method for depositing hydrophobic / oleophobic lining with improved durability using atmospheric pressure plasma
US11123491B2 (en) 2010-11-12 2021-09-21 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11148856B2 (en) 2011-11-11 2021-10-19 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US10016338B2 (en) 2013-03-11 2018-07-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US10912714B2 (en) 2013-03-11 2021-02-09 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11298293B2 (en) 2013-03-11 2022-04-12 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11344473B2 (en) 2013-03-11 2022-05-31 SiO2Medical Products, Inc. Coated packaging
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate

Also Published As

Publication number Publication date
JP3274217B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
JP3274217B2 (en) Manufacturing method of liquid crystal display device
JP3202362B2 (en) Method for manufacturing semiconductor device
KR100516316B1 (en) Thin film device, active matrix substrate, liquid crystal panel, electric device and method for processing a thin film device
US4721631A (en) Method of manufacturing thin-film electroluminescent display panel
US6566174B1 (en) Thin-film transistor elements and methods of making same
US20020168878A1 (en) Passivation of copper with ammonia-free silicon nitride and application to TFT/LCD
US7145176B2 (en) Active matrix display device
JP2002053954A (en) Vacuum chamber for physical vapor deposition, physical vapor deposition method, thin film device, and liquid crystal display
JP3302240B2 (en) Thin film transistor and method of manufacturing the same
KR100338125B1 (en) Thin Film Transistor and method for fabricating the same
KR100417539B1 (en) A semiconductor device
JPH07235502A (en) Method of manufacturing semiconductor device
CA1177582A (en) Methods of manufacturing semiconductor devices
US5366910A (en) Process for the production of thin film transistors using on SOG film
TW465112B (en) A process to form thin film transistor and the improvement method thereof
US6900083B2 (en) Method of forming multi-layers for a thin film transistor
JPH0282578A (en) Manufacture of thin film transistor
JP2003100773A (en) System and method for forming base coating and thin film layer by consecutive sputter deposition
JP2002289861A (en) Semiconductor device and liquid crystal display using the same
JPH05275702A (en) Thin-film transistor
JPH11354441A (en) Manufacture of semiconductor device
JPH07169973A (en) Thin film transistor array, its manufacture, and liquid crystal device using this
JP3729870B2 (en) Thin film transistor manufacturing method
JPH0818063A (en) Manufacture of film transistor, and film transistor and liquid crystal display
JPH08111458A (en) Semiconductor device and fabrication thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees