JPH06287551A - Phosphor and its production - Google Patents

Phosphor and its production

Info

Publication number
JPH06287551A
JPH06287551A JP10516393A JP10516393A JPH06287551A JP H06287551 A JPH06287551 A JP H06287551A JP 10516393 A JP10516393 A JP 10516393A JP 10516393 A JP10516393 A JP 10516393A JP H06287551 A JPH06287551 A JP H06287551A
Authority
JP
Japan
Prior art keywords
phosphor
solution
precursor
spray
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10516393A
Other languages
Japanese (ja)
Inventor
Takeshi Maekawa
武之 前川
Noritsuna Hashimoto
典綱 橋本
Mitsuhiro Okumura
光弘 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10516393A priority Critical patent/JPH06287551A/en
Publication of JPH06287551A publication Critical patent/JPH06287551A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a phosphor powder which is excellent in homogeneity and has a shape favorable to luminescence. CONSTITUTION:A phosphor is provided which contains at least one kind of elemental ion capable of being a phosphor matrix or a luminescent center and of which one particle has a three-dimensional structure formed by bringing minute particles into contact with each other. This phosphor is produced by mixing elements constituting the phosphor in a state of soln., removing the solvent from the soln. by spray drying, spray precipitation, or an emulsion method, and thermally baking the resulting precursor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、陰極線管および蛍光
ランプなどに用いられ、X線、電子線および紫外線など
を励起源として発光する蛍光体およびその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphor which is used in a cathode ray tube, a fluorescent lamp and the like and emits light by using X-rays, electron beams and ultraviolet rays as an excitation source, and a method for producing the same.

【0002】[0002]

【従来の技術】蛍光体には種々の組成が存在するが、現
在、陰極線管、蛍光ランプ等で用いられる蛍光体は、母
結晶とその中に点在する発光中心に希土類元素イオンを
使用しているものが多い。この希土類蛍光体は、発光中
心となる希土類イオンの4f電子がその外殻の5s2
6電子により遮蔽されているため、イオン固有のエネ
ルギー準位が外部環境の影響を受けにくく、蛍光体の発
光は急峻なスペクトルとなる。このことは発光特性が温
度変化といった外的要因に対して安定であることはもち
ろん、高い発光効率が可能となる。さらには急峻な発光
スペクトルは、蛍光体発光の色純度を高め、明るさや色
調にも有利となる。
2. Description of the Related Art There are various compositions of phosphors. Currently, phosphors used in cathode ray tubes, fluorescent lamps, etc., use a rare earth element ion as a luminescent center scattered in a mother crystal. There are many things. In this rare earth phosphor, the 4f electron of the rare earth ion, which is the emission center, is 5s 2 5 of the outer shell.
Since it is shielded by p 6 electrons, the energy level peculiar to the ion is less likely to be influenced by the external environment, and the emission of the phosphor has a sharp spectrum. This means that the light emission characteristics are stable against external factors such as temperature changes, and high light emission efficiency is possible. Furthermore, the steep emission spectrum enhances the color purity of phosphor emission, which is also advantageous for brightness and color tone.

【0003】蛍光体の発光特性は原料、作製条件などに
大きく依存し、原料の選定や各作製工程の最適化は蛍光
体合成の際の重要な作業である。一般に蛍光体は、原料
粉末をボールミルなどを用いて乾式に混合し、これを微
量のフラックスと共に焼成することによって得られる。
たとえば、赤色蛍光体Y23:Euの場合には、出発原
料を高純度希土類酸化物とし、これをいったん熱酸に溶
解してイオン状態にし、蛍光体を構成する複数の元素と
均一な溶液混合状態にする。このとき塩化物などの水溶
性塩が使用可能であれば、これを用いて希土類以外の蛍
光体構成元素も溶液状態で混合することも可能である。
この溶液に適当な沈澱剤、たとえば適度な温度に加熱し
た蓚酸水溶液を徐々に滴下し、蓚酸塩共沈物を作製す
る。この共沈塩を乾燥後、蓚酸塩を酸化物に分解し、必
要であれば適当なフラックスを添加して、蛍光体として
好ましい温度、好ましい雰囲気で焼成することにより希
土類蛍光体を得ることができる。なお蛍光体に希土類以
外の成分が含まれるとき、特公昭48−37670号公
報に開示されているように、希土類蓚酸塩共沈物をいっ
たん酸化物に加熱分解し、これと他の酸化物を乾式混合
して同様に焼成し蛍光体を得ることも可能である。
The emission characteristics of the phosphor largely depend on the raw material, the production conditions, etc., and the selection of the raw material and the optimization of each production process are important tasks in synthesizing the phosphor. Generally, a phosphor is obtained by dry-mixing raw material powders using a ball mill or the like and firing this together with a small amount of flux.
For example, in the case of the red phosphor Y 2 O 3 : Eu, the starting material is a high-purity rare earth oxide, which is once dissolved in a hot acid to make it into an ionic state, and is uniformly mixed with a plurality of elements constituting the phosphor. Bring the solution into a mixed state. At this time, if a water-soluble salt such as chloride can be used, it is also possible to mix phosphor constituent elements other than the rare earth element in a solution state.
A suitable precipitating agent, for example, an oxalic acid aqueous solution heated to an appropriate temperature is gradually added dropwise to this solution to prepare an oxalate coprecipitate. After drying this coprecipitated salt, the oxalate is decomposed into an oxide, an appropriate flux is added if necessary, and the mixture is fired at a temperature and a preferable atmosphere as a phosphor to obtain a rare earth phosphor. . When the phosphor contains a component other than a rare earth, as disclosed in JP-B-48-37670, the rare earth oxalate coprecipitate is once decomposed into an oxide, and this and other oxides are separated. It is also possible to dry mix and fire in the same manner to obtain a phosphor.

【0004】[0004]

【発明が解決しようとする課題】しかし、蛍光体の特性
は組成の均質性だけでなく、蛍光体を励起するエネルギ
ーが蛍光体結晶格子内の発光中心に到達する際の蛍光体
の有効表面積や粒子表面に存在する非発光部にも左右さ
れるため、蛍光体の粒子形状や表面状態が特性に大きな
影響を与える。従来の製法は比較的均一な組成分布の達
成には有利であるが、蛍光体の粒子形状を自由に操作す
ることはできず、蛍光体形状は共沈塩の熱分解に起因す
る不定形状や粉砕工程で生じた機械的な破壊形状をしめ
すことが多い。そのため、蛍光体粒子の中にはその形状
の不健全性のために極度に発光効率が低かったり、発光
しても可視光線が有効に取り出せず、蛍光体を蛍光面と
して使用する際その発光が均一でないという問題点があ
った。
However, the characteristics of the phosphor are not only the homogeneity of the composition but also the effective surface area of the phosphor when the energy for exciting the phosphor reaches the emission center in the phosphor crystal lattice. Since it depends on the non-light emitting portion existing on the particle surface, the particle shape and surface state of the phosphor have a great influence on the characteristics. Although the conventional manufacturing method is advantageous in achieving a relatively uniform composition distribution, the particle shape of the phosphor cannot be freely manipulated, and the phosphor shape is undefined due to thermal decomposition of coprecipitated salt or In many cases, it shows the mechanically broken shape generated in the grinding process. Therefore, the phosphor particles have extremely low luminous efficiency due to the unhealthy shape, or even when light is emitted, visible light cannot be effectively extracted, and when the phosphor is used as a phosphor screen, the light emission is There was a problem that it was not uniform.

【0005】また、蛍光体を構成する複数の元素の化学
的性質が互いに似ている場合には沈澱剤は公知であるこ
とが多いが、それが大きく異なる場合には、一般にそれ
ぞれの元素を同時に均一に沈澱させるような沈澱剤を見
つけるのは困難である。そのため、蛍光体を構成する元
素が均一な溶液状態で得られても、それらの均一状態を
保ったまま焼成可能な固体状にすることは難しく、限ら
れた元素の組み合わせ以外は従来の技術を使用すること
はできないという問題点があった。
Precipitants are often known when the chemical properties of a plurality of elements constituting the phosphor are similar to each other. However, when the chemical properties of the elements are largely different from each other, generally, the respective elements are simultaneously treated. It is difficult to find a precipitating agent that causes uniform precipitation. Therefore, even if the elements constituting the phosphor are obtained in a uniform solution state, it is difficult to obtain a solid state that can be baked while maintaining the uniform state, and conventional techniques are used except for a limited combination of elements. There was a problem that it could not be used.

【0006】この発明は、かかる問題を解決するために
なされたもので、従来の製法では達成できなかった極め
て均質性に優れ、かつ焼成後の機械的粉砕が不要であ
り、発光に有利な形状をした輝度特性に優れた蛍光体お
よびその製造方法を提供するものである。
The present invention has been made in order to solve such a problem, and has an extremely excellent homogeneity which cannot be achieved by the conventional manufacturing method, and mechanical pulverization after firing is unnecessary, which is advantageous for light emission. The present invention provides a phosphor having excellent brightness characteristics and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】この発明に係る蛍光体
は、母体または発光中心となりうる1種類以上の元素イ
オンを含む蛍光体において、微小粒子同士の接触による
三次元構造が一個の粒子形状である。
The phosphor according to the present invention is a phosphor containing one or more kinds of elemental ions which can be a matrix or a luminescent center, and a three-dimensional structure formed by contact between fine particles is one particle shape. is there.

【0008】また、この蛍光体の製造方法は、少なくと
も母体または発光中心となりうる1種以上の元素イオン
を含む蛍光体の構成元素を金属イオンまたは金属アルコ
キシドの溶液状態で混合調整し、この溶液から溶媒を除
去して前駆体を得、次いでこの前駆体を適当な雰囲気下
で焼成して蛍光体を得るものである。
Further, in this method for producing a phosphor, the constituent elements of the phosphor containing at least one kind of element ion that can be a host or an emission center are mixed and adjusted in a solution state of a metal ion or a metal alkoxide, and the solution is prepared from this solution. The solvent is removed to obtain a precursor, and then the precursor is fired in an appropriate atmosphere to obtain a phosphor.

【0009】さらに、前駆体を得る方法として、噴霧乾
燥法、噴霧沈澱法、またはエマルジョン法が適用される
ことを特徴とする。
Further, as a method for obtaining the precursor, a spray drying method, a spray precipitation method, or an emulsion method is applied.

【0010】[0010]

【作用】この発明によれば、蛍光体が微小粒子同士の接
触による三次元構造であるため、紫外線をはじめとする
各種励起エネルギーの発光中心への伝達および発光中心
から放出される可視光の出光に有利あるとともに、発光
に有効な表面積を増大させることができ、優れた輝度特
性が得られる。
According to the present invention, since the phosphor has a three-dimensional structure in which fine particles are in contact with each other, various excitation energies such as ultraviolet rays are transmitted to the emission center and the visible light emitted from the emission center is emitted. In addition to being advantageous, the surface area effective for light emission can be increased, and excellent luminance characteristics can be obtained.

【0011】また、この発明の製造方法によれば、粒子
形状、粒径など各種粉体特性を機械的粉砕することなし
に調整できるので、蛍光面作製時に不可避であった粉砕
による輝度低下を防ぐことができる。また、この蛍光体
を用いれば個々の粒子の特性のばらつきが小さくなるた
め、均質性の高い健全な蛍光面作製が可能となる。
Further, according to the manufacturing method of the present invention, various powder characteristics such as particle shape and particle size can be adjusted without mechanical crushing, so that reduction in brightness due to crushing, which is unavoidable at the time of producing the phosphor screen, is prevented. be able to. Further, when this phosphor is used, variations in characteristics of individual particles are reduced, so that a highly uniform and sound phosphor screen can be produced.

【0012】さらに、上記製造方法において、前駆体を
噴霧乾燥法、噴霧沈澱法、またはエマルジョン法により
作製するとよい。
Further, in the above production method, the precursor may be produced by a spray drying method, a spray precipitation method, or an emulsion method.

【0013】[0013]

【実施例】以下、本発明による蛍光体およびその製造方
法を実施例を用いて説明する。
EXAMPLES The phosphor according to the present invention and the method for producing the same will be described below with reference to examples.

【0014】実施例1.酸化イットリウム(Y23)4
2.00g、酸化テルビウム(Tb47)5.30g
を、試薬特級硝酸(比重1.40)120.0ccを蒸
留水600.0ccに希釈したものに加熱溶解し十分に
冷却した。つぎにこの溶液に特級エタノール200.0
ccを共通溶媒として、Si源となるTEOS(テトラ
エチルオルソシリケート;Si(OC254)を4
3.00g混合した。この均一溶液を噴霧乾燥装置のノ
ズルに定量ポンプを用いて毎分50mlの速度で導入
し、噴霧温度150〜300℃、さらに望ましくは噴霧
温度200〜250℃で噴霧乾燥を行った。こうして捕
集した前駆体を高純度アルミナ坩堝につめ、弱還元性雰
囲気、例えば水素ー窒素混合ガス雰囲気下で1600
℃、3時間焼成した。この実施例で得られた蛍光体はテ
ルビウム付活珪酸イットリウム蛍光体であり緑色の発光
を示す。さらにSEMによる蛍光体粉末観察では、蛍光
体は微小粒子同士の接触による三次元構造であり、平均
粒径は3〜7μmであった。この蛍光体で水ガラスを用
いた沈降法により蛍光面を作製し輝度評価を行った。図
1はデマンタブル輝度評価装置で測定した上記蛍光体の
輝度特性を示す輝度−電流特性図である。図中直線aは
この実施例1の蛍光体の輝度特性である。図2はSEM
で500倍に拡大して観察した粒子構造を示す写真であ
り、図中、線分はその長さが5μmに相当することを示
す。
Example 1. Yttrium oxide (Y 2 O 3 ) 4
2.00 g, terbium oxide (Tb 4 O 7 ) 5.30 g
Was dissolved in 120.0 cc of reagent grade nitric acid (specific gravity 1.40) diluted with distilled water of 600.0 cc and dissolved by heating to be sufficiently cooled. Next, to this solution is added special grade ethanol 200.0.
Using cc as a common solvent, TEOS (tetraethyl orthosilicate; Si (OC 2 H 5 ) 4 ) serving as a Si source is added to 4
3.00 g was mixed. This homogeneous solution was introduced into the nozzle of the spray dryer using a metering pump at a rate of 50 ml / min, and spray-dried at a spray temperature of 150 to 300 ° C, more preferably at a spray temperature of 200 to 250 ° C. The precursor thus collected was packed in a high-purity alumina crucible and subjected to a weak reducing atmosphere such as a hydrogen-nitrogen mixed gas atmosphere at 1600.
It was baked at 3 ° C for 3 hours. The phosphor obtained in this example is a terbium-activated yttrium silicate phosphor and emits green light. Furthermore, in observing the phosphor powder by SEM, the phosphor had a three-dimensional structure in which fine particles were in contact with each other, and the average particle size was 3 to 7 μm. A phosphor screen was prepared from this phosphor by a sedimentation method using water glass, and the brightness was evaluated. FIG. 1 is a luminance-current characteristic diagram showing the luminance characteristics of the phosphor measured by a demantable luminance evaluation device. The straight line a in the figure is the luminance characteristic of the phosphor of Example 1. Figure 2 is a SEM
3 is a photograph showing a grain structure observed by magnifying at a magnification of 500 times, and in the figure, a line segment indicates that its length corresponds to 5 μm.

【0015】実施例2.酸化イットリウム(Y23)4
0.65g、酸化ユーロピウム(Eu23)8.25g
を、試薬特級硝酸(比重1.40)60.0ccを蒸留
水300.0ccに希釈したものに加熱溶解し十分に冷
却した。次にこの溶液を圧縮空気とともに二流体微噴霧
ノズルに導入し、オリフィス先端からミスト状態で適当
な沈澱剤、例えば充分量の0.5規定アンモニア水溶液
中へ飛散させた。このとき、沈澱反応を円滑に進行させ
るためにアンモニア溶液を50℃程度に加熱しておいて
もよい。この水溶液中に析出した沈澱物を濾過し、蒸留
水で充分に水洗した後乾燥して、水酸化物の前駆体を得
た。この前駆体を高純度アルミナ坩堝につめ、大気中1
200〜1400℃、さらに望ましくは1300℃で2
時間焼成した。この実施例で得られた蛍光体はユーロピ
ウム付活酸化イットリウム蛍光体であり赤色の発光を示
す。
Example 2. Yttrium oxide (Y 2 O 3 ) 4
0.65 g, europium oxide (Eu 2 O 3 ) 8.25 g
Was dissolved in 300.0 cc of distilled water by diluting 60.0 cc of special grade nitric acid (specific gravity: 1.40) as a reagent and sufficiently cooled. Next, this solution was introduced into a two-fluid fine spray nozzle together with compressed air, and was dispersed in a mist state from a tip of the orifice into a suitable precipitant, for example, a sufficient amount of 0.5N ammonia aqueous solution. At this time, the ammonia solution may be heated to about 50 ° C. in order to allow the precipitation reaction to proceed smoothly. The precipitate deposited in this aqueous solution was filtered, washed thoroughly with distilled water and then dried to obtain a hydroxide precursor. Pack this precursor in a high-purity alumina crucible,
200 to 1400 ° C, more preferably 1300 ° C for 2
Burned for hours. The phosphor obtained in this example is a europium-activated yttrium oxide phosphor and emits red light.

【0016】実施例3.硝酸バリウム(Ba(N
32)13.07g、硝酸アルミニウム9水和物(A
l(NO33・9H20)300.14g、硝酸マグネ
シウム6水和物(Mg(NO32・6H2O)25.6
4g、硝酸ユーロピウム(Eu(NO33)2.24g
を1000ccの蒸留水に溶解し、弱酸性の混合水溶液
を得た。別に精製したシリコンオイルをオイルバスで2
00℃に加熱しておき、該水溶液を徐々に摘下した。な
お、この溶液を微小なミストにしてオイル中に噴霧して
もよい。シリコンオイル中で水溶液系の溶液はエマルジ
ョンとなり、微小液滴に含まれる水分は瞬間的に除去さ
れて前駆体がオイル中に分散する。この前駆体を回収・
洗浄し、高純度アルミナ坩堝につめ、弱還元性雰囲気、
例えば水素ーアルゴン混合ガス雰囲気下で1400℃、
4時間焼成した。この実施例で得られた蛍光体はユーロ
ピウム付活バリウムマグネシウムアルミネート蛍光体で
あり、青色の発光を示す。
Embodiment 3. Barium Nitrate (Ba (N
O 3 ) 2 ) 13.07 g, aluminum nitrate nonahydrate (A
l (NO 3) 3 · 9H 2 0) 300.14g, magnesium nitrate hexahydrate (Mg (NO 3) 2 · 6H 2 O) 25.6
4 g, europium nitrate (Eu (NO 3 ) 3 ) 2.24 g
Was dissolved in 1000 cc of distilled water to obtain a weakly acidic mixed aqueous solution. Separately refined silicone oil in an oil bath 2
The solution was heated to 00 ° C. and the aqueous solution was gradually removed. The solution may be made into a fine mist and sprayed in oil. The aqueous solution becomes an emulsion in silicon oil, the water contained in the microdroplets is instantaneously removed, and the precursor is dispersed in the oil. Collect this precursor
After cleaning, packing in a high-purity alumina crucible, weak reducing atmosphere,
For example, under a hydrogen-argon mixed gas atmosphere, 1400 ° C.,
It was baked for 4 hours. The phosphor obtained in this example is a europium-activated barium magnesium aluminate phosphor and emits blue light.

【0017】実施例4.酸化イットリウム(Y23)2
2.24gを、試薬特級硝酸(比重1.40)120.
0ccを蒸留水600.0ccに希釈したものに加熱溶
解し十分に冷却する。つぎにこの溶液に硝酸セリウム
(Ce(NO33)2.98g、硝酸アルミニウム9水
和物(Al(NO33・9H2O)93.78gを溶解
し、均一混合溶液を得た。この溶液を実施例1と同様に
噴霧乾燥装置に導入し、噴霧温度200〜300℃、さ
らに望ましくは250℃で乾燥し前駆体を捕集した。こ
の前駆体を高純度アルミナ坩堝につめ、弱還元雰囲気、
例えば水素ー窒素混合ガス雰囲気下で1550℃、3時
間焼成した。この実施例で得られる蛍光体はセリウム付
活イットリウムアルミネート蛍光体であり、黄緑色の発
光を示す。
Embodiment 4. Yttrium oxide (Y 2 O 3 ) 2
2.24 g of the reagent special grade nitric acid (specific gravity 1.40) 120.
0 cc is diluted with distilled water 600.0 cc by heating and dissolved, and cooled sufficiently. Then dissolved this solution of cerium nitrate (Ce (NO 3) 3) 2.98g, aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O) 93.78g, to obtain a homogeneous mixed solution . This solution was introduced into a spray dryer in the same manner as in Example 1, and dried at a spray temperature of 200 to 300 ° C, more preferably 250 ° C to collect the precursor. This precursor was packed in a high-purity alumina crucible, a weak reducing atmosphere,
For example, it was baked at 1550 ° C. for 3 hours in a hydrogen-nitrogen mixed gas atmosphere. The phosphor obtained in this example is a cerium-activated yttrium aluminate phosphor, which emits yellow-green light.

【0018】実施例5.酸化イットリウム(Y23)1
5.05gを、試薬特級塩酸HCl80.0ccを蒸留
水500.0ccに希釈したものに加熱溶解し十分に冷
却した。つぎにこの溶液に塩化セリウム(CeCl3
1.16gを加え、十分に攪拌して溶解した。さらにこ
れに特級エタノール200.0ccを共通溶媒として、
Si源となるTEOS(テトラエチルオルソシリケー
ト;Si(OC254)を13.98gを混合し、3
元素からなる均一溶液を調整した。この溶液を噴霧乾燥
装置のノズルに定量ポンプを用いて毎分10mlの速度
で導入し、噴霧温度150〜300℃、さらに望ましく
は噴霧温度200〜250℃で噴霧乾燥を行った。こう
して捕集した前駆体を高純度アルミナ坩堝につめ、弱還
元性雰囲気、例えば水素ー窒素混合ガス雰囲気下で16
00℃、3時間焼成した。この実施例で得られた蛍光体
はセリウム付活珪酸イットリウム蛍光体であり短残光の
紫色の発光を示す。
Example 5. Yttrium oxide (Y 2 O 3 ) 1
5.05 g of the reagent grade hydrochloric acid HCl (80.0 cc) diluted with distilled water (500.0 cc) was dissolved by heating and then sufficiently cooled. Next, add cerium chloride (CeCl 3 ) to this solution.
1.16 g was added and sufficiently stirred to dissolve. In addition to this, special grade ethanol 200.0cc as a common solvent,
13.98 g of TEOS (tetraethyl orthosilicate; Si (OC 2 H 5 ) 4 ) serving as a Si source was mixed, and 3
A homogeneous solution of the elements was prepared. This solution was introduced into the nozzle of the spray dryer using a metering pump at a rate of 10 ml / min, and spray-dried at a spray temperature of 150 to 300 ° C, more preferably at a spray temperature of 200 to 250 ° C. The precursor thus collected is packed in a high-purity alumina crucible, and the precursor is stored in a weak reducing atmosphere, for example, in a hydrogen-nitrogen mixed gas atmosphere,
It was baked at 00 ° C. for 3 hours. The phosphor obtained in this example is a cerium-activated yttrium silicate phosphor and exhibits a short afterglow violet emission.

【0019】実施例6.高純度イットリウムアルコキシ
ド、例えばイットリウムイソプロポキシド(Y(i−O
373)26.61gと高純度アルミニウムアルコ
キシド、例えばアルミニウムイソプロポキシド(Al
(i−OC373)34.04gをイソプロピルアル
コールを共通溶媒として混合溶解し、均質なアルコキシ
ド混合溶液を得た。別に熱硝酸水溶液20ccに酸化テ
ルビウム(Tb47)1.55gを溶解し、十分に冷却
後エタノール50ccを加えてよく攪拌した後、アルコ
キシド溶液に加えた。この混合溶液をpH9に保たれた
塩化アンモニウム(NH4Cl)−アンモニウム水溶液
(NH3)系緩衝液中に噴霧し、白色沈澱を得た。これ
を高純度アルミナ坩堝につめ、弱還元性雰囲気、例えば
水素ー窒素混合ガス雰囲気下で1600℃、2時間焼成
した。この実施例で得られた蛍光体はテルビウム付活イ
ットリウムアルミネート蛍光体であり緑色の発光を示
す。
Example 6. High-purity yttrium alkoxide, such as yttrium isopropoxide (Y (i-O
26.61 g of C 3 O 7 ) 3 ) and high-purity aluminum alkoxide such as aluminum isopropoxide (Al
34.04 g of (i-OC 3 H 7 ) 3 ) was mixed and dissolved using isopropyl alcohol as a common solvent to obtain a homogeneous alkoxide mixed solution. Separately, 1.55 g of terbium oxide (Tb 4 O 7 ) was dissolved in 20 cc of a hot nitric acid aqueous solution, and after sufficiently cooling, 50 cc of ethanol was added and well stirred, and then added to the alkoxide solution. The mixed solution of ammonium chloride was maintained at pH9 the (NH 4 Cl) - sprayed aqueous ammonium (NH 3) based buffer to give a white precipitate. This was packed in a high-purity alumina crucible and fired at 1600 ° C. for 2 hours in a weak reducing atmosphere, for example, a hydrogen-nitrogen mixed gas atmosphere. The phosphor obtained in this example is a terbium activated yttrium aluminate phosphor and emits green light.

【0020】比較例1.酸化イットリウム(Y23)2
0.89g、酸化テルビウム(Tb47)2.80gお
よび二酸化珪素(SiO2)6.34gをボールミルポ
ットに入れ、エタノール100mlを加えて10時間混
合する。混合物をボールミルポットから取り出し十分乾
燥させた後アルミナ坩堝につめ、弱還元雰囲気下155
0℃で4時間焼成する。冷却後、粉砕して蛍光体を得
る。得られた蛍光体粉末はテルビウム付活珪酸イットリ
ウム蛍光体であり緑色の発光を示す。図1の線分bにこ
の蛍光体粉末の輝度特性を示す。この特性図から明らか
なように同様の材料を用いて実施例1により得られたテ
ルビウム付活珪酸イットリウム蛍光体の方が良好な輝度
特性を示している。
Comparative Example 1. Yttrium oxide (Y 2 O 3 ) 2
0.89 g, terbium oxide (Tb 4 O 7 ) 2.80 g and silicon dioxide (SiO 2 ) 6.34 g are put in a ball mill pot, 100 ml of ethanol is added and mixed for 10 hours. The mixture was taken out of the ball mill pot and sufficiently dried, and then packed in an alumina crucible and placed in a weak reducing atmosphere at 155.
Bake at 0 ° C. for 4 hours. After cooling, it is pulverized to obtain a phosphor. The obtained phosphor powder is a terbium-activated yttrium silicate phosphor and emits green light. The line segment b in FIG. 1 shows the luminance characteristics of this phosphor powder. As is clear from this characteristic diagram, the terbium-activated yttrium silicate phosphor obtained in Example 1 using the same material exhibits better luminance characteristics.

【0021】比較例2.酸化イットリウム(Y23)4
0.80g、酸化テルビウム(Tb47)4.68gを
蒸留水500ccと硝酸50mlを混合したものに加熱
溶解し、十分攪拌した後冷却する。べつに蒸留水100
0cc中に蓚酸水和物(C224・2H2O)150.
0gを溶解した溶液を準備し、この蓚酸溶液を80℃に
加熱して前記硝酸塩溶液に加えると白色沈澱が生じる。
この沈澱を洗浄濾過後、乾燥する。この粉末を1000
℃で熱分解してイットリウムとテルビウムの複合酸化物
とし、高純度アルミナ(Al23)56.24gおよび
エタノール100ccとともにボールミルポットにい
れ、5時間混合する。混合物を乾燥後、弱還元性雰囲気
中1600℃で3時間焼成し、冷却後粉砕して蛍光体粉
末を得た。この粉末はテルビウム付活イットリウムアル
ミネート蛍光体であり緑色の発光を示す。この蛍光体も
実施例6により得られた蛍光体に比べて輝度特性が劣る
ことが確認された。
Comparative Example 2. Yttrium oxide (Y 2 O 3 ) 4
0.80 g and 4.68 g of terbium oxide (Tb 4 O 7 ) are dissolved by heating in a mixture of 500 cc of distilled water and 50 ml of nitric acid, sufficiently stirred and cooled. 100 distilled water
Oxalic acid hydrate (C 2 H 2 O 4 .2H 2 O) 150.
A solution in which 0 g was dissolved was prepared, and the oxalic acid solution was heated to 80 ° C. and added to the nitrate solution, and a white precipitate was produced.
The precipitate is washed, filtered and dried. 1000 of this powder
It is pyrolyzed at a temperature of ℃ to obtain a composite oxide of yttrium and terbium, put in a ball mill pot together with 56.24 g of high-purity alumina (Al 2 O 3 ) and 100 cc of ethanol, and mixed for 5 hours. After the mixture was dried, it was calcined in a weak reducing atmosphere at 1600 ° C. for 3 hours, cooled and pulverized to obtain a phosphor powder. This powder is a terbium-activated yttrium aluminate phosphor and emits green light. It was confirmed that this phosphor also has inferior luminance characteristics as compared with the phosphor obtained in Example 6.

【0022】このように、蛍光体が微小粒子同士の接触
による三次元構造であるため、紫外線をはじめとする各
種励起エネルギーの発光中心への伝達および発光中心か
ら放出される可視光の出光に有利あるとともに、発光に
有効な表面積を増大させることができ、優れた輝度特性
が得られる。さらには、粒子形状、粒径など各種粉体特
性を機械的粉砕することなしに製造方法を適宜選択する
ことにより調整できるので、蛍光面作製時に不可避であ
った粉砕による輝度低下を防ぐことができる。また、蛍
光体特性の個々のばらつきも小さくなるため、均質性の
高い健全な蛍光面作製が可能となる。そのため、蛍光体
を発光体として用いる各種ランプ、ディスプレイの特性
向上が可能となる。
As described above, since the fluorescent substance has a three-dimensional structure in which fine particles are in contact with each other, it is advantageous for transmitting various excitation energies including ultraviolet rays to the emission center and for emitting visible light emitted from the emission center. In addition, the effective surface area for light emission can be increased, and excellent brightness characteristics can be obtained. Furthermore, since various powder characteristics such as particle shape and particle diameter can be adjusted by appropriately selecting a manufacturing method without mechanically crushing, it is possible to prevent a decrease in brightness due to crushing, which is inevitable when a phosphor screen is manufactured. . In addition, since individual variations in phosphor characteristics are reduced, it is possible to produce a highly uniform and healthy phosphor screen. Therefore, it is possible to improve the characteristics of various lamps and displays that use a phosphor as a light emitting body.

【0023】[0023]

【発明の効果】以上のように、この発明によれば、蛍光
体が微小粒子同士の接触による三次元構造であるので、
紫外線をはじめとする各種励起エネルギーの発光中心へ
の伝達および発光中心から放出される可視光の出光に有
利あるとともに、発光に有効な表面積を増大させること
ができ、優れた輝度特性が得られる。
As described above, according to the present invention, since the fluorescent substance has a three-dimensional structure in which fine particles are in contact with each other,
It is advantageous for transmitting various excitation energies such as ultraviolet rays to the luminescence center and for emitting visible light emitted from the luminescence center, and can increase the surface area effective for luminescence, thereby obtaining excellent brightness characteristics.

【0024】また、その製造方法は、母体または発光中
心となりうる1種以上の元素イオンを含む蛍光体の構成
元素を金属イオンまたは金属アルコキシドの溶液状態で
混合調整する工程と、上記溶液より溶媒を除去して前駆
体を得る工程と、上記前駆体を焼成する工程とを備える
ので、粒子形状、粒径など各種粉体特性を機械的粉砕す
ることなしに調整できるので、蛍光面作製時に不可避で
あった粉砕による輝度低下を防ぐことができる。また、
蛍光体特性の個々のばらつきも小さくなるため、均質性
の高い健全な蛍光面作製が可能となる。
Further, the manufacturing method thereof includes a step of mixing and adjusting the constituent elements of the phosphor containing one or more element ions which can be a host or an emission center in a solution state of a metal ion or a metal alkoxide, and a solvent from the above solution. Since the step of removing and obtaining the precursor and the step of firing the precursor are provided, various powder characteristics such as particle shape and particle diameter can be adjusted without mechanical pulverization, so that it is unavoidable at the time of producing the phosphor screen. It is possible to prevent a decrease in brightness due to the crushing. Also,
Since individual variations in phosphor characteristics are also reduced, it is possible to produce a highly uniform and sound phosphor screen.

【0025】さらに、上記製造方法で前駆体を噴霧乾燥
法、噴霧沈澱法、またはエマルジョン法により作製する
とよい。
Further, the precursor may be prepared by the spray-drying method, the spray-precipitation method, or the emulsion method by the above-mentioned manufacturing method.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1と従来例を比較する輝度−
電流特性図である。
FIG. 1 is a luminance comparing Example 1 of the present invention with a conventional example.
It is a current characteristic diagram.

【図2】この発明の実施例1で得られた蛍光体粉末の粒
子構造を示すSEM写真である。
FIG. 2 is an SEM photograph showing the particle structure of the phosphor powder obtained in Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

a この発明の実施例1の特性 b 比較例の特性 a Characteristics of Example 1 of the present invention b Characteristics of Comparative Example

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月5日[Submission date] August 5, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】実施例1.酸化イットリウム(Y23)4
2.00g、酸化テルビウム(Tb47)5.30g
を、試薬特級硝酸(比重1.40)120.0ccを蒸
留水600.0ccに希釈したものに加熱溶解し十分に
冷却した。つぎにこの溶液に特級エタノール200.0
ccを共通溶媒として、Si源となるTEOS(テトラ
エチルオルソシリケート;Si(OC254)を4
3.00g混合した。この均一溶液を噴霧乾燥装置のノ
ズルに定量ポンプを用いて毎分50mlの速度で導入
し、噴霧温度150〜300℃、さらに望ましくは噴霧
温度200〜250℃で噴霧乾燥を行った。こうして捕
集した前駆体を高純度アルミナ坩堝につめ、弱還元性雰
囲気、例えば水素ー窒素混合ガス雰囲気下で1600
℃、3時間焼成した。この実施例で得られた蛍光体はテ
ルビウム付活珪酸イットリウム蛍光体であり緑色の発光
を示す。さらにSEMによる蛍光体粉末観察では、蛍光
体は微小粒子同士の接触による三次元構造であり、平均
粒径は3〜7μmであった。この蛍光体で水ガラスを用
いた沈降法により蛍光面を作製し輝度評価を行った。図
1はデマンタブル輝度評価装置で測定した上記蛍光体の
輝度特性を示す輝度−電流特性図である。図中直線aは
この実施例1の蛍光体の輝度特性である。図2はSEM
5000倍に拡大して観察した粒子構造を示す写真で
あり、図中、線分はその長さがμmに相当することを
示す。
Example 1. Yttrium oxide (Y 2 O 3 ) 4
2.00 g, terbium oxide (Tb 4 O 7 ) 5.30 g
Was dissolved in 120.0 cc of reagent grade nitric acid (specific gravity 1.40) diluted with distilled water of 600.0 cc and dissolved by heating to be sufficiently cooled. Next, to this solution is added special grade ethanol 200.0.
Using cc as a common solvent, TEOS (tetraethyl orthosilicate; Si (OC 2 H 5 ) 4 ) serving as a Si source is added to 4
3.00 g was mixed. This homogeneous solution was introduced into the nozzle of the spray dryer using a metering pump at a rate of 50 ml / min, and spray-dried at a spray temperature of 150 to 300 ° C, more preferably at a spray temperature of 200 to 250 ° C. The precursor thus collected was packed in a high-purity alumina crucible and subjected to a weak reducing atmosphere such as a hydrogen-nitrogen mixed gas atmosphere at 1600.
It was baked at 3 ° C for 3 hours. The phosphor obtained in this example is a terbium-activated yttrium silicate phosphor and emits green light. Furthermore, in observing the phosphor powder by SEM, the phosphor had a three-dimensional structure in which fine particles were in contact with each other, and the average particle size was 3 to 7 μm. A phosphor screen was prepared from this phosphor by a sedimentation method using water glass, and the brightness was evaluated. FIG. 1 is a luminance-current characteristic diagram showing the luminance characteristics of the phosphor measured by a demantable luminance evaluation device. The straight line a in the figure is the luminance characteristic of the phosphor of Example 1. Figure 2 is a SEM
3 is a photograph showing a grain structure observed by magnifying at a magnification of 5000 times, and in the figure, a line segment indicates that its length corresponds to 1 μm.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 母体または発光中心となりうる1種以上
の元素イオンを含む蛍光体において、微小粒子同士の接
触による三次元構造が一個の粒子形状であることを特徴
とする蛍光体。
1. A phosphor containing one or more kinds of elemental ions that can be a host or an emission center, wherein the three-dimensional structure formed by contact between fine particles has a single particle shape.
【請求項2】 母体または発光中心となりうる1種以上
の元素イオンを含む蛍光体の構成元素を金属イオンまた
は金属アルコキシドの溶液状態で混合調整する工程と、
上記溶液より溶媒を除去して前駆体を得る工程と、上記
前駆体を焼成する工程とを備える蛍光体の製造方法。
2. A step of mixing and adjusting constituent elements of a phosphor containing one or more element ions capable of becoming a base or an emission center in a solution state of metal ions or metal alkoxides.
A method for producing a phosphor, comprising: a step of removing a solvent from the solution to obtain a precursor; and a step of firing the precursor.
【請求項3】 前駆体が噴霧乾燥法、噴霧沈澱法、また
はエマルジョン法により作製される請求項2記載の蛍光
体の製造方法。
3. The method for producing a phosphor according to claim 2, wherein the precursor is produced by a spray drying method, a spray precipitation method, or an emulsion method.
JP10516393A 1993-04-06 1993-04-06 Phosphor and its production Pending JPH06287551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10516393A JPH06287551A (en) 1993-04-06 1993-04-06 Phosphor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10516393A JPH06287551A (en) 1993-04-06 1993-04-06 Phosphor and its production

Publications (1)

Publication Number Publication Date
JPH06287551A true JPH06287551A (en) 1994-10-11

Family

ID=14400030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10516393A Pending JPH06287551A (en) 1993-04-06 1993-04-06 Phosphor and its production

Country Status (1)

Country Link
JP (1) JPH06287551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519717A (en) * 2000-01-14 2003-06-24 オスラム−シルヴェニア インコーポレイテッド Fluorescent nanophase binder system for UV and VUV
CN1315984C (en) * 2005-08-02 2007-05-16 中国计量学院 Self-ignite preparation method of spherical nanometer Yttrium europium silicate fluorescent powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519717A (en) * 2000-01-14 2003-06-24 オスラム−シルヴェニア インコーポレイテッド Fluorescent nanophase binder system for UV and VUV
CN1315984C (en) * 2005-08-02 2007-05-16 中国计量学院 Self-ignite preparation method of spherical nanometer Yttrium europium silicate fluorescent powder

Similar Documents

Publication Publication Date Title
JP5932934B2 (en) Method for producing aluminate phosphor, BAM, YAG, and CAT by alum method
JP2001525448A (en) Method of making high brightness, shorter lasting zinc orthosilicate phosphor
KR20020000835A (en) Method of producing aluminate fluorescent substance, a fluorescent substance and a device containing a fluorescent substance
JP3875027B2 (en) Method for producing spherical zinc orthosilicate-based green light-emitting phosphor
JP2014043539A (en) Alkaline earth metal silicate phosphor and method for producing the same
JP3988337B2 (en) Phosphorus / vanadate phosphor, display device using the same, and light emitting device
JP2001172627A (en) Rare earth phosphate, method for producing the same and rare earth phosphate fluorescent substance
JP2002519502A (en) Small particle blue emitting lanthanum phosphate based phosphors for displays and lamps and methods of forming the same
JP2014506266A (en) Composition comprising core-shell aluminate, phosphor obtained from this composition, and method of production
JP2002194346A (en) Method for producing aluminate fluorescent substance
JP3915504B2 (en) Method for producing silicate phosphor
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
JPH06287551A (en) Phosphor and its production
JP2001172620A (en) Method for producing red light emitting fluorescent microparticle
JP2002194347A (en) Fluorescent substance, method for producing the same and luminous device
JP4023222B2 (en) Method for producing silicate phosphor
JPH07116426B2 (en) Luminescent composition
JPH048793A (en) Production of powder of fluorescent substance
KR100447936B1 (en) Green emitting phosphor by VUV excitiation and its preparation method
JP4373670B2 (en) Method for manufacturing vacuum ultraviolet-excited luminescent material and method for manufacturing plasma display panel
JPH10298548A (en) Light-emitting fluorescent material when subjected to vacuum ultraviolet excitation and its production
JP2004263088A (en) Process for producing fluorescent substance
JP2001220582A (en) Preparation process of aluminate phosphor
KR100419863B1 (en) Preparing method for spherical red phosphor based on borates
JP2000297280A (en) Trivalent rare earth ion-containing aluminate fluorescent substance, its production and emission device using the fluorescent substance