JPH06287355A - Molding containing ultrafine particle dispersed therein - Google Patents

Molding containing ultrafine particle dispersed therein

Info

Publication number
JPH06287355A
JPH06287355A JP5076812A JP7681293A JPH06287355A JP H06287355 A JPH06287355 A JP H06287355A JP 5076812 A JP5076812 A JP 5076812A JP 7681293 A JP7681293 A JP 7681293A JP H06287355 A JPH06287355 A JP H06287355A
Authority
JP
Japan
Prior art keywords
resin
ultrafine particles
fibers
dispersed
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5076812A
Other languages
Japanese (ja)
Inventor
Shuichiro Ogawa
周一郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5076812A priority Critical patent/JPH06287355A/en
Publication of JPH06287355A publication Critical patent/JPH06287355A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a fiber or resin molding contg. ultrafine particles homogeneously dispersed therein. CONSTITUTION:A fiber or resin molding is provided wherein ultrafine particles having uniform particle sizes in the range of 1-200nm are dispersed almost without agglomerating. Typically, the fiber or resin molding is produced by mixing a raw material polymer with a metal salt, thermally treating the mixture to reduce the metal salt to produce uniform ultrafine particles in the polymer, and forming the mixture contg. the particles into a fiber or resin molding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超微粒子が均一に分散し
ている繊維と樹脂成形物に関する。繊維や樹脂成形物に
超微粒子を添加することにより、様々な機能、例えば、
抗菌性・防カビ性・防臭性、難燃性、紫外線防止、蓄熱
性、表面性の改善、清涼感等を付与することが行われ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber and a resin molded product in which ultrafine particles are uniformly dispersed. By adding ultrafine particles to fibers and resin molded products, various functions such as
Antibacterial / mold / deodorant properties, flame retardancy, UV protection, heat storage properties, surface property improvement, and refreshing feeling are provided.

【0002】[0002]

【従来の技術】粒径がミクロンオーダの無機微粒子を繊
維や樹脂成形物に添加することにより、様々な機能を付
与することが、従来より行われている。例えば、抗菌性
・防カビ性・防臭性、難燃性、紫外線防止、蓄熱性、表
面性の改善、清涼感の付与などである。
2. Description of the Related Art It has been conventionally practiced to add various functions by adding inorganic fine particles having a particle size on the order of micron to a fiber or a resin molded product. For example, antibacterial / mold / deodorant properties, flame retardancy, UV protection, heat storage, surface property improvement, and refreshing sensation.

【0003】しかしながら、平均粒径が200nm未満
の超微粒子を用いた場合、繊維や樹脂成形物に添加する
際に超微粒子が繊維や成形物の作製時に凝集してしま
い、均一に分散させることが困難であった。
However, when ultrafine particles having an average particle size of less than 200 nm are used, the ultrafine particles aggregate during the production of the fiber or molded product when added to the fiber or resin molded product, and can be dispersed uniformly. It was difficult.

【0004】[0004]

【発明が解決しようとする課題】本発明は、均一性の優
れた超微粒子分散繊維及び樹脂成形物を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide ultrafine particle-dispersed fibers and resin molded products having excellent uniformity.

【0005】[0005]

【課題を解決するための手段】繊維や樹脂成形物を作製
する際の溶融混練工程などの工程に於いて直接に超微粒
子粉体を添加すると、超微粒子が凝集してしまい、超微
粒子が均一に分散していない。ところが、成形物の原料
である高分子中で直接超微粒子を作製すると均一な分散
状態を実現できることを見出し、本発明を完成するに到
った。
[Means for Solving the Problems] When ultrafine particle powder is directly added in a step such as a melt-kneading step in producing a fiber or a resin molded product, the ultrafine particles are agglomerated and the ultrafine particles are uniform. Not dispersed in. However, they have found that a uniform dispersion state can be realized by directly producing ultrafine particles in a polymer, which is a raw material for a molded product, and have completed the present invention.

【0006】すなわち、本発明は平均粒径が200nm
未満1nm以上の超微粒子が分散している成形物におい
て、超微粒子の粒径分布及び分散状態が均一に維持され
ていることを特徴とする成形物である。本発明におい
て、成形物とは繊維及び樹脂成形物である。繊維として
は綿、羊毛、絹、麻などの天然繊維、レーヨン繊維、キ
ュプラ繊維などの再生繊維、アセテート繊維、ビニロン
繊維、ナイロン繊維、ビニリデン繊維、ポリ塩化ビニル
繊維、ポリエステル繊維、ポリエチレン繊維、アクリル
繊維、ポリプロピレン繊維などの合成繊維及びガラス繊
維などの無機繊維などを挙げることができる。
That is, the present invention has an average particle size of 200 nm.
In a molded product in which ultrafine particles having a size of less than 1 nm are dispersed, the particle size distribution and dispersed state of the ultrafine particles are maintained uniformly. In the present invention, the molded product is a fiber or resin molded product. The fibers include natural fibers such as cotton, wool, silk and hemp, recycled fibers such as rayon fibers and cupra fibers, acetate fibers, vinylon fibers, nylon fibers, vinylidene fibers, polyvinyl chloride fibers, polyester fibers, polyethylene fibers, acrylic fibers. , Synthetic fibers such as polypropylene fibers, and inorganic fibers such as glass fibers.

【0007】樹脂としては、熱可塑性樹脂、熱硬化性樹
脂などを用いることができる。具体的には熱可塑性樹脂
としては、AAS樹脂、AES樹脂、AS樹脂、イソフ
チレンー無水マレイン酸共重合樹脂、ABS樹脂、AC
S樹脂、エチレンー塩ビ共重合樹脂、塩化ビリニデン樹
脂、塩化ビニル樹脂、クマロン樹脂、ケトン樹脂、酢酸
ビニル樹脂、フェノキシ樹脂、ブタジエン樹脂、フッ素
樹脂、ポリアセタール、ポリアミド、ポリアミドイミ
ド、ポリアリレート、ポリエーテルイミド、ポリエーテ
ルエーテルケトン、ポリエチレン、ポリエチレンテレフ
タレート、ポリカーボネート、ポリスチレン、ポリサル
ホン、ポリパラメチルスチレン、ポリビニルアルコー
ル、ポリビニルエーテル、ポリビニルブチラール、ポリ
ビニルホルマール、ポリフェニレンエーテル、ポリフェ
ニレンサルファイド、ポリプロピレン、ポリメチレペン
テン、メタクリル樹脂、液晶ポリマーなどを挙げること
ができる。
As the resin, a thermoplastic resin, a thermosetting resin or the like can be used. Specific examples of the thermoplastic resin include AAS resin, AES resin, AS resin, isophthalene-maleic anhydride copolymer resin, ABS resin, and AC resin.
S resin, ethylene-vinyl chloride copolymer resin, vinylidene chloride resin, vinyl chloride resin, coumarone resin, ketone resin, vinyl acetate resin, phenoxy resin, butadiene resin, fluororesin, polyacetal, polyamide, polyamideimide, polyarylate, polyetherimide, Polyether ether ketone, polyethylene, polyethylene terephthalate, polycarbonate, polystyrene, polysulfone, polyparamethylstyrene, polyvinyl alcohol, polyvinyl ether, polyvinyl butyral, polyvinyl formal, polyphenylene ether, polyphenylene sulfide, polypropylene, polymethylene pentene, methacrylic resin, liquid crystal polymer And so on.

【0008】熱硬化性樹脂としては、DFK樹脂、エポ
キシ樹脂、キシレン樹脂、フェノール樹脂、ポリイミ
ド、ポリウレタン、メラニン樹脂、ユリア樹脂、ビニル
エステル樹脂、不飽和ポリエステル樹脂などを挙げるこ
とができる。更にメチルセルロース、エチルセルロー
ス、アセテートプラスチック、酢酸セルロースなどの天
然高分子を挙げることができる。
Examples of the thermosetting resin include DFK resin, epoxy resin, xylene resin, phenol resin, polyimide, polyurethane, melanin resin, urea resin, vinyl ester resin and unsaturated polyester resin. Further, natural polymers such as methyl cellulose, ethyl cellulose, acetate plastic, cellulose acetate and the like can be mentioned.

【0009】本発明の樹脂成形物とは上記樹脂を射出成
形、押し出し成形、圧縮成形などの成形法を用いて様々
な形に成形した樹脂成形物である。本発明の超微粒子の
材質としては特に限定されないが、金属、半導体、酸化
物、硫化物、有機物などが挙げられる。好ましくは銀、
金、銅、パラジウム、ロジウム、白金などの金属や酸化
銀、酸化銅、酸化チタン、酸化亜鉛などの酸化物、硫化
カドミウム、セレン化カドミウム、硫化亜鉛、セレン化
亜鉛、シリコン、ゲルマニウムなどの半導体を挙げるこ
とができる。より好ましくは銀、金、銅、パラジウム、
ロジウム、白金などの金属や酸化銀、酸化銅などの酸化
物である。
The resin molded product of the present invention is a resin molded product obtained by molding the above resin into various shapes using a molding method such as injection molding, extrusion molding or compression molding. The material of the ultrafine particles of the present invention is not particularly limited, and examples thereof include metals, semiconductors, oxides, sulfides and organic substances. Preferably silver,
Metals such as gold, copper, palladium, rhodium and platinum, oxides such as silver oxide, copper oxide, titanium oxide and zinc oxide, semiconductors such as cadmium sulfide, cadmium selenide, zinc sulfide, zinc selenide, silicon and germanium. Can be mentioned. More preferably silver, gold, copper, palladium,
Metals such as rhodium and platinum and oxides such as silver oxide and copper oxide.

【0010】平均粒径は、次のように測定した。作製し
た繊維や樹脂成形物をウルトラミクロトームを用いて、
超薄切片を作製し、この切片をコロジオン支持膜を張り
付けた銅製グリッド上に載物し、カーボン蒸着処理を行
って透過型電子顕微鏡観察用試料とした。超薄切片の厚
みは50nm以上100nm以下である。透過型電子顕
微鏡(日本電子(株)製 JEM−4000FX)を用
いて、加速電圧200kVで観察倍率5万倍あるいは1
0万倍で行い、写真倍率20万倍あるいは40万倍にし
た写真を用いた。次に、この写真を用いて、画像解析装
置写真中の一定範囲内の近接する超微粒子100個の直
径を測定し、その算術平均を平均粒径とした。但し、写
真内に超微粒子が100個に満たない場合は、異なる場
所の透過型電子顕微鏡写真を必要枚数用いて100個に
し、平均粒径とした。
The average particle size was measured as follows. Using an ultramicrotome for the produced fibers and resin molded products,
An ultrathin section was prepared, and this section was placed on a copper grid to which a collodion support film was attached, and carbon vapor deposition treatment was performed to obtain a sample for transmission electron microscope observation. The thickness of the ultrathin section is 50 nm or more and 100 nm or less. Using a transmission electron microscope (JEM-4000FX, manufactured by JEOL Ltd.), an observation magnification of 50,000 times or 1 at an acceleration voltage of 200 kV.
Photographs were taken at a magnification of 200,000 and a magnification of 200,000 or 400,000 was used. Next, using this photograph, the diameters of 100 adjacent ultrafine particles within a certain range in the photograph of the image analyzer were measured, and the arithmetic average thereof was taken as the average particle diameter. However, when the number of ultrafine particles in the photograph was less than 100, the required number of transmission electron micrographs at different locations were used to obtain 100 particles, and the average particle diameter was obtained.

【0011】粒径分布が均一であるとは、平均粒径Rと
したときに、測定した超微粒子の直径が0.5R以上
1.5R以下の範囲に、測定した超微粒子の50%以上
が存在していることを意味する。より粒径分布が均一な
場合は75%以上が存在している。分散状態が均一であ
るとは、平均粒径測定用の電子顕微鏡写真において、平
均粒径測定に使用した100個の粒子のうち、重なって
いる粒子が30個以下である状態である。より分散状態
が均一である場合は重なっている粒子が10個以下であ
る。
Uniform particle size distribution means that when the average particle size is R, 50% or more of the measured ultrafine particles are in the range of 0.5R or more and 1.5R or less. It means that it exists. When the particle size distribution is more uniform, 75% or more is present. The uniform dispersion state means a state in which, in the electron micrograph for measuring the average particle diameter, out of 100 particles used for measuring the average particle diameter, 30 or less overlapped particles. When the dispersed state is more uniform, the number of overlapping particles is 10 or less.

【0012】分散状態が均一な部分は局在化していても
構わない。もちろん、全体の分散状態が均一であっても
一向に構わない。局在化しているとは、例えば、表面付
近にのみあるいは中央付近にのみ、超微粒子が存在し、
その部分で上記の分散状態が均一であることを意味して
いる。材料中の超微粒子の量としては、何に分散するか
によってまた、どのような性能を与えるかによって当然
異なる。たとえば繊維や樹脂などの高分子に分散する場
合は5wt%以下0.1ppm以上である。
The portion where the dispersion state is uniform may be localized. Of course, it does not matter if the entire dispersion state is uniform. Localized means that, for example, ultrafine particles exist only near the surface or only near the center,
This means that the dispersed state is uniform in that portion. The amount of ultrafine particles in the material naturally depends on what is dispersed and what performance is given. For example, when dispersed in a polymer such as fiber or resin, the content is 5 wt% or less and 0.1 ppm or more.

【0013】本発明において、超微粒子の平均粒径は2
00nm未満1nm以上であることが必要である。平均
粒径が1nm未満の超微粒子は上述のような分散状態で
は現在作製できていない。上記の分散状態や粒径分布を
達成するための手段としては、上記の条件が達成できれ
ば特に限定されないが、好ましい方法としては繊維や樹
脂成形物を作製するための原料である高分子固相中で超
微粒子を作製する方法などを挙げることができる。例え
ば、金属塩と還元剤などを溶解あるいは含浸させた高分
子ペレットなどの高分子原料を加熱処理することによ
り、高分子原料中で還元させ、高分子原料内に超微粒子
を作製する方法を用いることができる。また、溶剤に可
溶な高分子を溶剤に溶解させた後、金属塩と還元剤を添
加して還元反応により超微粒子を作製し、その後溶剤を
除去させ、超微粒子が分散した高分子原料を作製する方
法、高分子原料中に金属塩のみを溶解あるいは含浸させ
たのち、加熱処理をすることにより、金属塩を還元させ
超微粒子を高分子原料中に作製する方法を用いることが
できる。
In the present invention, the average particle size of the ultrafine particles is 2
It is necessary to be less than 00 nm and 1 nm or more. Ultrafine particles having an average particle size of less than 1 nm cannot be currently produced in the dispersed state as described above. The means for achieving the above-mentioned dispersed state and particle size distribution is not particularly limited as long as the above conditions can be achieved, but a preferable method is in a polymer solid phase which is a raw material for producing fibers and resin molded products. And a method for producing ultrafine particles. For example, a method of producing ultrafine particles in a polymer raw material by heating a polymer raw material such as a polymer pellet in which a metal salt and a reducing agent are dissolved or impregnated to reduce the polymer raw material be able to. Also, after dissolving a polymer soluble in a solvent in a solvent, ultrafine particles are prepared by a reduction reaction by adding a metal salt and a reducing agent, and then the solvent is removed to prepare a polymer raw material in which the ultrafine particles are dispersed. It is possible to use a method of producing, in which the metal salt alone is dissolved or impregnated in the polymer raw material, and then heat treatment is performed to reduce the metal salt to produce ultrafine particles in the polymer raw material.

【0014】そして、この高分子原料を用いて、繊維に
加工することもできる。また、この高分子原料を用い
て、射出成形、押し出し成形、ブロウ成形などを行うこ
とにより、様々な樹脂成形品を作製することができる。
繊維や樹脂成形品などの表面に超微粒子を分散させる場
合には、繊維や樹脂成形品などに直接金属塩などを含浸
させ、加熱処理あるいは、還元処理をすることにより、
表面に高濃度に分散させることも可能である。
The polymer raw material can be used to process into fibers. Further, various resin molded products can be produced by performing injection molding, extrusion molding, blow molding and the like using this polymer raw material.
When ultrafine particles are dispersed on the surface of fibers or resin molded products, the fibers or resin molded products are directly impregnated with a metal salt or the like, and subjected to heat treatment or reduction treatment,
It is also possible to disperse in high concentration on the surface.

【0015】[0015]

【実施例】以下の実施例によって本発明を更に詳細に説
明するが、本発明はこれらの実施例によって限定される
ものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0016】[0016]

【実施例1】次のようにしてマスターバッチを作製し
た。下記に示す組成の塗布液を作製した。 ポリスチレン 10g ヘプタフルオロ酪酸銀 0.01g 2-t-ブチル-6-(3-t-ブチル-2- ヒドロキシ-5- メチルベンジル)-4- メチルフェ ニルアクリレート 0.02g メチルエチルケトン 60g トルエン 30g この塗布液を平均孔径0.2μmのフィルターを通して
ろ過した後、ブレードコータを用いて乾燥後の膜厚が6
μmになるように、ポリエチレンテレフタレート(PE
T)フィルム上に均一に塗布し、自然乾燥させた。その
後オーブンを用いて150℃で30分間加熱処理をした
後、スチレン膜をPETフィルムから剥離させ、このス
チレン膜をマスターバッチとした。このマスターバッチ
を用いて、銀量が0.05wt%になるようにポリスチ
レンと混ぜて、射出成形をおこない、抗菌性評価サンプ
ルを作製した。
Example 1 A masterbatch was prepared as follows. A coating liquid having the composition shown below was prepared. Polystyrene 10 g Silver heptafluorobutyrate 0.01 g 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate 0.02 g Methyl ethyl ketone 60 g Toluene 30 g After filtering through a filter with an average pore size of 0.2 μm, the film thickness after drying was 6 using a blade coater.
Polyethylene terephthalate (PE
T) A film was evenly applied and naturally dried. After that, heat treatment was performed for 30 minutes at 150 ° C. in an oven, and then the styrene film was peeled off from the PET film, and this styrene film was used as a masterbatch. Using this masterbatch, it was mixed with polystyrene so that the amount of silver was 0.05 wt%, and injection molding was performed to prepare an antibacterial property evaluation sample.

【0017】電子顕微鏡写真を用いて、粒径を測定した
ところ平均粒径は9nmであった。また、測定した10
0個の銀微粒子はすべて独立に分散していた。粒径分布
に関しては粒径は4.5nm以上13.5nm以下の範
囲に85%の粒子が存在していた。
When the particle size was measured using an electron micrograph, the average particle size was 9 nm. Also, measured 10
All 0 silver particles were dispersed independently. Regarding the particle size distribution, 85% of particles were present in the range of 4.5 nm to 13.5 nm.

【0018】[0018]

【実施例2】次のようにしてマスターバッチを作製し
た。下記に示す組成の液を作製した。 トリフルオロ酢酸銀 0.1g メタノール 15g この液に一晩ナイロン6のペレットを浸漬させた後、溶
液からペレットを取り出し、溶媒を除去した後、オーブ
ンを用いて150℃で30分間加熱処理をした。このマ
スターバッチを用いて、銀量が約0.01wt%になる
ようにナイロン66チップを混ぜて、10デニールの糸
を作製した。その後、この糸を用いて布を作製した。電
子顕微鏡写真を用いて、粒径を測定したところ平均粒径
は19nmであった。測定した銀微粒子100個すべて
は独立に分散していた。粒径分布に関しては、粒径が
9.5nm以上28.5nm以下の範囲に75%の超微
粒子が存在していた。
Example 2 A masterbatch was prepared as follows. A liquid having the composition shown below was prepared. Silver trifluoroacetate 0.1 g Methanol 15 g After immersing the nylon 6 pellets in this solution overnight, the pellets were taken out from the solution, the solvent was removed, and then heat treatment was performed at 150 ° C. for 30 minutes using an oven. Using this masterbatch, nylon 66 chips were mixed so that the amount of silver was about 0.01 wt%, to prepare a 10 denier yarn. Then, a cloth was produced using this thread. When the particle size was measured using an electron micrograph, the average particle size was 19 nm. All 100 fine silver particles measured were independently dispersed. Regarding the particle size distribution, 75% of ultrafine particles were present in the range of particle size 9.5 nm or more and 28.5 nm or less.

【0019】[0019]

【実施例3】下記の成分からなる塗工液を作製した。 塩化金酸ナトリウム 0.1g ポリウレタン 100g イソプロピルアルコール 700g メチルアルコール 100g トルエン 400g この塗工液を平均孔径0.2μmのフィルタ−を通して
ろ過した後、ブレードコ−タによって乾燥後、膜厚6μ
mになるように、旭化成製のナイロン6(品番116
2)布上に均一に塗布し、温度30℃、湿度45%RHの
条件で乾燥した。このサンプルを150℃で20分間加
熱した。このサンプルをミクロトームを用いて透過型電
子顕微鏡用切片を作製し、電子顕微鏡を用いて観察し
た。電子顕微鏡は(株)日立製作所製H−500を用い
て検鏡した。写真より100個の金微粒子の直径を測定
したところ算術平均粒径は28nmであった。100個
の金微粒子は95個が独立に分散していた。粒径分布に
関しては、14nm以上42nm以下の範囲に90%の
超微粒子が存在していた。
Example 3 A coating solution containing the following components was prepared. Sodium chloroaurate 0.1 g Polyurethane 100 g Isopropyl alcohol 700 g Methyl alcohol 100 g Toluene 400 g After filtering this coating solution through a filter having an average pore size of 0.2 μm, it was dried with a blade coater to give a film thickness of 6 μm.
Asahi Kasei nylon 6 (Part No. 116
2) It was evenly applied onto a cloth and dried under the conditions of a temperature of 30 ° C. and a humidity of 45% RH. The sample was heated at 150 ° C. for 20 minutes. A section for a transmission electron microscope was prepared from this sample using a microtome and observed using an electron microscope. As an electron microscope, H-500 manufactured by Hitachi, Ltd. was used. When the diameter of 100 fine gold particles was measured from the photograph, the arithmetic average particle diameter was 28 nm. 95 of 100 gold particles were dispersed independently. Regarding the particle size distribution, 90% of ultrafine particles were present in the range of 14 nm to 42 nm.

【0020】[0020]

【発明の効果】超微粒子の粒径分布がシャープであり、
かつ超微粒子の凝集が少なく独立に存在している均一性
の高い新しい繊維や樹脂成形物を提供することができ
る。
EFFECT OF THE INVENTION The particle size distribution of ultrafine particles is sharp,
In addition, it is possible to provide a highly uniform new fiber or resin molded product in which ultrafine particles have little aggregation and exist independently.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が200nm未満1nm以上の
超微粒子が分散している成形物において、超微粒子の粒
径分布及び分散状態が均一に維持されていることを特徴
とする成形物。
1. A molded article in which ultrafine particles having an average particle size of less than 200 nm and 1 nm or more are dispersed, wherein the particle size distribution and dispersed state of the ultrafine particles are maintained uniformly.
JP5076812A 1993-04-02 1993-04-02 Molding containing ultrafine particle dispersed therein Withdrawn JPH06287355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5076812A JPH06287355A (en) 1993-04-02 1993-04-02 Molding containing ultrafine particle dispersed therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5076812A JPH06287355A (en) 1993-04-02 1993-04-02 Molding containing ultrafine particle dispersed therein

Publications (1)

Publication Number Publication Date
JPH06287355A true JPH06287355A (en) 1994-10-11

Family

ID=13616088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5076812A Withdrawn JPH06287355A (en) 1993-04-02 1993-04-02 Molding containing ultrafine particle dispersed therein

Country Status (1)

Country Link
JP (1) JPH06287355A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106224A1 (en) * 2003-05-29 2004-12-09 Riken Metal nanoparticle with support, continuous metal nanoparticle body, and methods for producing these
WO2005024118A3 (en) * 2003-09-05 2005-05-06 Cellresin Tech Llc Fiber material having malodor scavenger properties
WO2007086392A1 (en) * 2006-01-24 2007-08-02 Kyoto University Polymer/metal composite and process for producing the same
JP2007197707A (en) * 2005-12-26 2007-08-09 Katsuharu Takatsuka Ultrafine particle material-containing molded article and method for producing the same
WO2009096365A1 (en) * 2008-02-01 2009-08-06 Teijin Limited Inorganic nanoparticle-polymer composite and method for producing the same
JP2011528746A (en) * 2008-07-23 2011-11-24 ユニヴァーシタ デグリ ステュディ デイ トリエステ Three-dimensional nanocomposite consisting of polysaccharide matrix and metal nanoparticles, and preparation and use thereof
JP2013204206A (en) * 2012-03-29 2013-10-07 Daiwabo Holdings Co Ltd Multifunctional regenerated cellulosic fiber, fiber structure including the same, and method for producing them
US8916634B2 (en) 2008-02-29 2014-12-23 Toyo Seikan Kaisha, Ltd. Master batch, method of producing the same and method of molding articles thereof
US20200165746A1 (en) * 2018-11-24 2020-05-28 The Board Of Regents Of The University Of Texas System Scalable and facile in situ synthesis of nanoparticles resulting in decorated multifunctional fibers

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637499A4 (en) * 2003-05-29 2009-10-21 Riken Metal nanoparticle with support, continuous metal nanoparticle body, and methods for producing these
WO2004106224A1 (en) * 2003-05-29 2004-12-09 Riken Metal nanoparticle with support, continuous metal nanoparticle body, and methods for producing these
US7708800B2 (en) 2003-05-29 2010-05-04 Riken Metal nanoparticle with support, continuous metal nanoparticle body, and methods for producing these
WO2005024118A3 (en) * 2003-09-05 2005-05-06 Cellresin Tech Llc Fiber material having malodor scavenger properties
JP2007504373A (en) * 2003-09-05 2007-03-01 セルレジン テクノロジーズ,エルエルシー Fiber material with improved malodor scavenging
JP4898438B2 (en) * 2003-09-05 2012-03-14 セルレジン テクノロジーズ,エルエルシー Fiber material with improved malodor scavenging
US7470464B2 (en) 2003-09-05 2008-12-30 Cellresin Technologies, Llc Fiber material having improved malodor scavenger properties
JP2007197707A (en) * 2005-12-26 2007-08-09 Katsuharu Takatsuka Ultrafine particle material-containing molded article and method for producing the same
WO2007086392A1 (en) * 2006-01-24 2007-08-02 Kyoto University Polymer/metal composite and process for producing the same
JP5444559B2 (en) * 2006-01-24 2014-03-19 国立大学法人京都大学 Polymer-metal composite and method for producing the same
WO2009096365A1 (en) * 2008-02-01 2009-08-06 Teijin Limited Inorganic nanoparticle-polymer composite and method for producing the same
JPWO2009096365A1 (en) * 2008-02-01 2011-05-26 帝人株式会社 Inorganic nanoparticle-polymer composite and method for producing the same
US8916634B2 (en) 2008-02-29 2014-12-23 Toyo Seikan Kaisha, Ltd. Master batch, method of producing the same and method of molding articles thereof
KR101509845B1 (en) * 2008-02-29 2015-04-06 도요세이칸 그룹 홀딩스 가부시키가이샤 Master batch, process for production thereof, and process for production of molded articles
JP2011528746A (en) * 2008-07-23 2011-11-24 ユニヴァーシタ デグリ ステュディ デイ トリエステ Three-dimensional nanocomposite consisting of polysaccharide matrix and metal nanoparticles, and preparation and use thereof
JP2013204206A (en) * 2012-03-29 2013-10-07 Daiwabo Holdings Co Ltd Multifunctional regenerated cellulosic fiber, fiber structure including the same, and method for producing them
US20200165746A1 (en) * 2018-11-24 2020-05-28 The Board Of Regents Of The University Of Texas System Scalable and facile in situ synthesis of nanoparticles resulting in decorated multifunctional fibers

Similar Documents

Publication Publication Date Title
JPH06287355A (en) Molding containing ultrafine particle dispersed therein
Zhang et al. Silver nanoparticles grown on the surface of PAN nanofiber: Preparation, characterization and catalytic performance
CN111533994B (en) High-cracking-rate high-melt-index polypropylene material and preparation method and application thereof
Rosli et al. Crosslinked chitosan/poly (vinyl alcohol) nanofibers functionalized by ionic liquid for heavy metal ions removal
Chang et al. Synthesis of antimicrobial silver nanoparticles on silk fibers via γ‐radiation
US4746541A (en) Electrically conductive thermally stabilized acrylic fibrous material and process for preparing same
CN101565529B (en) Preparation method for inorganic/organic composite carrier provided with core-shell structure
Dzinun et al. Efficient immobilised TiO2 in polyvinylidene fluoride (PVDF) membrane for photocatalytic degradation of methylene blue
CN1696360A (en) Microwave shielding fiber and fabricating method
Kivotidi et al. Flame-retarded hydrophobic cellulose through impregnation with aqueous solutions and supercritical CO 2
US7976745B2 (en) Process for the preparation of a composite polymeric material
RU2017110043A (en) COMPOSITE FILAMENTS FROM SULPHONIZED COMPLEX POLYESTER AND SILVER NANOPARTICLES COATED WITH POLYMER AND METHODS FOR PRODUCING THEM
Azarian et al. Nanoencapsulation of intercalated montmorillonite‐urea within PVA nanofibers: Hydrogel fertilizer nanocomposite
Mankidy et al. Facile catalytic growth of cyanoacrylate nanofibers
CN106552674A (en) Aerogel carried nickel-phosphorus alloy catalysis material of a kind of nanofiber and preparation method thereof
Hong et al. Effect of blend composition on the morphology development of electrospun fibres based on PAN/PMMA blends
DE19882204B4 (en) Process for the preparation of a porous polyolefin material
Choi et al. Fabrication of superabsorbent nanofibers based on sodium polyacrylate/poly (vinyl alcohol) and their water absorption characteristics
CN113402809B (en) Porous graphene honeycomb core material and preparation method and application thereof
CN101886331A (en) In-situ preparation method of functional gold nanoparticle/electrostatic spinning composite nano fibrofelt
Xia et al. Preparation of silver-poly (acrylamide-co-methacrylic acid) composite microspheres with patterned surface structures
Nouh et al. Optical, structure and thermal investigation of the effect of gamma radiation in CPVC/Ag and CPVC/Pd nanocomposites membrane
JPS6337142A (en) Production of electrically conductive resin composition
CN115044198A (en) Bio-based polyamide material for automobile three-electrical system and preparation method thereof
Na et al. Effect of the average particle size and the surface oxidation layer of silicon on the colloidal silica particle through direct oxidation

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704