JPH06287203A - Production of vinyl chloride resin - Google Patents

Production of vinyl chloride resin

Info

Publication number
JPH06287203A
JPH06287203A JP5074247A JP7424793A JPH06287203A JP H06287203 A JPH06287203 A JP H06287203A JP 5074247 A JP5074247 A JP 5074247A JP 7424793 A JP7424793 A JP 7424793A JP H06287203 A JPH06287203 A JP H06287203A
Authority
JP
Japan
Prior art keywords
reactor
vinyl chloride
blade
polymerization
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5074247A
Other languages
Japanese (ja)
Other versions
JP3389629B2 (en
Inventor
Shinichi Kondo
伸一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP07424793A priority Critical patent/JP3389629B2/en
Publication of JPH06287203A publication Critical patent/JPH06287203A/en
Application granted granted Critical
Publication of JP3389629B2 publication Critical patent/JP3389629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside

Abstract

PURPOSE:To obtain a vinyl chloride resin for paste through fine suspension polymerization or emulsion polymerization high in heat removability, little in scale adhesion and coarse granule development and good in sol viscosity by taking higher agitation rate while uniformizing the flow velocity distribution in the reaction system. CONSTITUTION:In a polymerizer for the objective vinyl chloride resin where a sequence of plate-like agitating blades is installed along the central axis of the reactor, the radio d1/D is set at 0.5-0.9, dn+1/dn at 0.6-1.0, and the cross angle between the nth the blade and (n+1)th blade at 20 deg.-90 deg. (d1 is the tip diameter of the 1st blade from the bottom; D is the inner diameter of the reactor; dn+1 and dn are the tip diameters of the (n+1)th blade and nth blade from the bottom, respectively), and such number of agitating revolutions is taken as to give a minimum value not higher than 15 in the ratio of the maximum to minimum in the distribution for the ratios of the circumferential flow velocity to the axial flow velocity determined using water at a specified point in the reactor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塩化ビニル樹脂、特に
ペースト用塩化ビニル樹脂の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing vinyl chloride resin, particularly vinyl chloride resin for paste.

【0002】[0002]

【従来の技術】ペースト用塩化ビニル樹脂は、塩化ビニ
ルまたは所望に応じて塩化ビニルと共重合しうる単量体
との混合物を微細懸濁重合、乳化重合または播種乳化重
合により重合した後、噴霧乾燥を行って製造される0.
2〜3μm程度の平均一次粒子径を有する粉状体であ
る。これを可塑剤中に他の配合剤と共に混合分散してい
わゆるプラスチゾルを調製し、注型成形、スラッシュ成
形、回転成形、スプレッドコート成形あるいはスクリー
ン塗布成形などの成形法によって最終成形品に加工され
る。用途は耐チッピング塗料やシーラント、手袋等、多
岐にわたる。
Vinyl chloride resins for pastes are obtained by polymerizing vinyl chloride or a mixture of vinyl chloride and a monomer copolymerizable with vinyl chloride by fine suspension polymerization, emulsion polymerization or seed emulsion polymerization and then spraying. Manufactured by drying.
It is a powder having an average primary particle diameter of about 2 to 3 μm. This is mixed and dispersed in a plasticizer with other compounding agents to prepare a so-called plastisol, which is processed into a final molded product by a molding method such as cast molding, slush molding, rotational molding, spread coat molding or screen coating molding. . It has a wide range of uses, including chipping-resistant paints, sealants, and gloves.

【0003】微細懸濁重合法では、触媒として油溶性の
ラジカル開始剤が用いられ、重合開始前に水性媒体中に
単量体、開始剤、界面活性剤および所望に応じて高級脂
肪酸などの重合助剤、その他の添加剤を加えてプレミッ
クスし、ホモジナイザにより均質化処理して油滴の粒径
調整を行う。ホモジナイザとしては、例えばコロイドミ
ル、振動攪拌機などが用いられる。均質化処理された液
は重合装置に送られ、通常30〜80℃の範囲の温度に
おいて重合反応が行われる。
In the fine suspension polymerization method, an oil-soluble radical initiator is used as a catalyst, and a monomer, an initiator, a surfactant and, if desired, a higher fatty acid are polymerized in an aqueous medium before the initiation of the polymerization. Auxiliary agents and other additives are added, premixed, and homogenized by a homogenizer to adjust the particle size of oil droplets. As the homogenizer, for example, a colloid mill, a vibration stirrer or the like is used. The homogenized liquid is sent to the polymerization apparatus, and the polymerization reaction is usually performed at a temperature in the range of 30 to 80 ° C.

【0004】ここに、所望に応じて塩化ビニルとの共重
合に用いられる単量体としては、例えば酢酸ビニル、メ
タクリル酸など多数のものを挙げることができる。これ
らの共重合単量体は1種または2種以上を組み合わせて
使用することができる。
Here, as the monomer used for copolymerization with vinyl chloride, if desired, there may be mentioned a large number of monomers such as vinyl acetate and methacrylic acid. These copolymerizable monomers may be used alone or in combination of two or more.

【0005】油溶性のラジカル開始剤としては、例えば
ジベンゾイルペルオキシドなどのジアシルペルオキシド
類、ペルオキシジカーボネート類、ペルオキシエステル
類、あるいは有機過酸化物、さらにアゾ化合物などを使
用することができる。
As the oil-soluble radical initiator, for example, diacyl peroxides such as dibenzoyl peroxide, peroxydicarbonates, peroxyesters, organic peroxides, and azo compounds can be used.

【0006】微細懸濁重合法において使用される界面活
性剤としては、例えばラウリル硫酸エステルナトリウム
などアニオン性界面活性剤類、ソルビタンモノオレート
などノニオン性界面活性剤類、セチルピリジニウムクロ
リドなどのカチオン性界面活性剤などが挙げられ、これ
らは1種または2種以上を組み合わせて用いてもよい。
Examples of the surfactant used in the fine suspension polymerization method include anionic surfactants such as sodium lauryl sulfate, nonionic surfactants such as sorbitan monooleate, and cationic surfactants such as cetylpyridinium chloride. Activators and the like are mentioned, and these may be used alone or in combination of two or more.

【0007】微細懸濁重合法では、以上のような成分を
含む液を均質化処理した後、これを重合装置に送り重合
反応を行わせる。重合装置では重合反応熱を除去する必
要上攪拌が行われるが、攪拌が強過ぎると上記の均質化
処理において形成された液滴が衝突により合一するため
粗大粒子が増加し、その結果ペーストゾル粘度の上昇な
ど流動性の悪化を招いたり、液滴が重合装置の壁や攪拌
翼に付着してスケールの増大を招く。
In the fine suspension polymerization method, a liquid containing the above components is homogenized and then sent to a polymerization apparatus to cause a polymerization reaction. Stirring is performed in the polymerization equipment to remove heat of the polymerization reaction, but if the stirring is too strong, the droplets formed in the above homogenization process coalesce due to collisions to increase coarse particles, resulting in a paste sol. This may lead to deterioration of fluidity such as increase in viscosity, and droplets may adhere to the wall of the polymerization apparatus or a stirring blade to increase scale.

【0008】従って、一般に微細懸濁重合法では緩やか
な攪拌が用いられ、重合装置内に邪魔板(バッフル)を
設けない場合が多いので、重合装置器壁における伝熱係
数を大きく取ることができない。そのため、重合装置の
生産性は重合反応熱の除去が支配的因子になっている。
Therefore, in general, in the fine suspension polymerization method, gentle stirring is used, and since a baffle is not provided in the polymerization apparatus in many cases, a large heat transfer coefficient cannot be obtained in the wall of the polymerization apparatus. . Therefore, the removal of the heat of the polymerization reaction is the dominant factor in the productivity of the polymerization apparatus.

【0009】一方、乳化重合法は、アニオン性界面活性
剤などを乳化剤とし、水性媒体中に乳化分散させた塩化
ビニルモノマのミセルを反応の場として、水溶性重合開
始剤を用いて重合反応を開始させる方法である。重合の
進行に伴って粒子が肥大するのでその安定化に必要かつ
最小限の乳化剤を追加供給する。こうすることにより微
細粒子の発生を防止して、初期に発生した重合体粒子の
個数を維持しつつ重合反応を進行させる。一般に乳化重
合法で得られるポリマーの粒径は非常に小さいが、ペー
スト用塩化ビニル樹脂の場合は平均粒子径が0.4〜
0.6μmに達するまで粒子を肥大させる。
On the other hand, the emulsion polymerization method uses a water-soluble polymerization initiator to initiate a polymerization reaction by using anionic surfactants and the like as emulsifiers and using vinyl chloride monomer micelles emulsified and dispersed in an aqueous medium as reaction sites. It is a method to let. Since the particles grow as the polymerization progresses, the minimum amount of emulsifier necessary for stabilization is additionally supplied. By doing so, generation of fine particles is prevented, and the polymerization reaction proceeds while maintaining the number of polymer particles initially generated. Generally, the particle size of the polymer obtained by the emulsion polymerization method is very small, but in the case of the vinyl chloride resin for paste, the average particle size is 0.4 to
Enlarge the particles until they reach 0.6 μm.

【0010】また播種乳化重合法は、予め通常の乳化重
合や微細懸濁重合により調製された塩化ビニル樹脂粒子
を核として、上記の乳化重合法と同様の乳化剤および重
合開始剤を用いて、水性媒体中で粒子の肥大化重合反応
を行わせる重合方法である。この方法によれば、平均粒
子径が1〜2μmで、これに0.2μm前後の副生小粒
子が加わったシャープな粒径分布を有するペースト用塩
化ビニル樹脂が得られる。
In the seeded emulsion polymerization method, vinyl chloride resin particles prepared in advance by ordinary emulsion polymerization or fine suspension polymerization are used as cores, and an emulsifier and a polymerization initiator similar to those used in the above emulsion polymerization method are used. This is a polymerization method in which a particle enlargement polymerization reaction is carried out in a medium. According to this method, a vinyl chloride resin for paste having an average particle size of 1 to 2 μm and a sharp particle size distribution in which byproduct small particles of about 0.2 μm are added can be obtained.

【0011】上述の通り乳化重合では過剰な乳化剤が存
在すると微細粒子が発生するので常時は余分な量の乳化
剤を系内に置かず、析出したポリマーを安定化させるた
めに必要最小限の乳化剤を追加する方法が取られてい
る。従って重合反応中は反応液滴は常に不安定な状態に
あるから、この場合も攪拌について先に説明した微細懸
濁重合の場合と同様の注意を払う必要があり、緩やかな
攪拌が必要である。
As described above, in the emulsion polymerization, if excessive emulsifier is present, fine particles are generated. Therefore, an excessive amount of emulsifier is not always placed in the system, and the minimum amount of emulsifier necessary for stabilizing the precipitated polymer is used. The way to add is taken. Therefore, during the polymerization reaction, the reaction liquid droplets are always in an unstable state. In this case as well, it is necessary to pay the same attention to stirring as in the case of the fine suspension polymerization described above, and gentle stirring is necessary. .

【0012】従ってペースト用塩化ビニル樹脂の重合で
は、微細懸濁重合、乳化重合または播種乳化重合法のい
ずれを採用する場合でも、重合反応熱の除去が困難であ
るという共通の問題があり、これまで種々の除熱効率の
向上策が提案されている。
[0012] Therefore, in the polymerization of vinyl chloride resin for paste, there is a common problem that it is difficult to remove the heat of the polymerization reaction regardless of whether the fine suspension polymerization, emulsion polymerization or seed emulsion polymerization method is adopted. Various measures for improving heat removal efficiency have been proposed.

【0013】例えば、重合装置の有効高さHに対する有
効直径Dの比(H/D)を10以上にも取った極端に縦
長の重合装置(特開平3−103408号公報)、攪拌
翼およびバッフルへ冷却水を通水する方法、リフラック
スコンデンサを使用する方法(特開昭54−15389
5号公報)、あるいは冷却装置を使用する方法(特開昭
55−157607号公報)などが提案されている。
For example, an extremely long polymerization apparatus having a ratio (H / D) of the effective diameter D to the effective height H of the polymerization apparatus of 10 or more (JP-A-3-103408), a stirring blade and a baffle. Cooling water and a method using a reflux condenser (Japanese Patent Laid-Open No. 54-15389).
5) or a method using a cooling device (Japanese Patent Laid-Open No. 55-157607).

【0014】しかしながら、極端に縦長の重合装置を新
規に建設するには多額の設備投資を必要とし、従来から
用いられてきたH/Dが1〜3程度である一般的な重合
設備の生産性を改善する目的には不向きといえる。ま
た、ペースト用塩化ビニル樹脂の重合設備ではスケール
の付着および品質への悪影響からバッフルを使用しない
場合も多く、このような場合にはバッフルへ冷却水を通
水する方法は使用できない。攪拌翼に冷却水を通水する
方法は煩雑である割りには増大できる伝熱面積が少ない
という弱点がある。リフラックスコンデンサを使用する
方法では、反応液の発泡上昇によるリフラックスコンデ
ンサ内へのスケール付着や還流塩化ビニルモノマの再懸
濁が困難であることに伴う異常粒子発生等、特に微細懸
濁重合では適用上の困難が大きい。外部冷却装置を使用
する方法では、重合反応液をポンプで外部冷却装置へ送
給する際の剪断力による液粒子の破壊や冷却装置へのス
ケール付着等の困難と共に冷却コストの増大という問題
がある。
However, in order to newly construct an extremely long polymerization apparatus, a large amount of capital investment is required, and the productivity of a general polymerization apparatus which has been conventionally used and has an H / D of about 1 to 3. It is unsuitable for the purpose of improving. In addition, baffles are often not used in a facility for polymerizing vinyl chloride resin for pastes because of adhesion of scale and adverse effects on quality. In such a case, a method of passing cooling water through the baffles cannot be used. Although the method of passing cooling water through the stirring blade is complicated, it has a weak point that the heat transfer area that can be increased is small. The method using a reflux condenser is especially applicable to fine suspension polymerization, such as the formation of abnormal particles due to the difficulty of re-suspension of scale vinyl chloride monomer in the reflux condenser due to the rise of reaction solution foaming. The above difficulty is great. In the method using an external cooling device, there is a problem that breakage of liquid particles due to shearing force when the polymerization reaction liquid is fed to the external cooling device by a pump, scale adhesion to the cooling device, and the like, and increase in cooling cost. .

【0015】[0015]

【発明が解決しようとする課題】本発明の目的は、攪拌
装置付きの一般的形状を有する耐圧反応器の使用を前提
として、攪拌翼の形状寸法等の攪拌条件を工夫すること
により上述の問題点を解決し、微細懸濁重合法または乳
化重合法において高い除熱能力を確保すると共に、スケ
ール付着および粗大凝集物の発生が少なくゾル粘度が良
好なペースト用塩化ビニル樹脂を高い生産性の下で製造
することができる製造方法を提供することにある。
The object of the present invention is to solve the above-mentioned problems by devising the stirring conditions such as the shape and size of the stirring blade on the premise of using a pressure resistant reactor having a general shape with a stirring device. In addition to ensuring high heat removal capacity in the fine suspension polymerization method or emulsion polymerization method, the vinyl chloride resin for paste, which has less scale adhesion and coarse aggregates and good sol viscosity, can be produced with high productivity. It is to provide a manufacturing method that can be manufactured by.

【0016】[0016]

【課題を解決する手段】本発明者は、重合装置の構造、
特に攪拌装置の構造および重合条件と、伝熱係数、スケ
ール付着等の操業特性、粗粒発生およびゾル粘度等のペ
ースト用塩化ビニル樹脂の品質特性との関係について鋭
意詳細に検討した結果、本発明を完成するに至った。
The present inventor has found that the structure of a polymerization apparatus is
In particular, the structure and polymerization conditions of the stirrer, the heat transfer coefficient, the operation characteristics such as scale adhesion, the relationship between the quality characteristics of the vinyl chloride resin for paste such as coarse particle generation and sol viscosity, as a result of diligent study, the present invention Has been completed.

【0017】本発明に係る塩化ビニル樹脂の製造方法
は、耐圧反応器の中心軸上に複数の板状攪拌翼からなる
攪拌翼列を配置してなる塩化ビニル樹脂の重合装置を使
用して、前記攪拌翼列の最下段を第1段とし、順次上方
へ向かって第2段、・・、第n段(nは任意の整数)と
するとき、前記反応器の内径Dに対する第1段の攪拌翼
先端径dの比(d1 /D)を0.5から0.9、好まし
くは0.6から0.8の範囲で設定し、第n段に対する
第n+1段の攪拌翼先端径dの比(dn+1/dn )を0.
6から1.0の範囲で設定し、軸方向から見た第n段と
第n+1段の攪拌翼の交差角度を20°から90°、好
ましくは30°から60°の範囲で設定し、かつ、前記
反応器に所定量の室温の清水を仕込み、前記攪拌翼列を
回転させ、所定の直径を有し前記反応器内で中心軸を共
有する仮想円筒面上において測定される軸方向流速に対
する円周方向流速の比の分布における最大値と最小値の
比が15を超えない範囲で極小値を示す攪拌回転速度を
採用し、かくして決定される攪拌条件下で塩化ビニルを
主体とする単量体の微細懸濁重合または乳化重合を行う
ことを特徴とする。
The method for producing a vinyl chloride resin according to the present invention uses a vinyl chloride resin polymerization apparatus in which a stirring blade row composed of a plurality of plate-shaped stirring blades is arranged on the central axis of a pressure resistant reactor, When the lowermost stage of the stirring blade row is the first stage and the second stage is sequentially upward, ..., The nth stage (n is an arbitrary integer), the first stage with respect to the inner diameter D of the reactor is The ratio (d 1 / D) of the stirring blade tip diameter d is set in the range of 0.5 to 0.9, preferably 0.6 to 0.8, and the stirring blade tip diameter d of the (n + 1) th stage to the nth stage is set. The ratio (d n + 1 / d n ) of 0.
6 to 1.0, the crossing angle of the nth stage and the (n + 1) th stage stirring blades as seen from the axial direction is set to 20 ° to 90 °, preferably 30 ° to 60 °, and The reactor is charged with a predetermined amount of room temperature fresh water, the stirring blade row is rotated, and the axial flow velocity is measured on a virtual cylindrical surface having a predetermined diameter and sharing the central axis in the reactor. Adopt a stirring rotation speed that shows a minimum value in the range where the ratio of the maximum value to the minimum value in the ratio distribution of the circumferential flow velocity does not exceed 15, and the unit quantity mainly composed of vinyl chloride under the stirring conditions thus determined. It is characterized in that fine suspension polymerization or emulsion polymerization of the body is carried out.

【0018】本発明に係る製造方法において使用する重
合装置は、反応器の内径Dに対する反応器の有効高さH
の比(H/D)として1〜3を予定し、攪拌翼の形状と
してはパドル型攪拌翼を使用し、反応器の形状に応じて
2〜5段の攪拌翼の段数を予定している。翼の軸方向の
幅hの反応器の有効高さHに対する比(h/H)は、
0.05〜0.40の範囲で任意に選択することができ
る。また、先ごろ神鋼パンテック社により開発された比
較的縦長の門形の翼形で、上下の翼の一部がオーバーラ
ップする『フルゾーン』翼(神鋼パンテック社から特許
・商標登録出願中)も使用可能である(図2参照)。
The polymerization apparatus used in the production method according to the present invention has an effective height H of the reactor with respect to the inner diameter D of the reactor.
The ratio (H / D) of 1 to 3 is planned, the paddle type stirring blade is used as the shape of the stirring blade, and the number of stirring blades of 2 to 5 stages is planned according to the shape of the reactor. . The ratio (h / H) of the axial width h of the blade to the effective height H of the reactor is
It can be arbitrarily selected within the range of 0.05 to 0.40. In addition, there is also a "Full Zone" blade (a patent and trademark registration pending from Shinko Pantech Co., Ltd.), which was recently developed by Shinko Pantec Co., Ltd. and has a relatively long gate-shaped airfoil with some upper and lower wings overlapping. It can be used (see FIG. 2).

【0019】攪拌翼列中の翼間隔は、最上段、最下段の
翼の位置を決定しその間を均等に分割すればよいが、均
等間隔から40%以下の範囲で上下に移動することもで
きる。ただし最上段の攪拌翼の取り付け高さは、重合反
応の進行に伴って反応器内容物の体積が収縮して液面が
低下することを考慮して定める必要がある。また最下段
の攪拌翼は、該攪拌翼下部と反応器の底部内面との間に
略均等な間隔を生じさせる輪郭形状とすることができ
る。
The blade spacing in the row of stirring blades may be determined by determining the positions of the uppermost blade and the lowermost blade and dividing the blades evenly, but it is also possible to move up and down within the range of 40% or less from the uniform spacing. . However, it is necessary to determine the mounting height of the uppermost stirring blade in consideration of the fact that the volume of the reactor contents contracts and the liquid level decreases as the polymerization reaction progresses. Further, the lowermost stirring blade may have a contour shape that causes a substantially uniform interval between the lower portion of the stirring blade and the inner surface of the bottom of the reactor.

【0020】[0020]

【作用】塩化ビニルを主体とする単量体の微細懸濁重合
または乳化重合に使用する塩化ビニル樹脂の重合装置で
は、重合反応熱の除去を効率的に行うという観点からは
できるだけ強い攪拌を行うことが好ましいものの、従来
はスケールの付着および凝集物の生成を低く押さえる観
点から、緩やかな攪拌を採用せざるをえないと考えられ
てきた。
[Function] In a polymerization apparatus for vinyl chloride resin used for fine suspension polymerization or emulsion polymerization of a monomer mainly composed of vinyl chloride, vigorous stirring is performed as much as possible from the viewpoint of efficiently removing heat of polymerization reaction. Although it is preferable, from the viewpoint of suppressing the adhesion of scale and the formation of agglomerates to a low level, it has been considered that it is necessary to employ gentle stirring.

【0021】しかし本発明者は、局所的に過大な流動状
態が発生しないように系全体の流動状態をできるだけ均
一に保つことが重要であり、そうすることにより相対的
に強い攪拌を行うことができ、しかもスケールの付着を
少なく保つことができるので、結果的に総括伝熱係数を
高く維持することができると考えた。
However, it is important for the present inventor to keep the fluidized state of the entire system as uniform as possible so that an excessively fluidized state does not occur locally, and by doing so, relatively strong stirring can be performed. Since it is possible to keep the amount of scale adhered to be small, it is thought that the overall heat transfer coefficient can be kept high as a result.

【0022】本発明者はこのような観点から数多くの実
験的検討を重ねた結果、多くの因子の中から、(a)反
応器の内径Dに対する最下段の攪拌翼先端軌跡径dの比
(d1 /D)、(b)第n段に対する第n+1段の攪拌
翼先端径dの比(dn+1/dn )、(c)第n段と第n+
1段の攪拌翼の交差角度、の3因子が、反応系の局所的
流動状態に特に大きい影響を持つことを見出した。
As a result of many experimental investigations from this viewpoint, the inventor of the present invention has found that among many factors, (a) the ratio of the diameter d of the tip of the stirring blade at the lowermost stage to the inner diameter D of the reactor ( d 1 / D), (b) Ratio of the tip diameter d of the stirring blade at the ( n + 1 ) th stage to the ( n ) th stage (d n + 1 / d n ), (c) The nth stage and the n + th stage
It was found that the three factors of the crossing angle of the one-stage stirring blade have a particularly large influence on the local flow state of the reaction system.

【0023】局所的流動状態を示す指標としては、反応
器と中心軸を共有する反応器内の仮想円筒面上の各所に
おいて実験流体として室温の清水を用いて測定した縦
(軸)および横(円周)方向の流速比(縦/横)の最大
/最小値の比を採用した。この指標値は攪拌翼の各種形
状寸法の相違によって大きく変化し、小さい場合は3程
度から大きい場合は70以上にもなる。また、一定の攪
拌翼構成の下で攪拌機回転数を変えると、この指標値は
様々な傾向を持って敏感に変動する。
As an index showing the local flow state, the vertical (axis) and horizontal (axis) and horizontal (axis) measured using fresh water at room temperature as an experimental fluid at various places on the virtual cylindrical surface in the reactor sharing the central axis with the reactor The maximum / minimum ratio of the flow velocity ratio (vertical / horizontal) in the (circumferential) direction was adopted. This index value varies greatly depending on the difference in various shapes and dimensions of the stirring blades, and when the index value is small, it is about 3 to 70 or more when it is large. Further, when the number of rotations of the stirrer is changed under a constant stirring blade configuration, this index value changes sensitively with various tendencies.

【0024】スケール付着量および凝集物の生成状態か
らこの指標値が小さいほど局所的流動状態の均一性が高
いと考えられ、この値が15以下であれば実用的、7以
下であれば良好と判断される。15を超える場合は反応
流体の滞留が生じているものと考えられ、熱拡散不良に
よる局部的温度上昇や局部的に過大な流動箇所が発生
し、その結果スケールおよび凝集物が増大するものと推
定している。また、スケール付着が増えれば伝熱が阻害
されるので、この指標値が高いことは伝熱上からも好ま
しくない。
It is considered that the smaller the index value, the higher the homogeneity of the local flow state from the scale adhesion amount and the state of formation of aggregates. If this value is 15 or less, it is practical, and if it is 7 or less, it is good. To be judged. If it exceeds 15, it is considered that the reaction fluid is stagnation, and it is presumed that local temperature rise due to poor thermal diffusion and locally excessive flow points occur, resulting in an increase in scale and aggregates. is doing. Further, if the scale adhesion increases, heat transfer is hindered. Therefore, a high index value is not preferable in terms of heat transfer.

【0025】一方、重合反応初期の総括伝熱係数を決定
する因子は攪拌機の回転数である。しかし、反応途上で
スケールの付着が顕著であると総括伝熱係数は急速に低
下する。また、流動状態の均一性を示すと考えられる前
記指標値と攪拌機回転数の間には必ずしも一定方向の相
関が認められない。
On the other hand, the factor that determines the overall heat transfer coefficient at the initial stage of the polymerization reaction is the rotation speed of the stirrer. However, the overall heat transfer coefficient decreases rapidly if the scale adheres significantly during the reaction. In addition, a correlation in a certain direction is not always recognized between the index value considered to indicate the uniformity of the flow state and the rotation speed of the stirrer.

【0026】このことは、必要な総括伝熱係数を確保す
るための攪拌機回転数と、良好なスケールの付着および
凝集物の生成状態を実現するための均一な流動状態の確
保との間にはある程度の自由度があり、夫々独立に対策
を取ることができることを示唆している。従って、上で
挙げた3因子を適切に選択することにより良好な局所的
流動状態の均一性を実現してスケール付着量およびペー
スト品質を所望の範囲に保ちつつ、併せて高い攪拌機回
転数を採用し高い総括伝熱係数をも実現することができ
ることになる。また、そのような状態において攪拌機回
転数の微調整を行って前記指標値がより小さくなる回転
数を探索すれば、スケールの付着をさらに減少させて高
い総括伝熱係数を維持することができる。
This means that between the number of revolutions of the stirrer for ensuring the necessary overall heat transfer coefficient and the ensuring of a uniform fluid state for achieving good scale adhesion and agglomerate formation. There is a certain degree of freedom, suggesting that each can take measures independently. Therefore, by appropriately selecting the above-mentioned three factors, good local flow state uniformity can be achieved, and the scale deposit amount and paste quality can be kept within desired ranges, while also adopting a high stirrer rotation speed. Therefore, a high overall heat transfer coefficient can be realized. Further, by finely adjusting the agitator rotation speed in such a state and searching for a rotation speed at which the index value becomes smaller, it is possible to further reduce scale adhesion and maintain a high overall heat transfer coefficient.

【0027】上記の3因子は、夫々次の範囲にあること
が望ましい。
The above three factors are preferably in the following ranges respectively.

【0028】d1 /D = 0.5〜0.9、さらに好
ましくは0.6〜0.8 dn+1/dn = 0.6〜1.0 交差角度 = 20〜90°、さらに好ましくは30〜
60° d1 /Dは反応器下層における攪拌翼吐出量に関係する
値である。d1 /Dの値が0.5より小さいと凝集物の
発生が増大する。これは反応器壁面と攪拌翼先端との距
離が大きいため攪拌翼から吐出された流体の速度が反応
器壁面近傍に至るまでに減少して攪拌翼先端との間で流
速の差が増大し、この流速の差が局所的流動状態の均一
性を阻害するため結果的に凝集物の増大につながるもの
と考えられる。また流速が反応器壁面近傍で減少するこ
とは伝熱係数の面で不利であることはいうまでもない。
逆にd1 /Dが0.9より大であるとやはり凝集物が増
大する。これは反応器壁面と攪拌翼先端との距離が小さ
くなり過ぎて、攪拌翼から吐出された流体が反応器壁面
に衝突して液滴が破壊される頻度が増加するために生じ
るものと考えられる。d1 /Dの値が0.6から0.8
の範囲にある場合はさらに良好な結果が得られる。
[0028] d 1 / D = 0.5~0.9, more preferably 0.6~0.8 d n + 1 / d n = 0.6~1.0 intersection angle = 20 to 90 °, further Preferably 30-
60 ° d 1 / D is a value related to the discharge amount of the stirring blade in the lower layer of the reactor. When the value of d 1 / D is less than 0.5, the generation of aggregates increases. This is because the distance between the wall surface of the reactor and the tip of the stirring blade is large, the velocity of the fluid discharged from the stirring blade decreases until reaching the vicinity of the wall surface of the reactor, and the difference in flow velocity between the tip of the stirring blade increases. It is considered that this difference in flow velocity hinders the homogeneity of the local flow state, resulting in an increase in aggregates. Needless to say, the decrease in flow velocity near the wall surface of the reactor is disadvantageous in terms of heat transfer coefficient.
On the contrary, when d 1 / D is larger than 0.9, aggregates also increase. It is considered that this is because the distance between the reactor wall surface and the tip of the stirring blade becomes too small and the fluid discharged from the stirring blade collides with the reactor wall surface to increase the frequency of droplet breakage. . The value of d 1 / D is 0.6 to 0.8
If it is in the range, even better results are obtained.

【0029】dn+1/dn は上下方向の流れに影響する因
子である。dn+1/dn が0.6より小さいと凝集物の発
生が増大する。これは、現実には最上段の攪拌翼につい
てのd/Dの値が0.5を大幅に下回り、上記d1 /D
について述べた理由と同様に説明されると考えられる。
n+1/dn が1.0を超えると粗大粒子やスケールが増
大する。これは上下方向の流れが攪乱されたり、反応器
壁面近傍の流れが下向きになるためと考えられる。
D n + 1 / d n is a factor that affects the vertical flow. When d n + 1 / d n is less than 0.6, the generation of aggregates increases. In reality, the value of d / D for the uppermost stirring blade is much lower than 0.5, and the above d 1 / D
It is considered that the explanation is similar to the reason mentioned above.
When d n + 1 / d n exceeds 1.0, coarse particles and scale increase. This is probably because the flow in the vertical direction is disturbed or the flow near the wall of the reactor is downward.

【0030】攪拌翼段間の交差角度も上下方向の流れに
影響する因子である。交差角度が20°を下回ると凝集
物の発生が増大する。これは上段翼と下段翼のつながり
が悪くなり、夫々の翼から吐出された流れが翼間で互い
に衝突し、円滑な流体輸送が阻害されるためと考えられ
る。交差角度が60°を上回ると凝集物の発生がやや増
大する。これは、20°を下回る場合よりははるかに上
段翼と下段翼のつながりは良好であるものの、30°〜
60°の場合に比較して翼間での流れの衝突がやや増加
し、流速分布が広くなるためと考えられる。
The crossing angle between the stirring blade stages is also a factor affecting the vertical flow. If the crossing angle is less than 20 °, the generation of aggregates increases. It is considered that this is because the connection between the upper blade and the lower blade becomes poor and the flows discharged from the respective blades collide with each other to hinder smooth fluid transport. When the crossing angle exceeds 60 °, the generation of aggregates slightly increases. This means that the connection between the upper blade and the lower blade is much better than that when the angle is less than 20 °, but 30 ° ~
It is considered that the collision of the flow between the blades is slightly increased and the flow velocity distribution is widened as compared with the case of 60 °.

【0031】[0031]

【実施例】以下に本発明の実施例および比較例を示す。
以下の実施例および比較例には、図1に示すH/Dが
2.0、有効容積1.0m3 の攪拌機付重合反応器1を
用いた。この反応器1ではバッフルを用いていない。
EXAMPLES Examples and comparative examples of the present invention will be shown below.
In the following Examples and Comparative Examples, the polymerization reactor 1 with a stirrer having an H / D of 2.0 and an effective volume of 1.0 m 3 shown in FIG. 1 was used. No baffle is used in this reactor 1.

【0032】反応器1内の流速分布は重合反応とは別に
測定した。反応器1に脱イオン水1.0m3 を仕込み、
各実施例、比較例において指定する攪拌条件の下で攪拌
を行い、その流速分布を光ファイバレーザ流速計を用い
て測定し、流速分布の測定点は、図1に示すように、反
応器1と中心軸2を共有し、直径dがd=d1 +(1/
3)(D−d1 )で与えられる仮想円筒面(d1 は最下
段の攪拌翼先端径)上の軸方向に、それぞれ液面直下、
上段翼の高さ中心、上・中段間の中間位置、中段翼の高
さ中心、中・下段間の中間位置、下段翼の高さ中心を示
すポイント1〜6を設けた。各測定点において円周方向
と軸方向の流速を求め、両者の比(A=軸方向流速/円
周方向流速)の反応器内分布をもって流速分布の指標と
した。
The flow velocity distribution in the reactor 1 was measured separately from the polymerization reaction. Charge reactor 1 with 1.0 m 3 of deionized water,
Stirring was carried out under stirring conditions specified in each Example and Comparative Example, and the flow velocity distribution was measured using an optical fiber laser anemometer, and the measurement point of the flow velocity distribution was measured by the reactor 1 as shown in FIG. And the central axis 2 are shared, and the diameter d is d = d 1 + (1 /
3) Immediately below the liquid surface, in the axial direction on the virtual cylindrical surface (d 1 is the tip diameter of the lowermost stirring blade) given by (D−d 1 ),
Points 1 to 6 indicating the height center of the upper blade, the middle position between the upper and middle stages, the height center of the middle blade, the middle position between the middle and lower stages, and the height center of the lower blade were provided. The flow velocities in the circumferential direction and the axial direction were determined at each measurement point, and the distribution in the reactor of the ratio of both (A = axial flow velocity / circumferential flow velocity) was used as an index of the flow velocity distribution.

【0033】実施例1〜3および比較例1〜3は微細懸
濁重合法により、実施例4〜6および比較例4は播種乳
化重合法により重合を行った。
Polymerization was carried out in Examples 1 to 3 and Comparative Examples 1 to 3 by the fine suspension polymerization method, and in Examples 4 to 6 and Comparative Example 4 by the seeded emulsion polymerization method.

【0034】各実施例および比較例の結果は、表1に示
す通りである。ただし、ここに掲げた重合時間、重合転
化率、凝集物量、スケール量、ゾル粘度、総括伝熱係数
は、Amax /Amin が極小になる攪拌機回転数において
重合反応を行った結果を示している。また、流速分布の
データを表2に掲げた。
The results of each Example and Comparative Example are shown in Table 1. However, the polymerization time, the polymerization conversion rate, the amount of agglomerates, the amount of scale, the sol viscosity, and the overall heat transfer coefficient listed here indicate the results of the polymerization reaction at the stirrer rotation speed at which Amax / Amin is minimized. Table 2 shows the data of the flow velocity distribution.

【0035】表1の各実施例および比較例の結果に見ら
れるように、凝集物量、スケール量が少ない例では上述
のAmax /Amin が1桁台を示しており、しかもそのよ
うな例では総括伝熱係数も相対的に大きいことがわか
る。これは、一つにはそのような例では攪拌機回転数を
高く取ることができていることに加えて、さらにそのよ
うな例ではスケールの付着が少ないので総括伝熱係数も
大きい値が維持されていると考えることができる。実施例1 容量1.0m3 の攪拌機付予備混合槽に脱イオン水48
0kgを仕込み、次にアルキルベンゼンスルホン酸ソー
ダの25%水溶液13.5kg、塩化パラフィン6.2
kg、ジ−2−エチルヘキシルパーオキシジカーボネイ
トの70%ミネラルスピリット溶液0.35kg、ラウ
ロイルパーオキサイド0.3kgを加えて脱気した後、
塩化ビニル単量体を500kg仕込み、30分間攪拌
し、予備乳化を行った。
As can be seen from the results of each Example and Comparative Example in Table 1, the above-mentioned Amax / Amin shows a single digit in the case where the amount of aggregates and the amount of scale are small. It can be seen that the heat transfer coefficient is also relatively large. This is partly because, in such an example, the rotation speed of the stirrer can be set high, and further, in such an example, the adhesion of the scale is small, and thus the large overall heat transfer coefficient is maintained. Can be considered. Example 1 Deionized water 48 was added to a premixing tank with a stirrer having a volume of 1.0 m 3.
0 kg was charged, then 13.5 kg of a 25% aqueous solution of sodium alkylbenzene sulfonate, paraffin chloride 6.2
kg, 0.35 kg of 70% mineral spirit solution of di-2-ethylhexyl peroxydicarbonate, and 0.3 kg of lauroyl peroxide were added and deaerated,
500 kg of vinyl chloride monomer was charged and stirred for 30 minutes to carry out preliminary emulsification.

【0036】次に、この予備乳化液を高圧の乳化均質機
を通して予め脱気した上記の反応器1へ移送し、攪拌し
ながら昇温し、50℃で重合を行った。
Next, this pre-emulsion was transferred to the previously degassed reactor 1 through a high-pressure emulsification homogenizer, heated while stirring, and polymerized at 50 ° C.

【0037】攪拌機の攪拌翼としてはパドル翼3〜5を
使用し、翼段数は3段で、上段、中段、下段の各翼のd
/Dは、それぞれ0.50、0.60、0.70であっ
た。各段の翼の羽根板の枚数は2枚で、下段翼に対する
中段翼、中段翼に対する上段翼の交差角度θ1 、θ2
夫々45°とした。
Paddle blades 3 to 5 are used as the stirring blades of the stirrer, and the number of blade stages is 3, and the d of each of the upper, middle, and lower blades is used.
/ D was 0.50, 0.60, and 0.70, respectively. The number of blades of each stage blade is two, and the intersecting angles θ 1 and θ 2 of the middle stage blade with respect to the lower stage blade and the upper stage blade with respect to the middle stage blade are 45 °, respectively.

【0038】反応器1に脱イオン水1.0m3 を仕込
み、攪拌機回転数を20〜80rpmの範囲で変化させ
てAmax /Amin を求め、その値が極小になる回転数を
選定し、その回転数で重合を行った。
The reactor 1 was charged with 1.0 m 3 of deionized water, the agitator rotation speed was changed in the range of 20 to 80 rpm to obtain A max / A min, and the rotation speed at which the value was a minimum was selected. Polymerization was performed at the rotation speed.

【0039】得られたラテックスの重合転化率、総括伝
熱係数、凝集物量、スケール量およびゾル粘度を測定し
た。重合転化率および凝集物量は仕込み単量体量に対す
る重量比(%)で表した。
The polymerization conversion rate, overall heat transfer coefficient, amount of aggregates, amount of scale and sol viscosity of the obtained latex were measured. The polymerization conversion rate and the amount of aggregates were represented by the weight ratio (%) to the amount of charged monomers.

【0040】凝集物については、重合終了後のラテック
スが60メッシュ篩を通過する際に篩上に残留する凝集
物を集めて乾燥し、その重量を測定した。
Regarding the agglomerates, when the latex after the polymerization passed through a 60-mesh sieve, the agglomerates remaining on the sieve were collected and dried, and the weight was measured.

【0041】スケール量については、反応器内に付着し
たスケールを反応器開缶後に目視によって観察し評語を
与えた。
Regarding the amount of scale, the scale attached to the reactor was visually observed after the reactor was opened and a rating was given.

【0042】重合終了後、未反応のモノマーを除去した
ラテックスをスプレー乾燥機を用いて、入口熱風温度1
65℃、出口温度55℃で乾燥し、粉砕機で粉砕した。
After the completion of the polymerization, the latex from which unreacted monomers have been removed is sprayed with a hot air inlet at a temperature of 1
It was dried at 65 ° C. and an outlet temperature of 55 ° C., and pulverized by a pulverizer.

【0043】ゾル粘度については、乾燥塩化ビニル樹脂
100部に対してジオクチルフタレート(DOP)60
部を加え、らいかい機で混練したゾルを25℃で1時間
静置した後、B型粘度計を用いて測定した。
Regarding the sol viscosity, dioctyl phthalate (DOP) 60 per 100 parts of dry vinyl chloride resin is used.
Parts were added, and the sol kneaded with a ladle mixer was allowed to stand at 25 ° C. for 1 hour and then measured using a B-type viscometer.

【0044】総括伝熱係数については、重合中の反応器
ジャケットを流れる冷却水量、および冷却水の入口、出
口温度を測定し、次式により計算で求めた。ただし、冷
却水の流量がその最大流量の70%を超える流量で1時
間以上持続するデータを用いた。
The overall heat transfer coefficient was calculated by the following equation by measuring the amount of cooling water flowing through the reactor jacket during polymerization and the inlet and outlet temperatures of the cooling water. However, data was used in which the flow rate of the cooling water exceeded 70% of the maximum flow rate and continued for 1 hour or more.

【0045】 U=Cp W(Tout −Tin)/AΔtlm Δtlm =〔(T−Tin)−(T−Tout )〕/ln
〔(T−Tin)/(T−Tout )〕 ここで、 U : 総括伝熱係数(kcal/m2
r℃) Cp : 冷却水の比熱(kcal/kg℃) W : 冷却水量 (kg/hr) T : 反応温度 (℃) Tin : 冷却水の入口温度(℃) Tout : 冷却水の出口温度(℃) A : 反応器ジャケットの伝熱面積(m2 実施例2 攪拌翼の上段、中段、下段のd/Dをすべて0.60と
し、交差角度θ1 、θ 2 をそれぞれ30°とした以外
は、実施例1と同じ条件で重合反応(微細懸濁重合)お
よびその他の処理を行った。実施例3 攪拌翼として神鋼パンテック社製の『フルゾーン』翼6
〜8を採用した以外は実施例1と同じ条件で重合反応
(微細懸濁重合)およびその他の処理を行った。ただし
『フルゾーン』翼は3段で、上段、中段、下段の各翼の
d/Dをそれぞれ0.5、0.55、0.65とし、各
段の翼板の枚数は2枚で、交差角度θ1 、θ2 をそれぞ
れ45°とした。比較例1 攪拌翼の上段、中段、下段のd/Dをすべて0.60と
し、交差角度θ1 、θ 2 をいずれも0°とした以外は、
実施例1と同じ条件で重合反応(微細懸濁重合)および
その他の処理を行った。比較例2 攪拌翼の上段、中段、下段のd/Dをそれぞれ0.6
0、0.60、0.92とし、交差角度θ1 、θ2 をそ
れぞれ30°とした以外は、実施例1と同じ条件で重合
反応(微細懸濁重合)およびその他の処理を行った。比較例3 攪拌翼の上段、中段、下段のd/Dをそれぞれ0.2
4、0.24、0.60とし、交差角度θ1 、θ2 をそ
れぞれ30°とした以外は、実施例1と同じ条件で重合
反応(微細懸濁重合)およびその他の処理を行った。実施例4 冒頭に記した反応器1に脱イオン水350kgを仕込
み、ホルムアルデヒドスルホキシル酸ソーダ30g、硫
酸第1鉄3g、カセイソーダ50gを攪拌しながら加え
る。次に脱気を行い、平均粒子径が0.45μmの種粒
子を含んだ固形分濃度24.5%のシードラテックスを
100kgを吸引させる。次に塩化ビニル単量体480
kgを仕込んで昇温し、55℃で重合を開始した。重合
中にクメンハイドロパーオキサイドの0.1%濃度の水
溶液にラウリル硫酸ナトリウム0.05%を加えて乳化
したものを、0.9l/hrのレートで添加する。また
同時に、ラウリル硫酸ナトリウムの20%水溶液を3.
0l/hrのレートで添加する。
U = CpW (Tout-Tin) / AΔtlm Δtlm = [(T-Tin)-(TTout)] / Ln
[(T-Tin) / (T-Tout)] Where U: Overall heat transfer coefficient (kcal / m)2 h
r ° C) Cp : Specific heat of cooling water (kcal / kg ° C) W: Cooling water amount (kg / hr) T: Reaction temperature (° C) Tin : Cooling water inlet temperature (℃) Tout: Cooling water outlet temperature (℃) A: Heat transfer area of reactor jacket (m2)Example 2 The d / D of the upper stage, middle stage and lower stage of the stirring blade were all set to 0.60
Crossing angle θ1, Θ 2Other than 30 °
Is a polymerization reaction (fine suspension polymerization) under the same conditions as in Example 1.
And other treatments.Example 3 "Full zone" blade 6 made by Shinko Pantech Co., Ltd. as a stirring blade
Polymerization reaction under the same conditions as in Example 1 except that
(Fine suspension polymerization) and other treatments were performed. However
The "Full Zone" blade has three stages, and the upper, middle, and lower blades
d / D is set to 0.5, 0.55, and 0.65, respectively.
The number of blades in the step is 2 and the crossing angle θ1, Θ2That
To 45 °.Comparative Example 1 The d / D of the upper stage, middle stage and lower stage of the stirring blade were all set to 0.60
Crossing angle θ1, Θ 2Except that both are set to 0 °
Polymerization reaction (fine suspension polymerization) under the same conditions as in Example 1 and
Other treatments were performed.Comparative example 2 The upper / middle / lower d / D of the stirring blades are each 0.6
0, 0.60, 0.92, crossing angle θ1, Θ2So
Polymerization was carried out under the same conditions as in Example 1 except that the temperature was 30 ° in each case.
Reaction (fine suspension polymerization) and other treatments were performed.Comparative Example 3 The upper / middle / lower d / D of the stirring blade is 0.2 each
4, 0.24, 0.60, crossing angle θ1, Θ2So
Polymerization was carried out under the same conditions as in Example 1 except that the temperature was 30 ° in each case.
Reaction (fine suspension polymerization) and other treatments were performed.Example 4 Charge the reactor 1 mentioned at the beginning with 350 kg of deionized water.
Mi, formaldehyde sodium sulfoxylate 30g, sulfur
Add 3 g of ferrous acid and 50 g of caustic soda with stirring.
It Next, deaeration is performed, and seed particles having an average particle size of 0.45 μm
Seed latex with solid content of 24.5%
Aspirate 100 kg. Next, vinyl chloride monomer 480
After charging kg, the temperature was raised and polymerization was started at 55 ° C. polymerization
0.1% concentration of cumene hydroperoxide in water
Emulsify the solution by adding 0.05% sodium lauryl sulfate
Is added at a rate of 0.9 l / hr. Also
At the same time, add a 20% aqueous solution of sodium lauryl sulfate to 3.
Add at a rate of 0 1 / hr.

【0046】以上の重合処方により播種乳化重合を行う
以外は、実施例1と同じ条件で攪拌および重合後の処理
を行った。実施例5 攪拌翼の上段、中段、下段のd/Dをすべて0.60と
した以外は、実施例4と同じ条件で重合反応(播種乳化
重合)およびその他の処理を行った。実施例6 攪拌翼として神鋼パンテック社製の『フルゾーン』翼6
〜8を採用した以外は実施例4と同じ条件で重合反応
(播種乳化重合)およびその他の処理を行った。ただし
フルゾーン翼は3段で、上段、中段、下段の各翼のd/
Dをそれぞれ0.5、0.55、0.65とし、各段の
翼板の枚数は2枚で、交差角度θ1 、θ2をそれぞれ4
5°とした。比較例4 攪拌翼の上段、中段、下段の各翼のd/Dをすべて0.
60とし、交差角度θ 1 、θ2 をそれぞれ10°とした
以外は、実施例4と同じ条件で重合反応(播種乳化重
合)およびその他の処理を行った。
Seeding emulsion polymerization is carried out by the above-mentioned polymerization recipe.
Other than that, stirring and treatment after polymerization were performed under the same conditions as in Example 1.
I went.Example 5 The d / D of the upper stage, middle stage and lower stage of the stirring blade were all set to 0.60
Polymerization reaction (seeding emulsification) under the same conditions as in Example 4 except that
Polymerization) and other treatments were performed.Example 6 "Full zone" blade 6 made by Shinko Pantech Co., Ltd. as a stirring blade
Polymerization reaction under the same conditions as in Example 4 except that
(Seeding emulsion polymerization) and other treatments were performed. However
There are three full-zone blades, and d / of each upper, middle, and lower blades
Set D to 0.5, 0.55, and 0.65, and
There are two vanes, and the crossing angle θ1, Θ24 each
It was set to 5 °.Comparative Example 4 The d / D of each of the upper, middle, and lower stirring blades was 0.
60, crossing angle θ 1, Θ2Were set to 10 °
Polymerization reaction (seeding emulsion weight) under the same conditions as in Example 4 except for
And other treatments were performed.

【0047】[0047]

【発明の効果】本発明によれば、反応系内の流速分布を
より均一に近づけつつ、より高い攪拌速度(回転数)を
採用することが可能になるので、除熱能力が高く、かつ
スケール付着および粗粒発生が少なくゾル粘度が良好
な、微細懸濁重合法または乳化重合法によるペースト用
塩化ビニル樹脂の製造方法が提供される。
EFFECTS OF THE INVENTION According to the present invention, it becomes possible to employ a higher stirring speed (rotation speed) while making the flow velocity distribution in the reaction system more uniform, so that the heat removal capacity is high and the scale is large. Provided is a method for producing a vinyl chloride resin for a paste by a fine suspension polymerization method or an emulsion polymerization method, which has a small amount of adhesion and generation of coarse particles and a good sol viscosity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るペースト用塩化ビニル樹脂製造方
法の一実施例におけるパドル型攪拌翼の配置状況を示す
(a)側面図および(b)平面図である。側面図には流
速分布測定点を記入した。
1 (a) is a side view and FIG. 1 (b) is a plan view showing the arrangement of paddle type stirring blades in an embodiment of the method for producing a vinyl chloride resin for paste according to the present invention. The flow velocity distribution measurement points are entered in the side view.

【図2】本発明に係るペースト用塩化ビニル樹脂製造方
法の他の実施例における『フルゾーン』攪拌翼の配置状
況を示す(a)側面図および(b)平面図である。
2 (a) is a side view and FIG. 2 (b) is a plan view showing an arrangement state of "full zone" stirring blades in another embodiment of the method for producing a vinyl chloride resin for paste according to the present invention.

【符号の説明】[Explanation of symbols]

1…反応器 2…攪拌翼列の中心軸 3…最下段パドル攪拌翼 4…下から2段目のパドル攪拌翼 5…下から3段目のパドル攪拌翼 6…最下段フルゾーン攪拌翼 7…下から2段目のフルゾーン攪拌翼 8…下から3段目のフルゾーン攪拌翼 DESCRIPTION OF SYMBOLS 1 ... Reactor 2 ... Central axis of stirring blade row 3 ... Bottom paddle stirring blade 4 ... 2nd stage paddle stirring blade 5 ... 3rd stage paddle stirring blade 6 ... Bottom stage full zone stirring blade 7 ... Second-stage full-zone stirring blade from the bottom 8 ... Full-zone stirring blade from the third stage from the bottom

【表1】 [Table 1]

【表2】 [Table 2]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】耐圧反応器の中心軸上に複数の板状攪拌翼
からなる攪拌翼列を配置してなる塩化ビニル樹脂の重合
装置を使用して、前記攪拌翼列の最下段を第1段とし、
順次上方へ向かって第2段、・・、第n段(nは任意の
整数)とするとき、 前記反応器の内径Dに対する第1段の攪拌翼先端径dの
比(d1 /D)を0.5から0.9の範囲で設定し、 第n段に対する第n+1段の攪拌翼先端径dの比(d
n+1/dn )を0.6から1.0の範囲で設定し、 軸方向から見た第n段と第n+1段の攪拌翼の交差角度
を20°から90°の範囲で設定し、かつ、 前記反応器に所定量の室温の清水を仕込み、前記攪拌翼
列を回転させて、所定の直径を有し前記反応器内で中心
軸を共有する仮想円筒面上において測定される軸方向流
速に対する円周方向流速の比の分布における最大値と最
小値の比が15を超えない範囲で極小値を示す攪拌回転
速度を採用し、 かくして決定される攪拌条件下で塩化ビニルを主体とす
る単量体の微細懸濁重合または乳化重合を行うことを特
徴とする塩化ビニル樹脂の製造方法。
1. A vinyl chloride resin polymerization apparatus comprising a stirrer blade row composed of a plurality of plate-shaped stirrer blades arranged on the central axis of a pressure-resistant reactor. Step,
When the second stage, ..., The nth stage (n is an arbitrary integer) are successively provided, the ratio of the tip diameter d of the stirring blade of the first stage to the inner diameter D of the reactor (d 1 / D) Is set in the range of 0.5 to 0.9, and the ratio (d of the tip diameter d of the stirring blade at the (n + 1) th stage to the nth stage (d
n + 1 / d n ) is set in the range of 0.6 to 1.0, and the crossing angle of the stirring blades of the nth stage and the n + 1th stage viewed from the axial direction is set in the range of 20 ° to 90 °. And, the reactor is charged with a predetermined amount of room temperature fresh water, the stirring blade row is rotated, the axis measured on a virtual cylindrical surface having a predetermined diameter and sharing the central axis in the reactor Adopting the stirring rotation speed that shows the minimum value in the range of the ratio of the maximum value to the minimum value in the distribution of the ratio of the circumferential flow velocity to the directional flow velocity does not exceed 15, and mainly vinyl chloride is used under the stirring conditions thus determined. A method for producing a vinyl chloride resin, which comprises performing fine suspension polymerization or emulsion polymerization of a monomer to be used.
【請求項2】請求項1記載の方法において、前記(d1
/D)を0.6から0.8の範囲に設定することを特徴
とする塩化ビニル樹脂の製造方法。
2. The method according to claim 1, wherein the (d 1
/ D) is set in the range of 0.6 to 0.8.
【請求項3】請求項1記載の方法において、前記交差角
度を30°から60°の範囲に設定することを特徴とす
る塩化ビニル樹脂の製造方法。
3. The method for producing a vinyl chloride resin according to claim 1, wherein the intersection angle is set in the range of 30 ° to 60 °.
【請求項4】請求項1記載の方法において、前記流速比
の分布における最大値と最小値の比が7を超えないこと
を特徴とする塩化ビニル樹脂の製造方法。
4. The method for producing a vinyl chloride resin according to claim 1, wherein the ratio of the maximum value to the minimum value in the distribution of the flow velocity ratio does not exceed 7.
JP07424793A 1993-03-31 1993-03-31 Method for producing vinyl chloride resin Expired - Fee Related JP3389629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07424793A JP3389629B2 (en) 1993-03-31 1993-03-31 Method for producing vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07424793A JP3389629B2 (en) 1993-03-31 1993-03-31 Method for producing vinyl chloride resin

Publications (2)

Publication Number Publication Date
JPH06287203A true JPH06287203A (en) 1994-10-11
JP3389629B2 JP3389629B2 (en) 2003-03-24

Family

ID=13541649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07424793A Expired - Fee Related JP3389629B2 (en) 1993-03-31 1993-03-31 Method for producing vinyl chloride resin

Country Status (1)

Country Link
JP (1) JP3389629B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194007A (en) * 2000-12-27 2002-07-10 Sekisui Plastics Co Ltd Method for producing resin particulate
JP2004189926A (en) * 2002-12-12 2004-07-08 Tosoh Corp Method for preserving aqueous dispersion of vinyl chloride based polymer for paste processing
JP2005224750A (en) * 2004-02-16 2005-08-25 Sankio Chemical Co Ltd Heat exchange device and heat exchange method
JP2018027544A (en) * 2017-11-27 2018-02-22 佐竹化学機械工業株式会社 Agitation device
WO2020080680A1 (en) * 2018-10-15 2020-04-23 한화솔루션 주식회사 Batch reactor
WO2021071074A1 (en) * 2019-10-08 2021-04-15 한화솔루션 주식회사 Continuous stirred tank reactor for aldol condensation reaction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103408A (en) * 1989-09-18 1991-04-30 Kanegafuchi Chem Ind Co Ltd Device and method for preparing vinyl chloride resin
JPH0549890A (en) * 1990-08-07 1993-03-02 Shinko Pantec Co Ltd Agitator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103408A (en) * 1989-09-18 1991-04-30 Kanegafuchi Chem Ind Co Ltd Device and method for preparing vinyl chloride resin
JPH0549890A (en) * 1990-08-07 1993-03-02 Shinko Pantec Co Ltd Agitator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194007A (en) * 2000-12-27 2002-07-10 Sekisui Plastics Co Ltd Method for producing resin particulate
JP2004189926A (en) * 2002-12-12 2004-07-08 Tosoh Corp Method for preserving aqueous dispersion of vinyl chloride based polymer for paste processing
JP2005224750A (en) * 2004-02-16 2005-08-25 Sankio Chemical Co Ltd Heat exchange device and heat exchange method
JP2018027544A (en) * 2017-11-27 2018-02-22 佐竹化学機械工業株式会社 Agitation device
WO2020080680A1 (en) * 2018-10-15 2020-04-23 한화솔루션 주식회사 Batch reactor
WO2021071074A1 (en) * 2019-10-08 2021-04-15 한화솔루션 주식회사 Continuous stirred tank reactor for aldol condensation reaction
TWI782337B (en) * 2019-10-08 2022-11-01 南韓商韓華思路信股份有限公司 Continuous stirred tank reactor for aldol condensation reaction

Also Published As

Publication number Publication date
JP3389629B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
US6252018B1 (en) Use of a single-stage or multistage stirrer to prepare polymers
KR100638631B1 (en) agitator wing and agitator and fabricating method of polymer using thereof
KR19980032518A (en) Process for preparing emulsion polymerization of homo- and copolymers and apparatus therefor
JP3389629B2 (en) Method for producing vinyl chloride resin
US5169918A (en) Polymerization apparatus having an effective height/effective inner diameter ratio of at least 4 and a circumferential agitative diameter/effective inner ratio diameter of from 0.7 to 0.9
JP7386973B2 (en) Batch type stirrer for vinyl chloride resin suspension polymerization and batch type suspension polymerization reactor using the same
US6765073B2 (en) Process for preparing vinyl chloride paste resin
US3950138A (en) Apparatus for conducting chemical reactions, particularly polymerization, continuously
JP2685597B2 (en) Vinyl chloride resin polymerization apparatus and manufacturing method
US4228268A (en) Process for polymerizing homogenized vinyl chloride emulsion which had been pre-dispersed
JP2576926B2 (en) Method for producing vinyl chloride resin for paste
EP0051678B1 (en) Process for producing spherical and porous vinyl resin particles
JPH04150934A (en) Preparation of emulsion resin
JP3645406B2 (en) Vinyl chloride polymer latex for paste processing and method for producing the same
EP3659702B1 (en) Process for providing a homogenous slurry containing particles
JP4817358B2 (en) Method for producing vinyl resin fine particles
JPH01289802A (en) Preparation of polymer bead
JP2000219702A (en) Production of vinyl chloride polymer latex
JP2604880B2 (en) Method for producing vinyl chloride resin
JP2002066291A (en) Stirring device and method for manufacturing polymer using the same
JPH10152506A (en) Production of polymeric particle
JPS61143401A (en) Agitating element and method of suspension polymerization of vinyl chloride resin using same
JP3739280B2 (en) Method for producing resin fine particles
JP2820745B2 (en) Method for producing vinyl chloride resin
JPH05140205A (en) Production of vinyl chloride resin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees