JPH0549890A - Agitator - Google Patents

Agitator

Info

Publication number
JPH0549890A
JPH0549890A JP19300391A JP19300391A JPH0549890A JP H0549890 A JPH0549890 A JP H0549890A JP 19300391 A JP19300391 A JP 19300391A JP 19300391 A JP19300391 A JP 19300391A JP H0549890 A JPH0549890 A JP H0549890A
Authority
JP
Japan
Prior art keywords
blade
paddle
blades
stirring
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19300391A
Other languages
Japanese (ja)
Other versions
JP2507839B2 (en
Inventor
Kazutaka Takada
一貴 高田
Masahiko Kikuchi
雅彦 菊池
Hisayoshi Ito
久善 伊藤
Yukimichi Okamoto
幸道 岡本
Eisuke Sato
栄祐 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP3193003A priority Critical patent/JP2507839B2/en
Publication of JPH0549890A publication Critical patent/JPH0549890A/en
Application granted granted Critical
Publication of JP2507839B2 publication Critical patent/JP2507839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To connect the flows of the liquid discharged from paddle vanes and to form a flow pattern over the entire part in an agitating tank so as to enhance agitation efficiency by setting the intersection angle between the upper and lower adjacent paddle vanes of the agitator disposed with the plural paddle vanes vertically in multiple stages at an angle relation optimum for mixing. CONSTITUTION:The paddle vane 4 existing in the upper stage is disposed to precede at 45 to 75 deg. intersection angle alpha in a rotating direction with respect to the paddle vane 3 of the lower stage adjacent vertically thereto. The outside end of the paddle vane 3 of the lowermost stage is formed to a retreating vane. The paddle vanes 3, 4 vertically adjacent to each other are overlapped respectively at least at the outside ends thereof in a vertical direction. The constitution of the agitating vanes which consists in disposing the paddle vanes 3, 4 of the upper and lower stages at <90 deg. intersection angle and is easy for execution is adopted, by which the agitating efficiency of the liquid under the agitating operation conditions from transition flow to laminar region is greatly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は攪拌装置に関し、特に、
乱流域から層流域に至る攪拌操作条件下における液の混
合、溶解、晶析、反応、スラリー懸濁などの攪拌処理を
効率良く行うための攪拌装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stirrer, and in particular,
The present invention relates to a stirrer for efficiently performing stir processing such as liquid mixing, dissolution, crystallization, reaction, and slurry suspension under stirring operation conditions from a turbulent flow region to a laminar flow region.

【0002】[0002]

【従来の技術】周知のように、攪拌装置には、その目的
に応じ種々の形態の攪拌翼が用いられており、例えば、
低粘度用翼としてのタービン型翼などや、高粘度用翼と
してのダブルヘリカル翼などがあるが、比較的単純な翼
構成で、低粘度液から高粘度液の攪拌混合、すなわち乱
流域から層流域に至る広範囲の攪拌操作条件下における
攪拌混合を達成するものとして、2葉翼形のパドル翼を
上下2段または3段以上に組み合わせて設けた多段攪拌
翼構成が多く採用されている。
2. Description of the Related Art As is well known, various types of stirring blades are used in stirring devices according to the purpose thereof.
There are turbine type blades for low-viscosity blades and double-helical blades for high-viscosity blades, but with a relatively simple blade configuration, stirring mixing of low-viscosity liquid to high-viscosity liquid, that is, turbulent flow layer As a means for achieving agitation and mixing under a wide range of agitation operation conditions reaching the watershed, a multi-stage agitation blade configuration in which two-leaf blade paddle blades are provided in a combination of upper and lower two stages or three or more stages is often adopted.

【0003】そして、これら多段攪拌翼構成を採る攪拌
装置においては、翼の回転バランスと翼面に働く流体圧
変動に対する回転軸の機械的強度上の見地から、各翼を
90度の交差角度で互いに交差させて配置する方法が圧倒
的に多く採用されており、また、一般に、消費動力の観
点から、翼幅を小さくし、各翼間の距離を大幅にあけた
状態で上下多段に配置されている。
Then, in the agitation device adopting these multi-stage agitation blade configurations, from the viewpoint of the rotational balance of the blade and the mechanical strength of the rotating shaft against the fluid pressure fluctuation acting on the blade surface, each blade is
Overwhelmingly adopted is the method of crossing each other at a 90-degree crossing angle.In general, from the viewpoint of power consumption, the blade width is reduced and the distance between each blade is greatly increased. It is arranged in a multi-tiered manner.

【0004】[0004]

【発明が解決しようとする課題】一方、近年において
は、攪拌装置の性能に対する要求は高度化・多様化して
おり、より広範囲な攪拌条件に対応できる攪拌装置が求
められている。特に、バッチプロセスでは、次のように
多様かつ高度な攪拌混合条件を満たす攪拌装置が望まれ
ている。 均一混合;広い粘度範囲での良好な混合と、液量と粘
度の変化に対応して良好な均一混合が果たせる。 伝熱性能;低動力攪拌時において良好な伝熱能力が得
られる。 固液攪拌;比較的沈降速度の大きな粒子の分散や、高
濃度スラリーの均一混合および低剪断(低回転)での均
一混合などの広範囲の固液攪拌が果たせる。 液液分散;シャープな液滴径分布が得られ、かつ低剪
断と、攪拌で粘度が増加する液中への軽液分散とを両立
させた液液分散が果たせる。 翼形状の単純性;各翼形状がシンプルでグラスライニ
ング製の反応機類にも適用可能である。
On the other hand, in recent years, the demands on the performance of stirring devices have become more sophisticated and diversified, and there is a demand for stirring devices capable of handling a wider range of stirring conditions. Particularly in the batch process, a stirring device that satisfies various and high-level stirring and mixing conditions as described below is desired. Uniform mixing: Good mixing in a wide viscosity range and good uniform mixing corresponding to changes in liquid amount and viscosity can be achieved. Heat transfer performance; good heat transfer performance is obtained at low power stirring. Solid-liquid agitation: A wide range of solid-liquid agitation such as dispersion of particles having a relatively high sedimentation rate, uniform mixing of high-concentration slurry and uniform mixing under low shear (low rotation) can be achieved. Liquid-liquid dispersion: A sharp droplet size distribution can be obtained, and liquid-liquid dispersion that achieves both low shear and light liquid dispersion in a liquid whose viscosity increases by stirring can be achieved. Simple wing shape; each wing shape is simple and applicable to glass-lined reactors.

【0005】本発明者等は、これら要請に対応するため
に、多段攪拌翼構成を採る従来の攪拌装置について、多
方面から検討を加えた。その結果、上記の各条件を個々
に満たす攪拌装置の選定はさほど難しくはないが、これ
ら従来の攪拌装置には以下の問題点があるため、多項目
を同時に満足させる仕様選定は非常に困難であり、上記
の要請に対応するには、新たな観点のもとで改善または
開発されたものが必要であることが分かった。
In order to meet these demands, the inventors of the present invention have studied various conventional stirring devices having a multi-stage stirring blade structure. As a result, it is not so difficult to select a stirrer that individually satisfies each of the above conditions, but these conventional stirrers have the following problems, so it is very difficult to select specifications that satisfy many items at the same time. Therefore, it has been found that what has been improved or developed from a new perspective is necessary to meet the above demands.

【0006】各パドル翼の交差角度を90度とした前記従
来の攪拌装置では、各翼から吐出される流体の流れによ
って各翼の周りに形成されるフローパタンの繋がりが不
十分である。そのため流体が攪拌槽内で上下多層に分離
する要因となり、かつ槽内にデッドスペースを生じる原
因にもなり混合性能に悪影響を及ぼす。また、デッドス
ペースの発生は、流体の伝熱性能を低下させる要因とな
るばかりでなく、槽内壁面でのこげつきやコンタミを生
じ易くし、攪拌効率を低下させる。
In the above conventional stirring device in which the crossing angle of each paddle blade is 90 degrees, the flow patterns formed around each blade are not sufficiently connected by the flow of the fluid discharged from each blade. Therefore, the fluid becomes a factor of separating into upper and lower layers in the stirring tank, and also causes a dead space in the tank, which adversely affects the mixing performance. In addition, the generation of dead space not only causes a decrease in the heat transfer performance of the fluid, but also tends to cause burn-in and contamination on the inner wall surface of the tank, thus lowering the stirring efficiency.

【0007】また、パドル翼等の平板形攪拌翼を上下多
段に配置した場合、攪拌槽内には、各翼の回転によって
各翼の周りに複数の独立した循環流が形成される。そし
て、この傾向は〔図6〕の (a)図に示すように、上段翼
(61)と下段翼(62)との翼間距離Lを大きくあけた場合に
より顕著となり、また、このような場合には、翼間にお
いて循環流同志が干渉しあって流れの境界Bを生じさ
せ、この境界Bで上下の流体の混合が抑制される。逆
に、翼間における循環流同志の干渉を防止するため(b)
図に示すように、一方の翼を移動させて翼間距離Lを小
さくすることが考えられるが、しかし、この場合には、
総翼高を確保するために、いずれかの翼の翼高を、翼間
距離Lを小さくした分だけ高く(図中のh'分)する必要
があり、消費動力の増加の要因となる。また、この場合
には、翼高を拡大した翼の中央で循環流が分かれ、翼間
を大きくあけた場合にみられるような循環流同志の干渉
に基づく流れの境界B’が生じ、結果として、攪拌槽内
全体の流れの繋がりを乱す要因となったりする。
Further, when flat plate type stirring blades such as paddle blades are arranged in upper and lower stages, a plurality of independent circulation flows are formed around each blade in the stirring tank due to the rotation of each blade. And this tendency is as shown in (a) of [Fig. 6].
It becomes more noticeable when the inter-blade distance L between the (61) and the lower blade (62) is widened, and in such a case, the circulation flow comrades interfere with each other between the blades, and a flow boundary B is generated. Then, at the boundary B, the mixing of the upper and lower fluids is suppressed. On the contrary, in order to prevent the interference of circulation flows between the blades (b)
As shown in the figure, it is conceivable to move one of the blades to reduce the inter-blade distance L. However, in this case,
In order to secure the total blade height, it is necessary to increase the blade height of one of the blades by the amount by which the blade-to-blade distance L is reduced (h 'in the figure), which causes an increase in power consumption. Further, in this case, the circulation flow is divided at the center of the blade with the increased blade height, and a flow boundary B ′ based on the interference between the circulation flows, which is observed when the blades are wide apart, is generated. , It may be a factor to disturb the flow connection in the whole stirring tank.

【0008】しかしながら、これら問題点を解決するた
めに、各翼の最適交差角度や翼間距離を、各翼から吐出
される流体の流れによって形成される攪拌槽内全体のフ
ローパタンの観点から、理論的・定量的に開示したもの
はこれまで知られてなく、これが近来の要請を満たすた
めの仕様選定を困難なものとしていた。
However, in order to solve these problems, the optimum crossing angle of each blade and the distance between the blades are determined from the viewpoint of the flow pattern of the entire stirring tank formed by the flow of the fluid discharged from each blade. No theoretical or quantitative disclosure has been known so far, which makes it difficult to select specifications to meet recent demands.

【0009】本発明は、上記従来技術の問題点の解決を
目的とするもので、上下多段のパドル翼を混合上最適な
位置関係に配置した攪拌翼構成として、各パドル翼間で
適切な圧力勾配に起因する流れの繋がりを形成し、この
流れが攪拌槽内全体に及ぶ1つの大きな循環流を形成し
て乱流域から遷移流および層流域に至る攪拌操作条件下
における液の攪拌効率を高め得る攪拌装置の提供を目的
とするものである。
The present invention is intended to solve the above-mentioned problems of the prior art. As a stirring blade structure in which upper and lower multi-stage paddle blades are arranged in an optimum positional relationship for mixing, an appropriate pressure between the paddle blades is provided. It forms a flow connection due to the gradient, and this flow forms one large circulation flow over the entire agitation tank to enhance the liquid agitation efficiency under agitation operation conditions from the turbulent flow region to the transition flow and the laminar flow region. It is intended to provide a stirring device to be obtained.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る攪拌装置は以下の構成としている。す
なわち、請求項1記載の攪拌装置は、竪型円筒状の攪拌
槽内中心部に回転軸を垂設し、この回転軸に複数のパド
ル翼を上下多段に装着すると共に、最下段のパドル翼を
攪拌槽の底面に近接させて配設し、かつ、上段に位置す
る各パドル翼を上下で隣接する下段のパドル翼に対して
90度未満の交差角度で回転方向に先行させて配置したこ
とを特徴とする。
In order to achieve the above object, the stirring device according to the present invention has the following constitution. That is, in the stirring device according to claim 1, a rotating shaft is vertically provided at the center of the vertical cylindrical stirring tank, and a plurality of paddle blades are mounted on the rotating shaft in a vertically multi-stage manner, and the paddle blade at the lowermost stage is installed. Is placed close to the bottom surface of the stirring tank, and the paddle blades located in the upper stage are positioned above and below the adjacent paddle blades in the lower stage.
It is characterized in that it is placed ahead of the rotation direction at an intersection angle of less than 90 degrees.

【0011】請求項2記載の攪拌装置は、上記交差角度
を45度〜75度としたことを特徴とする。
The stirrer according to a second aspect is characterized in that the intersecting angle is 45 degrees to 75 degrees.

【0012】請求項3記載の攪拌装置は、最下段のパド
ル翼の外端部を後退翼に形成したことを特徴とする。
The stirring device according to a third aspect of the invention is characterized in that the outer end of the paddle blade at the lowermost stage is formed as a retreating blade.

【0013】請求項4記載の攪拌装置は、最下段のパド
ル翼をその上段に位置する他のパドル翼よりも大スパン
としたことを特徴とする。
The stirrer according to a fourth aspect of the present invention is characterized in that the lowermost paddle blade has a larger span than the other paddle blades located in the upper stage.

【0014】請求項5記載の攪拌装置は、上下で隣接す
るパドル翼それぞれの翼間距離を攪拌槽の内径寸法の20
%以下の寸法としたことを特徴とする。
In the agitating device according to a fifth aspect of the present invention, the distance between the upper and lower adjacent paddle vanes is set to be 20 times the inner diameter of the agitating tank.
% Or less.

【0015】請求項6記載の攪拌装置は、上下で隣接す
るパドル翼それぞれを少なくとも外端部において互いに
上下方向にオーバーラップさせたことを特徴とする。
The stirring device according to a sixth aspect of the invention is characterized in that the vertically adjacent paddle blades are vertically overlapped with each other at least at the outer ends thereof.

【0016】[0016]

【作用】攪拌槽内の流体は攪拌翼の回転によって半径方
向に吐出される。パドル翼を上下多段に配置した攪拌装
置では、各パドル翼それぞれから流体が吐出されるの
で、これらパドル翼からの吐出流同志を干渉させること
なく、流れをスムーズに繋ぐことが混合効率を上げるに
重要なポイントとなる。
The fluid in the stirring tank is discharged in the radial direction by the rotation of the stirring blade. In a stirrer in which the paddle blades are arranged in multiple stages, the fluid is discharged from each of the paddle blades.Therefore, smoothly interlinking the discharge flows from these paddle blades improves the mixing efficiency without interfering with each other. This is an important point.

【0017】ところで、上下多段のパドル翼の回転によ
る流体の攪拌に際し、各翼それぞれの翼端部には、〔図
6〕の (a)図に示したように、半径方向への吐出流が形
成されると同時に、その上下方向に分かれて再びそれぞ
れの翼中心部に向かう循環流も形成される。そして、こ
れら翼で形成された吐出流は、隣接する他方の翼の吐出
流と干渉し合って流体を上下多層に分離させたり、他方
の翼の半径方向への吐出流に影響を及ぼしたりして、攪
拌槽内全体の流れの繋がりを乱す要因となる。更にま
た、各翼の交差角度を従来技術で常用される90度とした
場合には、回転バランスは取れるものの、粘度域によっ
ては上下の翼間の流れをスムーズに繋ぐことが困難とな
り、攪拌槽内全体の流れの繋がりを乱す要因となる。
By the way, when the fluid is agitated by the rotation of the upper and lower multi-stage paddle blades, a discharge flow in the radial direction is applied to the blade tips of each blade as shown in FIG. 6 (a). At the same time as it is formed, a circulation flow that splits in the vertical direction and heads again toward the center of each blade is also formed. Then, the discharge flow formed by these blades interferes with the discharge flow of the other adjacent blade to separate the fluid into upper and lower layers, and affects the discharge flow in the radial direction of the other blade. As a result, it becomes a factor that disturbs the flow connection in the entire stirring tank. Furthermore, if the crossing angle of each blade is 90 degrees, which is commonly used in the prior art, the rotation balance can be achieved, but depending on the viscosity range, it becomes difficult to smoothly connect the flow between the upper and lower blades, and the stirring tank It becomes a factor to disturb the connection of the flow in the whole.

【0018】そこで本発明者らは、先ず、翼間距離が小
さくて上下の翼で形成された吐出流同志が繋がり易い配
置関係において、各翼で形成された循環流の動きと交差
角度との関連について詳細に検討した結果、これら循環
流は翼に対して、ある回転遅れ位相をもって他方の翼に
影響を及ぼしており、その回転遅れ位相と交差角度との
相関が槽内の循環流の形成に大きく影響することを知見
した。すなわち、上下のパドル翼の交差角度を変える
と、これらパドル翼の前面に発生する圧力上昇部と後面
に発生する圧力降下部の上下方向の位置関係も、その交
差角度に応じて変化することになり、ある範囲内の交差
角度を選択する時、上下のパドル翼からの吐出流の繋が
り方が最も安定するとの知見を得た。
Therefore, the present inventors first of all, in an arrangement relationship in which the inter-blade distance is small and the discharge flows formed by the upper and lower blades are easily connected to each other, the movement of the circulating flow formed by each blade and the crossing angle are As a result of a detailed examination of the relationship, these circulation flows affect one blade with a certain rotation delay phase, and the correlation between the rotation delay phase and the crossing angle indicates the formation of circulation flow in the tank. It was found that it greatly affects That is, if the crossing angle of the upper and lower paddle blades is changed, the vertical positional relationship between the pressure rising portion generated on the front surface and the pressure dropping portion generated on the rear surface of these paddle blades also changes according to the crossing angle. Therefore, it was found that when the crossing angle within a certain range is selected, the connection of the discharge flows from the upper and lower paddle blades is most stable.

【0019】そして、これらの関係を更に詳細に検討し
た結果、一方のパドル翼が形成する吐出流が、他方のパ
ドル翼前面の高圧側に流れた場合、これら吐出流同志が
干渉するため攪拌槽全体に及ぶ循環流が形成され難くな
る。逆に、他方のパドル翼後面の低圧側に流れた場合に
は、互いの吐出流を乱すことなく上下の翼の間に高圧側
から低圧側に向かう選択的な流れが形成され、これら翼
から吐出される流れをうまく繋ぐことができ、これによ
り最適な圧力勾配に起因して攪拌槽内全体に及ぶ1つの
大きな循環流が形成され、流体の攪拌効率を高め得ると
の結論を得た。そしてまた、このような圧力勾配に起因
する混合上最適なフローパターンを生じさせるには、上
段のパドル翼を下段のパドル翼に対して90度未満で先行
させれば良いとの推論に達した。
As a result of studying these relationships in more detail, when the discharge flow formed by one paddle blade flows to the high pressure side in front of the other paddle blade, the discharge streams interfere with each other and the stirring tank It becomes difficult to form a circulating flow over the entire area. On the contrary, when it flows to the low pressure side of the rear surface of the other paddle blade, a selective flow from the high pressure side to the low pressure side is formed between the upper and lower blades without disturbing each other's discharge flow. It was concluded that the discharged streams could be well connected, which resulted in one large circulation flow throughout the stirred tank due to the optimum pressure gradient, which could enhance the stirring efficiency of the fluid. In addition, it was concluded that the upper paddle blade should precede the lower paddle blade by less than 90 degrees to generate the optimal flow pattern for mixing due to such pressure gradient. ..

【0020】本発明者らは、この推論を確認するため
に、パドル翼を上下2段に交差させて配置した攪拌装置
を基本形態のモデルとして選び、このモデル攪拌装置を
基に、上段翼と下段翼の交差角度α(下段翼を基準と
した上段翼の回転方向への先行角度)、上段翼と下段
翼の翼間距離L、上段翼と下段翼の吐出力バランスの
3因子の混合への影響を、数値実験および混合実験によ
り検討した。
In order to confirm this reasoning, the present inventors selected a stirrer in which the paddle blades are arranged so as to intersect with each other in upper and lower stages as a model of the basic form, and based on this model stirrer, the upper stage blades are Crossover angle α of the lower blades (leading angle of the upper blades in the direction of rotation of the lower blades), inter-blade distance L between the upper blades and the lower blades, and mixing of three factors of the discharge force balance between the upper blades and the lower blades The effect of was investigated by numerical and mixed experiments.

【0021】数値実験は、流動の数値解析とその解析結
果を利用する混合のシュミレーションからなる。まず攪
拌槽内の3次元流速分布を求め、次にその結果を用いて
液面から投入した拡散物質の濃度分布の経時変化をシュ
ミレーションで求めた。なお、この数値実験の適用は、
流体数値解析結果の信頼性の高い層流域に限定した。
Numerical experiments consist of numerical analysis of flow and simulation of mixing using the analysis result. First, the three-dimensional flow velocity distribution in the stirring tank was obtained, and then the results were used to obtain the change over time in the concentration distribution of the diffusing substance charged from the liquid surface by simulation. In addition, the application of this numerical experiment,
It is limited to the laminar watershed where the numerical results of fluid analysis are highly reliable.

【0022】一方、混合実験では、内径 400mm、高さ 8
00mm、容量80Ltおよび内径 200mm、高さ 400mm、容量10
Ltの大小2種類の攪拌槽を使用し、混合時間の測定に
は、ヨード澱粉の呈色をチオ硫酸ナトリウムで還元脱色
する脱色法を利用した。また、ヨード溶液およびチオ硫
酸ナトリウム溶液は、攪拌液と同じ粘度に調整したもの
を用い、混合時間は脱色過程の連続写真から決定した。
On the other hand, in the mixing experiment, the inner diameter was 400 mm and the height was 8 mm.
00mm, capacity 80Lt and inner diameter 200mm, height 400mm, capacity 10
Two types of Lt large and small stirring tanks were used, and the mixing time was measured by a decolorization method in which the coloration of iodostarch was reduced and decolorized with sodium thiosulfate. The iodine solution and the sodium thiosulfate solution were adjusted to have the same viscosity as the stirring liquid, and the mixing time was determined from the continuous photographs of the decolorization process.

【0023】先ず、上段翼と下段翼の交差角度αの違
いが攪拌槽内の流動と混合過程に及ぼす影響を数値実験
法により評価した。この実験では、内径D 200mmの攪拌
槽内に、翼径d 120mm(0.6D)のパドル翼を翼間距離L
20mm(0.1D)で上下2段に配置し、粘度μ 5Pa・s 、密
度ρ1400kg/m3 、攪拌レイノズル数Re 8.4の攪拌液
を、液深H 200mm(1.0D) 、翼の回転数 2.08 1/s の共
通条件にて、上下段翼の交差角度αを零度(上下翼を同
一平面配置)から90度に変化させて攪拌した。その実験
による流速分布および混合過程の代表例を〔図7〕に示
す。なお、〔図7〕は攪拌槽の 1/2縦断面における流速
ベクトルと拡散物質の混合進展を表す濃度等高線とを示
すグラフであって、 (a)図のグラフは交差角度αを45度
とした例を、 (b)図のグラフは交差角度αを零度とした
例をそれぞれ示す。
First, the influence of the difference in the crossing angle α between the upper blade and the lower blade on the flow and mixing process in the stirring tank was evaluated by a numerical experiment method. In this experiment, a paddle blade with a blade diameter d 120 mm (0.6 D) was placed in a stirring tank with an inner diameter D 200 mm, and the distance L between the blades was L.
20mm (0.1D) is arranged in two steps, viscosity μ 5Pa · s, density ρ1400kg / m 3 , stirring Reynolds number Re 8.4, depth H 200mm (1.0D), blade rotation 2.08 1 Under the common condition of / s, the crossing angle α of the upper and lower blades was changed from zero degree (the upper and lower blades were arranged in the same plane) to 90 degrees and the stirring was performed. A typical example of the flow velocity distribution and mixing process in the experiment is shown in FIG. [Fig. 7] is a graph showing the flow velocity vector and the concentration contour line showing the mixing progress of the diffusive substance in the 1/2 vertical section of the stirring tank. The graph in (a) shows that the crossing angle α is 45 degrees. The graph in Fig. (B) shows an example in which the intersection angle α is set to zero.

【0024】交差角度αを零度とした時、 (b)図のグラ
フに示すように上段パドル翼および下段パドル翼から吐
出された流体は翼間において互いに衝突し、攪拌槽上部
と下部との間の円滑な液体輸送を阻害する。一方、交差
角度αを45度とした時には、(a)図のグラフに示すよう
に攪拌槽上部から下部への液体輸送が盛んである。ま
た、これに対応する混合過程の相違は、交差角度αが零
度では投入後30秒経過しても下段翼部まで拡散物質は輸
送されないに対して、交差角度αが45度では投入後30秒
で槽底部まで拡散物質が輸送される。すなわち上下のパ
ドル翼を同一平面に配置するよりも、これら翼を45度の
交差角度で配置する方が、上段翼と下段翼の流れが繋が
り、速やかな混合が達成される。また、本手法を用いて
種々の交差角度αを検討した結果、交差角度αは30度以
上90度未満の範囲内、望ましくは45度から75度が適切な
角度範囲として見いだされ、これにより前述した推論が
成立することが確認された。
When the crossing angle α is set to 0 °, the fluids discharged from the upper paddle blade and the lower paddle blade collide with each other as shown in the graph of FIG. Hinders smooth liquid transport. On the other hand, when the crossing angle α is 45 degrees, liquid transportation from the upper part to the lower part of the stirring tank is active as shown in the graph of FIG. In addition, the difference in the mixing process corresponding to this is that when the crossing angle α is 0 degree, the diffusive substances are not transported to the lower blade even if 30 seconds have elapsed after the charging, whereas when the crossing angle α is 45 degrees, 30 seconds after the charging. The diffusing material is transported to the bottom of the tank. That is, rather than arranging the upper and lower paddle blades on the same plane, arranging these blades at a crossing angle of 45 degrees connects the flows of the upper blade and the lower blade and achieves rapid mixing. As a result of examining various intersection angles α using this method, it was found that the intersection angle α is in the range of 30 degrees or more and less than 90 degrees, preferably 45 degrees to 75 degrees as an appropriate angle range. It was confirmed that the reasoning was done.

【0025】続いて、上段翼と下段翼の翼間距離Lの
最適範囲を把握するために、上下段翼の交差角度αを45
度に設定する一方で、翼間距離Lを攪拌槽の内径Dの10
%から30%の範囲に変化させ、上記と同条件の攪拌よる
実験を行った。その実験による流速分布を〔図8〕に示
す。なお、〔図8〕は攪拌槽の 1/2縦断面における流速
ベクトルを示すグラフであって、 (a)図のグラフは翼間
距離Lを 0.1D(10%) に設定した例を、 (b)図のグラフ
は翼間距離Lを 0.2D(20%) に設定した例を、 (c)図の
グラフは翼間距離Lを 0.3D(30%) に設定した例をそれ
ぞれ示す。
Subsequently, in order to grasp the optimum range of the blade-to-blade distance L between the upper and lower blades, the crossing angle α of the upper and lower blades is set to 45.
While setting the distance between blades to the inner diameter D of the stirring tank of 10
From 30% to 30%, an experiment was conducted by stirring under the same conditions as above. The flow velocity distribution from the experiment is shown in FIG. [Fig. 8] is a graph showing the flow velocity vector in the 1/2 vertical section of the stirring tank. The graph in Fig. (A) shows an example in which the blade-to-blade distance L is set to 0.1D (10%). The graph in Figure b) shows an example where the blade distance L is set to 0.2D (20%), and the graph in Figure (c) shows an example where the blade distance L is set to 0.3D (30%).

【0026】翼間距離Lが 0.1Dから 0.3Dまでに増加
するに従い〔図8〕に示すように、上段パドル翼の吐出
流が、下段パドル翼の回転域に進入する度合いが減少し
て行き、 0.3Dではほとんど進入することなく下段パド
ル翼の吐出流に押し返されている。一方、 0.2D以下で
は下段パドル翼の回転域に進入して流れが繋がってい
る。従って、翼間距離Lを0.2D以下、好ましくは 0.1
Dに設定することによって、攪拌槽内での流れが繋がり
効率の良い混合を実現することができる。
As the inter-blade distance L increases from 0.1D to 0.3D, as shown in [FIG. 8], the degree of the discharge flow of the upper paddle blade entering the rotational range of the lower paddle blade decreases. , 0.3D, it was pushed back to the discharge flow of the lower paddle blade with almost no entry. On the other hand, at 0.2 D or less, the flow is connected by entering the rotation range of the lower paddle blade. Therefore, the distance L between the blades is 0.2 D or less, preferably 0.1
By setting to D, the flow in the stirring tank is connected, and efficient mixing can be realized.

【0027】更にまた、多段翼構成で効率良い攪拌混合
を行うには、上段翼と下段翼の吐出力バランスが重要
であり、本実験では、層流域と乱流域での吐出力バラン
スを検討し、最下段のパドル翼に後退翼を採用して攪拌
槽下部の吐出力を強化し粘度対応性と動力効率の向上を
図った。3葉翼形について、層流時における通常の直線
状パドル翼と後退翼周囲の半径方向吐出流速解析結果を
〔図9〕に例示する。なお、〔図9〕の (a)図は後退翼
周囲の半径方向の吐出流速分布を、 (b)図は直線状パド
ル翼周囲の半径方向の吐出流速分布をそれぞれ示すグラ
フである。
Furthermore, the discharge force balance between the upper stage blade and the lower stage blade is important for efficient stirring and mixing in the multistage blade configuration. In this experiment, the discharge force balance in the laminar flow region and the turbulent flow region was examined. By adopting a retreat blade for the lowermost paddle blade, the discharge force in the lower part of the stirring tank was strengthened to improve viscosity compatibility and power efficiency. FIG. 9 shows an example of the radial discharge velocity analysis results around the normal linear paddle blade and the swept back blade in the laminar flow for the three-leaf airfoil. Note that FIG. 9A is a graph showing the radial discharge velocity distribution around the swept blade, and FIG. 9B is a graph showing the radial discharge velocity distribution around the linear paddle blade.

【0028】〔図9〕に示すように、後退翼では、直線
状パドル翼に認められる翼端後面での液体の吸込みSが
がなく、広い角度範囲にわたり液体が吐出されており、
また最大吐出流速度も、同一外径の直線状パドル翼のそ
れに比べて30%大きい。一方、パドル翼の吐出流速度は
その外径(翼スパン)に左右されるので、攪拌槽下部の
吐出力を強化するには、最下段のパドル翼をその上段に
位置する他のパドル翼よりも大スパンとすることでも対
応できる。
As shown in FIG. 9, in the swept back blade, there is no liquid suction S at the rear surface of the blade tip, which is observed in the straight paddle blade, and the liquid is discharged over a wide angle range.
The maximum discharge flow velocity is 30% higher than that of a straight paddle blade with the same outer diameter. On the other hand, since the discharge flow velocity of the paddle blade depends on its outer diameter (blade span), in order to enhance the discharge force in the lower part of the agitation tank, the paddle blade at the lowermost stage should be more than the other paddle blades located at the upper stage. It can also be supported by setting a large span.

【0029】以上にて把握された最適条件より、交差角
度αを45度、翼間距離Lを 0.1Dに組み合わせた多段パ
ドル翼を用いると、粘度 2Pa・s 以上の層流域では攪拌
槽内全体が良好に混合された。しかし、粘度 2Pa・s 以
下の層流から乱流へ遷移する状態では、上下翼の流れの
繋がりが不安定になり、混合がやや遅れ気味になる傾向
が認められた。
From the optimum conditions grasped above, using a multi-stage paddle blade with a crossing angle α of 45 degrees and an inter-blade distance L of 0.1D, the entire stirring tank is used in a laminar flow area with a viscosity of 2 Pa · s or more. Was mixed well. However, in the state of transition from laminar flow with viscosity of 2 Pa · s or less to turbulent flow, the flow connection between the upper and lower blades became unstable, and mixing tended to be slightly delayed.

【0030】この問題を解決するために種々検討を加え
た結果、上下で隣接するパドル翼それぞれを少なくとも
外端部において互いに上下方向にオーバーラップさせる
とき、これらパドル翼から吐出される流れを、隣接する
パドル翼の回転域に進入させてうまく繋ぐことができ、
これにより最適な圧力勾配に起因するフローパターンが
形成され、遷移域の流体についても攪拌効率を高め得る
との結論を得た。
As a result of various studies to solve this problem, when the upper and lower paddle blades are vertically overlapped with each other at least at their outer ends, the flows discharged from these paddle blades are The paddle wing that does
As a result, it was concluded that the flow pattern due to the optimum pressure gradient is formed, and that the stirring efficiency can be improved even for the fluid in the transition region.

【0031】そして、その効果を確認するために、上段
パドル翼の両外側下端部に下方に向けて突出して下段パ
ドル翼にオーバーラップする短冊形のフィン部を設け、
この構成のもとで、粘度 2Pa・s 以下の攪拌液を、上記
条件にて攪拌した。その結果、上段パドル翼の両外側下
端部に設けたフィン部により、上下段パドル翼の流れの
繋がりが安定して速やかな混合が実現した。また、フィ
ン部を設けたことにより、遷移域や乱流域において良好
な均一混合を得ることができるばかりでなく、層流域に
おいてもフィン部のないものに比べて一層良好な混合が
可能であることが確認された。
In order to confirm the effect, strip-shaped fins are provided at both outer lower ends of the upper paddle blade so as to project downward and overlap the lower paddle blade.
With this configuration, a stirring liquid having a viscosity of 2 Pa · s or less was stirred under the above conditions. As a result, the fins provided on both outer lower ends of the upper paddle blades ensure stable flow connection between the upper and lower paddle blades and achieve rapid mixing. Further, by providing the fin portion, not only good uniform mixing can be obtained in the transition region and the turbulent flow region, but also better mixing is possible in the laminar flow region as compared with the case without the fin portion. Was confirmed.

【0032】本発明は、以上に述べた調査で確認された
諸条件を把握した上でなされたものである。すなわち、
回転軸に上下多段に装着させた複数のパドル翼の、上段
に位置する各パドル翼を上下で隣接する下段のパドル翼
に対して90度未満の交差角度で回転方向に先行させて配
置することで、上段翼と下段翼の流れを繋がらせて、速
やかな混合を実現する。また、上記交差角度を45度〜75
度とすることで、上段翼と下段翼の流れの繋がりをより
安定なものとし、より確実に速やかな混合を実現する。
また、最下段のパドル翼の外端部を後退翼に形成するこ
とで、攪拌槽下部の吐出力を強化して、攪拌槽内全体の
フローパタンを安定化させると共に、粘度対応性と動力
効率を向上させる。また、最下段のパドル翼をその上段
に位置する他のパドル翼よりも大スパンとすることで
も、攪拌槽下部の吐出力を強化して、乱流域での攪拌槽
内全体のフローパタンを安定化させると共に、粘度対応
性と動力効率を向上させる。また、上下で隣接するパド
ル翼それぞれの翼間距離を攪拌槽の内径寸法の20%以下
の寸法とすることで、上段翼と下段翼の流れの繋がりを
より安定なものとし、より効率の良い混合を実現する。
また、上下で隣接するパドル翼それぞれを少なくとも外
端部において互いに上下方向にオーバーラップさせるこ
とで、遷移域の流体についても、上段翼と下段翼の流れ
の繋がりを確実かつ安定なものとして、良好な均一混合
を実現する。
The present invention has been made after grasping the various conditions confirmed in the above-mentioned investigation. That is,
Arranging the upper paddle blades of the multiple paddle blades that are mounted on the rotating shaft in multiple stages in the upper and lower direction in the rotational direction at an intersection angle of less than 90 degrees with respect to the vertically adjacent lower paddle blades. Then, the flow of the upper blade and the lower blade is connected to realize a rapid mixing. In addition, the intersection angle is 45 degrees to 75
By adjusting the degree, the flow connection between the upper and lower blades becomes more stable, and more reliable and rapid mixing is realized.
In addition, by forming the outer end of the paddle blade at the lowest stage into a retreat blade, the discharge force at the bottom of the stirring tank is strengthened, the flow pattern in the entire stirring tank is stabilized, and the viscosity compatibility and power efficiency are improved. Improve. Also, by making the bottom paddle blade a larger span than the other paddle blades located above it, the discharge force at the bottom of the stirring tank is strengthened and the flow pattern of the entire stirring tank in the turbulent region is stabilized. In addition, it improves viscosity compatibility and power efficiency. In addition, by setting the distance between adjacent upper and lower paddle blades to be 20% or less of the inner diameter of the stirring tank, the flow connection between the upper and lower blades becomes more stable and more efficient. Achieve mixing.
Further, by vertically overlapping the paddle blades adjacent to each other at least at the outer end portion in the vertical direction, the fluid in the transition region can be surely and stably connected to the flow of the upper blade and the lower blade. Achieve uniform mixing.

【0033】[0033]

【実施例】以下に、本発明の実施例を図面を参照して説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0034】〔図1〕は本発明の1実施例の攪拌装置を
示す図面であって、 (a)図は一部を切り欠いた斜視図、
(b)図は (a)図のB−B横断面図である。なお、本実施
例は、本発明の攪拌翼構成をグラスライニング型機器に
適用した例である。
FIG. 1 is a drawing showing a stirring device according to one embodiment of the present invention, in which (a) is a partially cutaway perspective view,
(b) figure is a BB cross-sectional view of (a) figure. The present embodiment is an example in which the stirring blade structure of the present invention is applied to a glass lining type device.

【0035】〔図1〕において、(1) は攪拌槽であっ
て、この攪拌槽(1) は、外周に熱交換用のジャケット(1
a)を装着した竪型円筒容器に形成されている。また、こ
の攪拌槽(1) の内周面寄りには、2枚の邪魔板(6) が円
周方向に等ピッチに槽上部から垂設されている。
In FIG. 1, (1) is a stirring tank, and this stirring tank (1) has a jacket (1) for heat exchange on the outer circumference.
It is formed into a vertical cylindrical container equipped with a). Further, two baffle plates (6) are hung vertically from the upper part of the stirring tank (1) at an equal pitch in the circumferential direction near the inner peripheral surface.

【0036】(2) は回転軸であって、この回転軸(2)
は、攪拌槽(1) の中心部に垂設され、攪拌槽(1) の上方
中央部に装着された駆動装置(5) により (b)図中の矢印
Aで示す方向に回転駆動される。
(2) is a rotating shaft, and this rotating shaft (2)
Is vertically installed in the central portion of the stirring tank (1) and is rotationally driven in the direction indicated by arrow A in the figure (b) by a driving device (5) mounted in the upper center portion of the stirring tank (1). ..

【0037】(3) は下段翼であって、この下段翼(3)
は、下縁部を攪拌槽(1) 底の曲面に沿う形状に形成する
と共に、両外側部を (b)図中の矢印Aに示す回転方向に
対して後退翼に形成したパドル形翼で、回転軸(2) の下
端部に装着されて攪拌槽(1) の底面に近接して配されて
いる。
(3) is a lower blade, and this lower blade (3)
Is a paddle-shaped blade whose lower edge is formed along the curved surface of the bottom of the stirring tank (1) and both outer sides are formed as retreating blades with respect to the rotation direction indicated by arrow A in the figure (b). , Is attached to the lower end of the rotating shaft (2) and is arranged close to the bottom surface of the stirring tank (1).

【0038】(4) は上段翼であって、この上段翼(4)
は、その翼径を下段翼(3) の翼径と略同径とし、その両
外側下端部に下方に向けて突出する短冊形のフィン部(4
a)を設けたパドル形翼で、下段翼(3) の上方の回転軸
(2) に装着されている。また、この上段翼(4) は、 (b)
図に示す交差角度α、すなわち下段翼(3) に対して矢印
Aで示す回転方向に先行する交差角度を45度に設定する
と共に、その両外側のフィン部(4a)の下端縁を、下段翼
(3) の両外側の上端縁より所定寸法Δhだけ低く位置さ
せて、下段翼(3) と上下方向にオーバーラップさせて配
されている。
(4) is an upper blade, and this upper blade (4)
Has a blade diameter that is approximately the same as the blade diameter of the lower blade (3), and has strip-shaped fins (4
A paddle-shaped blade equipped with a), the rotary shaft above the lower blade (3)
It is attached to (2). The upper wing (4) is (b)
The intersection angle α shown in the figure, that is, the intersection angle preceding the lower blade (3) in the direction of rotation indicated by the arrow A is set to 45 degrees, and the lower edges of the fins (4a) on both outer sides are set to the lower blade. Wings
It is located lower than the upper edges on both outer sides of (3) by a predetermined dimension Δh, and is vertically overlapped with the lower blade (3).

【0039】上記のような構成の攪拌装置について、中
高粘度域での混合効率の向上効果を確認するため、2枚
のパドル翼を交差角度90度で上下2段に配した従来の攪
拌との対比において、攪拌レイノズル数Re 11.7の層流
状態で流速ベクトル分布と拡散物質の液面および槽底で
の濃度曲線を数値実験で求めた。この実験では、内径D
200mmの攪拌槽内に、翼径d 120mm(0.6D)のパドル翼
を交差角度αを45度として上下2段に配置し、液深Hを
250mm(1.25D) 、翼の回転数を 2.08 1/s に設定するこ
と共通条件とした。また、本実施例の装置の上段翼フィ
ン部の下段翼に対するオーバーラップ寸法Δhは0.05D
とした。その結果を〔図2〕に示す。なお、〔図2〕は
攪拌槽内の流速ベクトルと、濃度応答曲線とを示すグラ
フであって、 (a)図のグラフは本実施例の攪拌装置によ
るもの、 (b)図のグラフは比較例として交差角度αを90
度とした従来の攪拌装置によるものをそれぞれ示す。
In order to confirm the effect of improving the mixing efficiency in the medium and high viscosity regions of the stirring device having the above-mentioned structure, two paddle blades are arranged in two stages at an intersecting angle of 90 degrees and the conventional stirring is performed. In contrast, the flow velocity vector distribution and the concentration curve of the diffusing substance at the liquid surface and at the bottom of the tank were obtained by a numerical experiment in the laminar flow state with the Reynolds number Re 11.7. In this experiment, the inner diameter D
In a 200 mm stirring tank, paddle blades with a blade diameter d 120 mm (0.6 D) were arranged in two steps, with a crossing angle α of 45 degrees, and the liquid depth H was
The common condition was 250 mm (1.25 D) and the blade rotation speed was set to 2.08 1 / s. Further, the overlap dimension Δh with respect to the lower blade of the upper blade fin portion of the apparatus of this embodiment is 0.05D.
And The results are shown in [Fig. 2]. [FIG. 2] is a graph showing the flow velocity vector in the stirring tank and the concentration response curve. The graph in FIG. 2 (a) is based on the stirring device of this example, and the graph in FIG. As an example, crossing angle α is 90
Degrees of the conventional stirring device are shown.

【0040】従来の攪拌装置では (b)図のグラフに示す
ように、上下段パドル翼の流れの繋がりがあるものの、
約 180秒経過しても液面部と槽底部での濃度に若干の差
が残り混合が終わっていない。これに対し本実施例の攪
拌装置では (a)図のグラフに示すように、上下段翼の流
れが良好に繋がり、約90秒後に液面部と槽底部の濃度が
一致して混合が終わった。
In the conventional stirring device, as shown in the graph of (b), although there is a connection of the flows of the upper and lower paddle blades,
Even after about 180 seconds, there was a slight difference in the concentration between the liquid surface and the bottom of the tank, and mixing was not completed. On the other hand, in the stirring apparatus of this example, as shown in the graph of (a), the flows of the upper and lower blades were well connected, and after about 90 seconds, the concentrations of the liquid surface part and the bottom part of the tank coincided with each other, and the mixing was completed. It was

【0041】以上により本実施例の攪拌装置は、従来の
攪拌装置による混合時間に比べて半分以下と、大幅に短
時間で攪拌混合を達成できることが確認できた。また、
その上下段翼ともに形状がシンプルであり、回転軸と一
体化させて外面にガラス被覆する際に、高温焼成によっ
て生じる変形の問題が少なく、本実施例のようなグラス
ライニング型機器への適用が容易である。
From the above, it was confirmed that the stirring device of the present embodiment can achieve stirring and mixing in a significantly shorter time, which is less than half the mixing time of the conventional stirring device. Also,
Both the upper and lower blades have a simple shape, and when the outer surface is covered with glass by being integrated with the rotating shaft, there is little problem of deformation caused by high temperature firing, and application to glass lining type equipment like this example is possible. It's easy.

【0042】なお、〔図1〕に示した例の攪拌装置で
は、上下2段の攪拌翼構成としたが、これは一例であっ
て、例えば、〔図3〕に示すように、パドル形翼を上下
3段に配した構成の攪拌翼とされても良く、また、本発
明の要旨を逸脱しない限り、装置規模や液深に対応して
3段以上の攪拌翼構成を採用されても良い。また、攪拌
槽の内周面寄りに2枚の邪魔板を配置したが、これら邪
魔板は高粘度液の攪拌混合には不要である。
In the stirring device of the example shown in FIG. 1, the upper and lower stages of stirring blades are constituted, but this is an example. For example, as shown in FIG. 3, paddle type blades are provided. May be arranged in three stages above and below, and three or more stages of stirring vanes may be adopted depending on the scale of the apparatus and the liquid depth without departing from the scope of the present invention. .. Further, although two baffle plates are arranged near the inner peripheral surface of the stirring tank, these baffle plates are not necessary for stirring and mixing the high viscosity liquid.

【0043】〔図3〕は本発明の別の実施例の攪拌装置
の一部を切り欠いた斜視図である。なお、同図において
〔図1〕と同符号を付したものは等価のもので、ここで
は説明を省略する。
FIG. 3 is a perspective view in which a part of a stirring device according to another embodiment of the present invention is cut away. It is to be noted that, in the figure, those denoted by the same reference numerals as those in FIG. 1 are equivalent and will not be described here.

【0044】この実施例の攪拌装置では、下段翼(3) の
上方の回転軸(2) に、〔図1〕と同様に両外側下端部に
フィン部(4a)を設けた上段翼(4) が上下2段に装着さ
れ、全体として3段の攪拌翼構成とされている。また、
下段翼(3) および2枚の上段翼(4) は、互いの交差角度
を45度に設定して配置され、また、2枚の上段翼(4)
は、それぞれのフィン部(4a)を隣接する下方の翼と上下
方向にオーバーラップさせて配されている。
In the stirring device of this embodiment, the upper blade (4) is provided with the fins (4a) at both outer lower ends on the rotary shaft (2) above the lower blade (3) as in FIG. ) Is installed in two stages, upper and lower, and has a total of three stages of stirring blades. Also,
The lower blade (3) and the two upper blades (4) are arranged with their mutual intersecting angle set to 45 degrees, and the two upper blades (4)
Are arranged such that each fin portion (4a) vertically overlaps with an adjacent lower blade.

【0045】この実施例のような攪拌翼構成によれば、
液深変化に対応して槽内全域を均等に攪拌でき、装置の
大型化および攪拌能力の増大にも容易に対応できる。
According to the stirring blade structure as in this embodiment,
The whole area of the tank can be evenly stirred according to the change in the liquid depth, and it is possible to easily cope with the increase in the apparatus size and the stirring capacity.

【0046】なお、〔図1〕および〔図3〕に示した例
の攪拌装置では、上段翼(4) の両外側下端部に短冊状の
フィン部(4a)を設け、そのフィン部(4a)を下方に位置す
る他の翼と上下方向にオーバーラップさせることで、上
下で隣接するパドル翼間の流れの繋がりを安定化させる
ものとしたが、これは一例であって、上下で隣接するパ
ドル翼それぞれを少なくとも外端部において互いに上下
方向にオーバーラップさせる本発明の要旨を逸脱しない
限り、例えば、〔図4〕の (a)図に示すように下段翼
(3) と上段翼(4) それぞれの一方の外側端部に短冊状の
フィン部を設けて、また、〔図4〕の (b)図に示すよう
に上段翼(4) の両外側下端部にフイッシュテイル状に突
出するフィン部を設けて、更にまた、〔図4〕の (c)図
に示すように下段翼(3) と上段翼(4) それぞれの両外側
端部にフイッシュテイル状に突出するフィン部を設け等
して、これらを互いに上下方向にオーバーラップさせる
こともできる。
In the stirring device of the examples shown in FIGS. 1 and 3, strip-shaped fin portions (4a) are provided at both outer lower ends of the upper blade (4), and the fin portions (4a ) Is vertically overlapped with other blades located below to stabilize the flow connection between the paddle blades that are vertically adjacent to each other, but this is only an example. Unless deviating from the gist of the present invention in which the paddle blades are vertically overlapped with each other at least at the outer ends thereof, for example, as shown in FIG.
(3) and upper blades (4) are provided with strip-shaped fins at one outer end of each, and as shown in Fig. 4 (b), both outer lower ends of the upper blades (4) A fin portion projecting like a fish tail is provided on the upper portion, and furthermore, as shown in (c) of [Fig. 4], a fish tail is provided on both outer ends of the lower blade (3) and the upper blade (4). It is also possible to provide fin portions projecting in a circular shape and to overlap these with each other in the vertical direction.

【0047】また、〔図1〕および〔図3〕に示した例
の攪拌装置では、攪拌槽下部の吐出力を強化して粘度対
応性と動力効率の向上を図るため、最下段翼を後退翼に
形成したが、これは必ずしも後退翼とする必要はなく、
槽底部の吐出力を強化するには、最下段翼をその上段に
位置する他の翼よりも大スパンのパドル形翼とすること
でも対応できる。
In addition, in the stirring device of the examples shown in [FIG. 1] and [FIG. 3], the lowermost blade is retracted in order to strengthen the discharge force in the lower portion of the stirring tank to improve viscosity correspondence and power efficiency. I formed it on the wing, but this does not have to be a retracted wing,
In order to strengthen the discharge force at the bottom of the tank, it is possible to use a paddle-shaped blade having a span larger than that of the other blades located in the uppermost stage.

【0048】〔図5〕は本発明のまた他の実施例の攪拌
装置を示す図面であって、 (a)図は正断面図、 (b)図は
(a)図のB−B横断面図である。
FIG. 5 is a drawing showing a stirring device according to still another embodiment of the present invention, wherein (a) is a front sectional view and (b) is a drawing.
It is a BB cross-sectional view of FIG.

【0049】〔図5〕において、(11)は攪拌槽であっ
て、この攪拌槽(11)は、外周に熱交換用のジャケット(1
1a) を装着した竪型円筒容器に形成されている。また、
この攪拌槽(11)の内周面上には、その軸方向に沿う上下
方向に4枚の邪魔板(16)が円周方向に等ピッチに装着さ
れている。
In FIG. 5, (11) is a stirring tank, and this stirring tank (11) has a jacket (1) for heat exchange on its outer periphery.
It is formed in a vertical cylindrical container equipped with 1a). Also,
On the inner peripheral surface of the stirring tank (11), four baffle plates (16) are mounted at equal pitches in the circumferential direction in the vertical direction along the axial direction.

【0050】(12)は回転軸であって、この回転軸(12)
は、攪拌槽(11)の中心部に垂設され、攪拌槽(11)の上方
中央部に装着された駆動装置(15)により (b)図中の矢印
Aで示す方向に回転駆動される。
(12) is a rotating shaft, and this rotating shaft (12)
Is vertically installed in the central portion of the stirring tank (11) and is rotationally driven in the direction indicated by arrow A in the figure (b) by a driving device (15) mounted in the upper central portion of the stirring tank (11). ..

【0051】(13)は下段翼、(14)は上段翼であって、こ
れら上・下段翼(14),(13) は、翼径dおよび翼高hを同
寸としたパドル形翼で、所定間隔を隔てて上下2段に回
転軸(12)に装着されている。また、下段翼(13)は、下縁
部を攪拌槽(11)底の曲面に沿う形状に形成されて攪拌槽
(11)の底面に近接して配され、一方、上段翼(14)は、
(b)図に示す交差角度α、すなわち下段翼(13)に対して
矢印Aで示す回転方向に先行する交差角度を90度未満に
設定すると共に、下段翼(13)との翼間距離Lを、攪拌槽
(11)内径Dの20%以下に設定して配される。
(13) is a lower blade, (14) is an upper blade, and these upper and lower blades (14), (13) are paddle-shaped blades having the same blade diameter d and blade height h. , Are mounted on the rotating shaft (12) in two steps at upper and lower positions with a predetermined interval. Further, the lower blade (13) has a lower edge formed in a shape along the curved surface of the bottom of the stirring tank (11).
Located close to the bottom of (11), while the upper wing (14)
(b) The crossing angle α shown in the figure, that is, the crossing angle preceding the lower blade (13) in the direction of rotation indicated by the arrow A is set to less than 90 degrees, and the inter-blade distance L with the lower blade (13) is set. A stirring tank
(11) The inner diameter D is set to 20% or less.

【0052】上記のような構成の攪拌装置による上下翼
の交差角度αを変えて行った具体的な混合・攪拌例につ
いて、以下に述べる。
A specific example of mixing / stirring performed by changing the crossing angle α of the upper and lower blades by the stirrer having the above-mentioned structure will be described below.

【0053】上記構成のもとで、攪拌槽(11)の内径Dを
200mmとし、上・下段翼(14),(13)の翼径dを 120mm(0.
6D) 、翼高hを70mm(0.6D) 、翼間距離Lを20mm(0.1
D)とする一方で、上・下段翼(14),(13) の交差角度α
を45度、60度および75度に設定した3種の攪拌装置を準
備した。また、比較のために、上・下段翼の交差角度α
を90度、翼間距離Lを60mm(0.3D) とし点以外は本実施
例のものと同一構成とした従来型の攪拌装置も準備し
た。
Under the above construction, the inner diameter D of the stirring tank (11)
The upper and lower blades (14) and (13) have a blade diameter d of 120 mm (0.
6D), blade height h is 70mm (0.6D), blade distance L is 20mm (0.1D)
D), while the crossing angle α of the upper and lower blades (14), (13)
Was set to 45 degrees, 60 degrees, and 75 degrees, and three kinds of stirring devices were prepared. Also, for comparison, the crossing angle α of the upper and lower blades
A conventional stirrer having the same structure as that of the present embodiment was also prepared except that the blade length was 90 degrees and the blade-to-blade distance L was 60 mm (0.3D).

【0054】そして、これら4種の攪拌装置を用い、翼
回転数を125rpmとする同一条件で、粘度μ= 5Pa・s 、
密度ρ= 1400kg/m3の液を混合・攪拌して、それぞれに
よる液の完全混合時間を比較調査した。
Then, using these four kinds of stirring devices, under the same conditions with the blade rotation speed set to 125 rpm, the viscosity μ = 5 Pa · s,
Liquids having a density ρ = 1400 kg / m 3 were mixed and stirred, and the complete mixing time of the liquids was compared and investigated.

【0055】その結果、液の完全混合時間は、交差角度
を90度とした比較例のものでは 150秒要したのに対し
て、本実施例のものでは、交差角度を45度とした例で 1
04秒、60度とした例で 102秒、75度とした例で 114秒で
あり、従来型の比較例のものと比べて、液の混合・攪拌
効率を約25%〜30%と大幅に高めることができ、本発明
装置の優れた混合効果を確認することができた。
As a result, the complete mixing time of the liquid required 150 seconds in the comparative example with the crossing angle of 90 degrees, whereas in the example of this example, the crossing angle was 45 degrees. 1
It is 04 seconds, 102 seconds in the case of 60 degrees, 114 seconds in the case of 75 degrees, and compared with the conventional comparative example, the mixing and stirring efficiency of the liquid is about 25% to 30%. It was possible to increase the amount and to confirm the excellent mixing effect of the device of the present invention.

【0056】なお、本実施例では、上・下段翼の翼間距
離Lを20mmとしたが、これは一例であって、この翼間距
離Lは攪拌槽内径Dの20%以下の寸法に設定されれば良
い。但し、翼間距離を小さくするについては、〔従来技
術〕の項で述べたように、液深に対応するための総翼高
の増大に伴う消費動力の増加はあるが、混合時間短縮の
点から、この翼間距離は攪拌槽内径の20%以下(望まし
くは10%前後)において装置規模および経済性から選択
されることになる。
In this embodiment, the blade distance L between the upper and lower blades is set to 20 mm, but this is only an example, and the blade distance L is set to 20% or less of the stirring tank inner diameter D. I hope it is done. However, as to the reduction of the blade-to-blade distance, as described in the section [Prior Art], there is an increase in the power consumption with the increase in the total blade height to cope with the liquid depth, but the point of shortening the mixing time is Therefore, this blade-to-blade distance is selected from the scale of the apparatus and economical efficiency at 20% or less (preferably around 10%) of the inner diameter of the stirring tank.

【0057】また、本実施例では、下段翼を上段翼と同
じ翼径および翼高のパドル形翼としたが、これは一例で
あって、第1実施例のように下段翼を後退翼に形成した
り、または上段翼よりも大スパンな翼径とされること
も、攪拌槽下部の吐出力を強化して槽内全体の流れをス
ムースに繋がらせるに効果的である。
Further, in the present embodiment, the lower blade is a paddle-shaped blade having the same blade diameter and blade height as the upper blade, but this is an example, and the lower blade is a backward blade as in the first embodiment. Forming or setting the blade diameter to have a span larger than that of the upper blade is also effective in strengthening the discharge force in the lower portion of the stirring tank and smoothly connecting the entire flow in the tank.

【0058】また、本実施例では、上下2段の攪拌翼構
成としたが、これは本発明構成の効果を評価・説明する
ことを容易にするためであって、本発明の要旨を逸脱し
ない限り、装置規模や液深に対応して2段以上の多段攪
拌翼構成を採られても同様な混合・攪拌効率の向上が図
れることは言うまでもない。
In the present embodiment, the upper and lower two stages of stirring blades are used, but this is for the purpose of facilitating the evaluation and explanation of the effects of the present invention and does not depart from the gist of the present invention. It goes without saying that similar mixing / stirring efficiency can be improved even if a multi-stage stirrer having two or more stages is adopted according to the scale of the apparatus and the liquid depth.

【0059】[0059]

【発明の効果】以上に述べたように、本発明に係る攪拌
装置は、上下多段のパドル翼を、明確で混合上最適な位
置関係に配置した攪拌翼構成として、各パドル翼間で適
切な圧力勾配に起因する流れを形成して攪拌槽内全体に
おけるフローパタンの繋がりがとれ、乱流域から層流域
に至る攪拌操作条件下における流体の攪拌効率を大幅に
向上させることができる。
As described above, the stirring device according to the present invention has a structure in which upper and lower multi-stage paddle blades are arranged in a clear and optimum positional relationship for mixing, and is suitable for each paddle blade. The flow resulting from the pressure gradient is formed to connect the flow patterns in the entire stirring tank, and the stirring efficiency of the fluid under the stirring operation condition from the turbulent flow region to the laminar flow region can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例の攪拌装置を示す図面であっ
て、 (a)図は一部を切り欠いた斜視図、 (b)図は (a)図
のB−B横断面図である。
1A and 1B are views showing a stirring device according to one embodiment of the present invention, in which FIG. 1A is a partially cutaway perspective view, and FIG. 1B is a cross-sectional view taken along line BB in FIG. 1A. Is.

【図2】本発明の1実施例に関わる攪拌槽内の流速ベク
トルと、濃度応答曲線とを示すグラフである。
FIG. 2 is a graph showing a flow velocity vector in a stirring tank and a concentration response curve according to one example of the present invention.

【図3】本発明の別の実施例の攪拌装置の一部を切り欠
いた斜視図である。
FIG. 3 is a perspective view in which a stirring device according to another embodiment of the present invention is partially cut away.

【図4】本発明に関わる翼のオーバーラップ形態の説明
図である。
FIG. 4 is an explanatory diagram of an overlapped form of the blade according to the present invention.

【図5】本発明のまた他の実施例の攪拌装置を示す図面
であって、 (a)図は正断面図、(b)図は (a)図のB−B
横断面図で図面である。
5A and 5B are views showing a stirring device according to still another embodiment of the present invention, wherein FIG. 5A is a front sectional view and FIG. 5B is BB in FIG. 5A.
It is a drawing with a cross-sectional view.

【図6】パドル翼を上下多段に配置した攪拌装置におけ
る翼間距離と循環流との関係を説明するための模式図で
ある。
FIG. 6 is a schematic diagram for explaining the relationship between the inter-blade distance and the circulation flow in the stirring device in which the paddle blades are arranged in the upper and lower stages.

【図7】本発明に関わる交差角度との関係における攪拌
槽内の流速ベクトルと、還元脱色の進展を表す濃度等高
線とを示すグラフである。
FIG. 7 is a graph showing a flow velocity vector in a stirring tank in relation to a crossing angle according to the present invention and a concentration contour line showing the progress of reduction decolorization.

【図8】本発明に関わる翼間距離との関係における攪拌
槽内の流速ベクトルを示すグラフである。
FIG. 8 is a graph showing a flow velocity vector in a stirring tank in relation to the blade distance according to the present invention.

【図9】本発明に関わる後退翼周囲の半径方向の吐出流
速分布と、通常のパドル翼周囲の半径方向の吐出流速分
布とを示すグラフである。
FIG. 9 is a graph showing a radial discharge flow velocity distribution around a swept wing and a normal discharge velocity distribution around a paddle wing according to the present invention.

【符号の説明】[Explanation of symbols]

(1) --攪拌槽 (2) --回転軸 (3) --下段翼 (4) --上段翼 (5) --駆動装置 α -- 交差角度 (1) --Stirring tank (2) --Rotating shaft (3) --Lower blade (4) --Upper blade (5) --Drive device α --Crossing angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 栄祐 神戸市西区糀台4丁目14−31 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eisuke Sato 4-14-31, Kojidai, Nishi-ku, Kobe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 竪型円筒状の攪拌槽内中心部に回転軸を
垂設し、この回転軸に複数のパドル翼を上下多段に装着
すると共に、最下段のパドル翼を攪拌槽の底面に近接さ
せて配置し、かつ、上段に位置する各パドル翼を上下で
隣接する下段のパドル翼に対して90度未満の交差角度で
回転方向に先行させて配置したことを特徴とする攪拌装
置。
1. A vertical cylindrical stirrer is provided with a rotary shaft vertically in the center thereof, and a plurality of paddle blades are vertically mounted on the rotary shaft, and the lowermost paddle blades are mounted on the bottom of the stirred tank. A stirrer characterized in that the paddle blades are arranged close to each other, and the upper paddle blades are arranged in the direction of rotation at an intersecting angle of less than 90 degrees with respect to the vertically adjacent lower paddle blades.
【請求項2】 上記交差角度を45度〜75度としたことを
特徴とする請求項1記載の攪拌装置。
2. The stirrer according to claim 1, wherein the intersecting angle is 45 degrees to 75 degrees.
【請求項3】 最下段のパドル翼の外端部を後退翼に形
成したことを特徴とする請求項1記載の攪拌装置。
3. The stirrer according to claim 1, wherein an outer end portion of the lowermost paddle blade is formed as a retreating blade.
【請求項4】 最下段のパドル翼をその上段に位置する
他のパドル翼よりも大スパンとしたことを特徴とする請
求項1記載の攪拌装置。
4. The stirrer according to claim 1, wherein the paddle blade at the lowermost stage has a larger span than the other paddle blades positioned at the upper stage.
【請求項5】 上下で隣接するパドル翼それぞれの翼間
距離を攪拌槽の内径寸法の20%以下の寸法としたことを
特徴とする請求項1、2、3又は4記載の攪拌装置。
5. The stirring device according to claim 1, wherein the distance between the vertically adjacent paddle blades is set to 20% or less of the inner diameter of the stirring tank.
【請求項6】 上下で隣接するパドル翼それぞれを少な
くとも外端部において互いに上下方向にオーバーラップ
させたことを特徴とする請求項1、2、3又は4記載の
記載の攪拌装置。
6. The stirrer according to claim 1, wherein the vertically adjacent paddle blades are vertically overlapped with each other at least at the outer ends thereof.
JP3193003A 1990-08-07 1991-08-01 Stirrer Expired - Lifetime JP2507839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193003A JP2507839B2 (en) 1990-08-07 1991-08-01 Stirrer

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP20980890 1990-08-07
JP40134790 1990-12-11
JP3-139235 1991-06-11
JP13923591 1991-06-11
JP2-401347 1991-06-11
JP2-209808 1991-06-11
JP3193003A JP2507839B2 (en) 1990-08-07 1991-08-01 Stirrer

Publications (2)

Publication Number Publication Date
JPH0549890A true JPH0549890A (en) 1993-03-02
JP2507839B2 JP2507839B2 (en) 1996-06-19

Family

ID=27472205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193003A Expired - Lifetime JP2507839B2 (en) 1990-08-07 1991-08-01 Stirrer

Country Status (1)

Country Link
JP (1) JP2507839B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287203A (en) * 1993-03-31 1994-10-11 Nippon Zeon Co Ltd Production of vinyl chloride resin
JPH07155579A (en) * 1993-11-30 1995-06-20 Satake Kagaku Kikai Kogyo Kk Agitating blade
JPH07292002A (en) * 1994-04-27 1995-11-07 Asahi Chem Ind Co Ltd Production of polymer latex
JPH0871398A (en) * 1994-09-02 1996-03-19 Toyo Ink Mfg Co Ltd Stirring apparatus
JPH08325306A (en) * 1995-06-05 1996-12-10 Tosoh Corp Production of copolymer
JPH1175815A (en) * 1997-09-11 1999-03-23 Shinko Pantec Co Ltd Agitating tank for storing yeast liquid and production of fermented foods of beer or the like using the same tank
JP2000051611A (en) * 1998-08-10 2000-02-22 Tsurumi Mfg Co Ltd Apparatus for granulating and dewatering suspension
JP2000051613A (en) * 1998-08-10 2000-02-22 Tsurumi Mfg Co Ltd Apparatus for granulating and dewatering suspension
US6244741B1 (en) 1998-11-11 2001-06-12 Lintec Corporation Stirring device
JP2002045169A (en) * 2001-06-05 2002-02-12 Shinko Pantec Co Ltd Agitating vessel for reserving yeast solution, method for producing fermented foods such as beer using the vessel and agitating blade for the agitating vessel for reserving yeast solution
JP2002114847A (en) * 2000-10-06 2002-04-16 Kanegafuchi Chem Ind Co Ltd Method for producing reactive silicon group-containing polyether oligomer
JP2003002964A (en) * 2001-06-22 2003-01-08 Kanegafuchi Chem Ind Co Ltd Method for alkoxylating polyetherpolyols
US7368283B1 (en) 1999-03-12 2008-05-06 Kobelco Eco-Solutions Co. Ltd. Agitation tank for storing beer yeast slurry
JP2008200565A (en) * 2007-02-16 2008-09-04 Nishihara Environment Technology Inc Biological treatment device
WO2010082391A1 (en) * 2009-01-16 2010-07-22 Dic株式会社 Stirring device and stirring method
JP2010162488A (en) * 2009-01-16 2010-07-29 Dic Corp Apparatus and method for stirring
JP2010194525A (en) * 2009-02-27 2010-09-09 Dic Corp Stirrer, and stirring method
JP2010253372A (en) * 2009-04-23 2010-11-11 Ihi Corp Gas-liquid stirrer
KR101255222B1 (en) * 2012-11-09 2013-04-23 서풍현 A mixing and granding unit
JP2013081932A (en) * 2011-09-30 2013-05-09 Kobelco Eco-Solutions Co Ltd Method of manufacturing stirring blade, and stirring device
JP2013248565A (en) * 2012-05-31 2013-12-12 Swing Corp Sludge flocculation device, and method for conditioning sludge
JP2014226647A (en) * 2013-05-27 2014-12-08 株式会社イズミフードマシナリ Agitator
JP2017194634A (en) * 2016-04-22 2017-10-26 キヤノン株式会社 Toner particle manufacturing method and agitating device
JP2018069498A (en) * 2016-10-26 2018-05-10 住友ゴム工業株式会社 Method for analyzing kneading state of viscous fluid
JP2018200400A (en) * 2017-05-26 2018-12-20 キヤノン株式会社 Method for manufacturing toner particle and stirring device
CN109954418A (en) * 2018-01-02 2019-07-02 孙宇航 Double-directional rotary mixing component, blender and its working method using the component
CN111116246A (en) * 2020-03-05 2020-05-08 盐城工业职业技术学院 Stirring device for livestock and poultry manure aerobic fermentation tank
CN114405341A (en) * 2022-01-24 2022-04-29 江西众一华普科技有限公司 Powder double-motion mixing device with alloy magnetic powder core
KR102407805B1 (en) * 2021-09-23 2022-06-10 (주)셀텍월드 Waste milk treatment device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542842A (en) * 1978-09-25 1980-03-26 Ricoh Co Ltd Paper feeder for printer and the like
JPS6437173A (en) * 1987-08-01 1989-02-07 Sharp Kk Digital clipping device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542842A (en) * 1978-09-25 1980-03-26 Ricoh Co Ltd Paper feeder for printer and the like
JPS6437173A (en) * 1987-08-01 1989-02-07 Sharp Kk Digital clipping device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287203A (en) * 1993-03-31 1994-10-11 Nippon Zeon Co Ltd Production of vinyl chloride resin
JPH07155579A (en) * 1993-11-30 1995-06-20 Satake Kagaku Kikai Kogyo Kk Agitating blade
JPH07292002A (en) * 1994-04-27 1995-11-07 Asahi Chem Ind Co Ltd Production of polymer latex
JPH0871398A (en) * 1994-09-02 1996-03-19 Toyo Ink Mfg Co Ltd Stirring apparatus
JPH08325306A (en) * 1995-06-05 1996-12-10 Tosoh Corp Production of copolymer
JPH1175815A (en) * 1997-09-11 1999-03-23 Shinko Pantec Co Ltd Agitating tank for storing yeast liquid and production of fermented foods of beer or the like using the same tank
JP2000051611A (en) * 1998-08-10 2000-02-22 Tsurumi Mfg Co Ltd Apparatus for granulating and dewatering suspension
JP2000051613A (en) * 1998-08-10 2000-02-22 Tsurumi Mfg Co Ltd Apparatus for granulating and dewatering suspension
US6244741B1 (en) 1998-11-11 2001-06-12 Lintec Corporation Stirring device
US6331071B2 (en) 1998-11-11 2001-12-18 Lintec Corporation Stirring device
US7368283B1 (en) 1999-03-12 2008-05-06 Kobelco Eco-Solutions Co. Ltd. Agitation tank for storing beer yeast slurry
JP2002114847A (en) * 2000-10-06 2002-04-16 Kanegafuchi Chem Ind Co Ltd Method for producing reactive silicon group-containing polyether oligomer
JP2002045169A (en) * 2001-06-05 2002-02-12 Shinko Pantec Co Ltd Agitating vessel for reserving yeast solution, method for producing fermented foods such as beer using the vessel and agitating blade for the agitating vessel for reserving yeast solution
JP2003002964A (en) * 2001-06-22 2003-01-08 Kanegafuchi Chem Ind Co Ltd Method for alkoxylating polyetherpolyols
JP2008200565A (en) * 2007-02-16 2008-09-04 Nishihara Environment Technology Inc Biological treatment device
JP2010162488A (en) * 2009-01-16 2010-07-29 Dic Corp Apparatus and method for stirring
WO2010082391A1 (en) * 2009-01-16 2010-07-22 Dic株式会社 Stirring device and stirring method
US8485716B2 (en) 2009-01-16 2013-07-16 Dic Corporation Agitation apparatus and agitation method
JP2010194525A (en) * 2009-02-27 2010-09-09 Dic Corp Stirrer, and stirring method
JP2010253372A (en) * 2009-04-23 2010-11-11 Ihi Corp Gas-liquid stirrer
JP2013081932A (en) * 2011-09-30 2013-05-09 Kobelco Eco-Solutions Co Ltd Method of manufacturing stirring blade, and stirring device
JP2013081931A (en) * 2011-09-30 2013-05-09 Kobelco Eco-Solutions Co Ltd Operation method of chemical reaction device
JP2013248565A (en) * 2012-05-31 2013-12-12 Swing Corp Sludge flocculation device, and method for conditioning sludge
KR101255222B1 (en) * 2012-11-09 2013-04-23 서풍현 A mixing and granding unit
JP2014226647A (en) * 2013-05-27 2014-12-08 株式会社イズミフードマシナリ Agitator
JP2017194634A (en) * 2016-04-22 2017-10-26 キヤノン株式会社 Toner particle manufacturing method and agitating device
JP2018069498A (en) * 2016-10-26 2018-05-10 住友ゴム工業株式会社 Method for analyzing kneading state of viscous fluid
JP2018200400A (en) * 2017-05-26 2018-12-20 キヤノン株式会社 Method for manufacturing toner particle and stirring device
CN109954418A (en) * 2018-01-02 2019-07-02 孙宇航 Double-directional rotary mixing component, blender and its working method using the component
CN111116246A (en) * 2020-03-05 2020-05-08 盐城工业职业技术学院 Stirring device for livestock and poultry manure aerobic fermentation tank
KR102407805B1 (en) * 2021-09-23 2022-06-10 (주)셀텍월드 Waste milk treatment device
CN114405341A (en) * 2022-01-24 2022-04-29 江西众一华普科技有限公司 Powder double-motion mixing device with alloy magnetic powder core

Also Published As

Publication number Publication date
JP2507839B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
JPH0549890A (en) Agitator
EP0470493B1 (en) Mixing apparatus
CA1205459A (en) Flow separation threshold impeller blade design for mixers
US6582116B2 (en) Apparatus and method for mixing small volumes of reaction materials
US6244741B1 (en) Stirring device
WO2010082391A1 (en) Stirring device and stirring method
JP5062186B2 (en) Stirring apparatus and stirring method
JP3994319B2 (en) Stirrer
CN108339445A (en) A kind of dual impellers agitating device
JPH1024230A (en) Agitator
CN105664745B (en) It is a kind of to strengthen the mechanical agitation type Continuous Emulsifier conveyed and emulsification method
JP2766847B2 (en) Stirrer
JP4440407B2 (en) Stirrer
JPH0975699A (en) Agitator
JPH0248027A (en) Agitating pot with radially fed agtator and at least one buffer and method for mixing liquid by using agtating pot
JPH08281089A (en) Vertical type stirring machine
KR20170131152A (en) Chemical reactor and preparation method of olefin using the same
JP2749002B2 (en) High viscosity liquid stirring tank
JP2002282667A (en) Stirring apparatus
JPS6271521A (en) Method and apparatus for agitating at low speed
CN214916032U (en) Reaction kettle stirring device
JP3768351B2 (en) Vertical stirring device
CN1118318C (en) Agitating element and mixing apparatus equipped with the same
JPS62244429A (en) Stirrer
JP3820313B2 (en) Agitator blade structure of vertical agitator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080416

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090416

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090416

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20110416

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20120416