JPH0628363B2 - Carrier synchronization detection method - Google Patents

Carrier synchronization detection method

Info

Publication number
JPH0628363B2
JPH0628363B2 JP59257887A JP25788784A JPH0628363B2 JP H0628363 B2 JPH0628363 B2 JP H0628363B2 JP 59257887 A JP59257887 A JP 59257887A JP 25788784 A JP25788784 A JP 25788784A JP H0628363 B2 JPH0628363 B2 JP H0628363B2
Authority
JP
Japan
Prior art keywords
path
discriminator
exclusive
orthogonal
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59257887A
Other languages
Japanese (ja)
Other versions
JPS61135262A (en
Inventor
映治 鈴木
健造 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59257887A priority Critical patent/JPH0628363B2/en
Publication of JPS61135262A publication Critical patent/JPS61135262A/en
Publication of JPH0628363B2 publication Critical patent/JPH0628363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば16値直交振幅変調波用無線装置の復調器
に使用する搬送波同期検出方式の改良に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to an improvement of a carrier synchronization detection method used for a demodulator of a radio device for 16-valued quadrature amplitude modulated waves, for example.

デイジタルマイクロ波方式は周波数利用効率を向上させ
る為、例えば16値直交振幅変調方式(以下16値QAM方式
と省略する)が用いられている。
In order to improve frequency utilization efficiency, the digital microwave method is used, for example, a 16-value quadrature amplitude modulation method (hereinafter abbreviated as 16-value QAM method).

この変調波を復調する為には、送信側の変調器用搬送波
と同相の復調用基準搬送波をを受信側で作り(同期状態
にあると云う)、この基準搬送波と受信した変調波とを
直交検波器で乗算して同期検波する事により復調してい
る。
In order to demodulate this modulated wave, a demodulation reference carrier having the same phase as the modulator carrier on the transmitting side is made on the receiving side (which is said to be in a synchronized state), and this reference carrier and the received modulated wave are subjected to quadrature detection. It is demodulated by multiplying with a detector and performing synchronous detection.

そこで、受信側では上記の復調用基準搬送波が変調器用
搬送波と同期しているかどうかを常時監視しているが、
これを実施する為の回路が高価であった。
Therefore, the receiving side constantly monitors whether the demodulation reference carrier wave is synchronized with the modulator carrier wave.
The circuitry to do this was expensive.

そこで、より安価な搬送波同期検出方式が要望されてい
る。
Therefore, there is a demand for a cheaper carrier synchronization detection method.

〔従来の技術〕[Conventional technology]

第4図は16値QAM波のアイパターンを示す。 Figure 4 shows the 16-level QAM wave eye pattern.

図に示す様に、16値QAM波が直交検波器(図示せず)で
同期検波されている時は1チャンネル当たり識別点が4
つある為、3つのアイオープニング1を持つアイパター
ンが観測される。しかし、同期検波されない時(基準搬
送波は送信側搬送波に非同期)はアイオープニング1が
なくなる。
As shown in the figure, when the 16-value QAM wave is synchronously detected by the quadrature detector (not shown), there are 4 identification points per channel.
Therefore, an eye pattern having three eye openings 1 is observed. However, when the synchronous detection is not performed (the reference carrier wave is asynchronous with the transmission side carrier wave), the eye opening 1 is eliminated.

そこで、アイオープニングの状態を観測して搬送波の同
期/非同期状態を検出する事ができる。
Therefore, it is possible to observe the eye opening state and detect the carrier synchronization / asynchronization state.

検出方法の1例として、第4図に示す様に少し時間をず
らしたa及びb点でアイオープニングの信号レベルを検
出し、そのレベルが各スレッショルドレベルPath-1又は
Path-2より高いか,低いかを見る事によって搬送波の同
期状態をを識別する事が出来る。
As an example of the detection method, as shown in FIG. 4, the eye opening signal level is detected at points a and b with a slight time shift, and the level is detected at each threshold level Path-1 or
The carrier synchronization status can be identified by checking whether it is higher or lower than Path-2.

第5図は従来例のブロック図で、上記の方法を用いたも
のである。
FIG. 5 is a block diagram of a conventional example, which uses the above method.

図において、直交検波器(図示せず)で検波された直交
する(例えばIch及びQch)ベースバンド信号がIch用
及びQch用識別器にそれぞれ加えられる。
In the figure, orthogonal (for example, Ich and Qch) baseband signals detected by a quadrature detector (not shown) are added to the Ich and Qch discriminators, respectively.

例えば、スレッショルドレベルPath-1又はPath-2(第4
図参照)を持つ識別器2又は1,3,4に加えられたベ
ースバンド信号は、識別器1,4と排他的論理和回路
(以下EX-OR回路と省略する)6及び識別器2をそれぞ
れ通って2つの識別結果データが得られると共に、遅延
回路5によって時間τだけ異なるクロックで2点の信号
レベルがスレッショルドレベルPath-2より高いか低いか
が求められる。
For example, threshold level Path-1 or Path-2 (4th
The baseband signal applied to the discriminator 2 or 1, 3 or 4 having a discriminator 1 or 4 has an exclusive OR circuit (hereinafter abbreviated as an EX-OR circuit) 6 and a discriminator 2. Two pieces of discrimination result data are obtained through each of them, and it is required by the delay circuit 5 to determine whether the signal levels at the two points are higher or lower than the threshold level Path-2 with the clocks which differ by the time τ.

即ち、搬送波の同期状態の時は、両方共ハイの状態(例
えば1)が、非同期状態の時は、ハイとロウ又はロウと
ハイの状態(例えば1,0又は0,1)が識別器3,4
から出力される。そこで、この出力をEX-OR回路7を通
すと同期状態の時は例えば全て0の状態が,非同期状態
の時は全て0の状態に1の状態が混ざった状態が積分回
路8に出力される。
In other words, when the carrier wave is in the synchronous state, both are in the high state (for example, 1), and when in the asynchronous state, in the high state and the low state or the low state and the high state (for example, 1, 0 or 0, 1) are the discriminator 3. , 4
Is output from. Therefore, when this output is passed through the EX-OR circuit 7, for example, a state of all 0s in the synchronous state, and a state of 1 in the state of all 0s in the asynchronous state are output to the integrating circuit 8. .

積分回路8でこれを積分すると同期状態は0が、非同期
状態は0と異なるレベルが警報として外部に送出され
る。
When this is integrated by the integrating circuit 8, a level 0 is output in the synchronous state and a level different from 0 is output in the asynchronous state as an alarm.

第6図は別の従来例のブロック図を示す。FIG. 6 shows a block diagram of another conventional example.

この例は第5図の場合と異なり、それぞれ異なるスレッ
ショルドレベル(例えばVとV+ΔV)を持つ識別器
9,10を用いて信号レベルを識別し、識別結果をEX-OR
回路11を介して積分回路12で積分し、前記と同じく搬送
波の同期/非同期の状態を検出している。
This example is different from the case of FIG. 5 in that the signal levels are discriminated using discriminators 9 and 10 having different threshold levels (for example, V and V + ΔV), and the discrimination result is EX-OR.
The integration is performed by the integration circuit 12 via the circuit 11, and the synchronous / asynchronous state of the carrier is detected as described above.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上説明した様に、搬送波の同期状態を検出する為には
識別器とEX-OR回路が1つ余分に必要となる。
As described above, an extra discriminator and an EX-OR circuit are required to detect the carrier synchronization state.

この為、価格が高くなると共に、電力消費が増加すると
云う問題点があった。
Therefore, there is a problem that the price increases and the power consumption increases.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点は、該識別器(3)と識別器(1)の出力の排他
的論理和を取って、該同相成分に対するパス1よりも所
定量だけ離れた2つのパス2の間の領域に、同相成分の
識別結果データが入った時に“1”を送出する排他的論
理和部分(16)と、該識別器(13)と識別器(15)の出力の排
他的論理和を取って、該直交成分に対するパス1よりも
該所定量だけ離れた2つのパス2の間の領域に直交成分
の識別結果データが入った時に“1”を送出する排他的
論理和部分(17)と、該排他的論理和部分(16)と排他的論
理和部分(17)の出力の論理和を取って、直交するパス1
よりも該所定量だけ離れた直交する2つのパス2の間の
領域から重複領域部分を除いた領域に、識別結果データ
が入り込んだ時に“1”を送出する排他的論理和部分(1
8)と、該排他的論理和部分(18)の出力電圧を積分する積
分部分(19)とを設け、該積分部分の出力電圧を利用して
警報を送出する様にした事を特徴とする搬送波同期検出
方式により解決される。
The above-mentioned problem is that a region between two paths 2 separated by a predetermined amount from the path 1 for the in-phase component is obtained by taking the exclusive OR of the outputs of the classifier (3) and the classifier (1). Then, the exclusive OR part (16) which sends out “1” when the identification result data of the in-phase component is input, and the exclusive OR of the outputs of the discriminator (13) and the discriminator (15) are obtained. An exclusive OR portion (17) for transmitting "1" when the identification result data of the orthogonal component is entered in the area between the two paths 2 which are apart from the path 1 for the orthogonal component by the predetermined amount, The logical sum of the outputs of the exclusive OR part (16) and the exclusive OR part (17) is taken and the orthogonal path 1
The exclusive OR portion (1 that sends "1" when the identification result data enters the area between the two paths 2 that are orthogonal to each other and is separated by the predetermined amount from the overlapping area portion
8) and an integration part (19) for integrating the output voltage of the exclusive OR part (18), and an alarm is sent out by using the output voltage of the integration part. It is solved by the carrier synchronization detection method.

〔作用〕[Action]

本発明は、識別器を用いて特定領域を観測すると、非同
期時と、同期時において信号点の存在確率が異なる事が
判った。そこで、これを積分して搬送波の同期又は非同
期状態を検出する様にした。
According to the present invention, when a specific area is observed by using a discriminator, it is found that the existence probabilities of signal points are different between asynchronous and synchronous. Therefore, this is integrated to detect the synchronous or asynchronous state of the carrier.

これにより、搬送波同期検出用の識別器が不要となるの
で、コストダウンになる。
This eliminates the need for a discriminator for detecting carrier synchronization, resulting in cost reduction.

〔実施例〕〔Example〕

以下図示実施例により、本発明の要旨を具体的に説明す
る。尚、全図を通じて同一符号は同一対象物を示す。
Hereinafter, the gist of the present invention will be specifically described with reference to illustrated embodiments. The same reference numerals denote the same objects throughout the drawings.

先ず、第2図及び第3図の信号点配列図を用いて本発明
の概念を説明する。尚、第3図は第2図の第1象限のみ
を示す。第2図は同期状態にある16値QAM波の信号点の
分布を示すが、斜線の部分とそれ以外の部分にある信号
点の存在確率は丁度50%になっている。
First, the concept of the present invention will be described with reference to the signal point arrangement diagrams of FIGS. 2 and 3. Incidentally, FIG. 3 shows only the first quadrant of FIG. Figure 2 shows the distribution of 16-valued QAM wave signal points in the synchronized state, but the probability of existence of the signal points in the shaded area and other areas is just 50%.

しかし、非同期状態では第3図に示す様に各信号点は円
周上を回転する。この時、斜線部の領域を観測すればA
の信号点がこの領域に入り込む確率が増え、且つ、この
確率はBの信号点、或いはCの信号点が斜線部の領域か
ら出る確率よりも大きくなる(後述する)。
However, in the asynchronous state, each signal point rotates on the circumference as shown in FIG. At this time, if you observe the shaded area, A
The probability that the signal point of (1) enters the area increases, and this probability becomes larger than the probability that the signal point of B or the signal point of C exits from the shaded area (described later).

このことは斜線部とそれ以外の部分の信号点の存在確率
が50%よりずれることを意味する。即ち、斜線部と斜線
部以外の部分での信号点の存在確率の変化を監視すれ
ば、同期,非同期の判別が可能である。
This means that the existence probabilities of the signal points in the shaded area and the other areas deviate from 50%. That is, it is possible to discriminate between synchronous and asynchronous by monitoring a change in the existence probability of the signal point in the shaded portion and the portion other than the shaded portion.

以下、第3図を利用して非同期時の信号点の存在確率を
求める。ここで、A,B,C,Dの各信号点クロックタ
イミング毎に1点ずつランダムに識別されるが、非同期
時、信号点が存在すると識別される領域(斜線部内と斜
線部外)を各信号点について示したものである。
Hereinafter, the existence probability of a signal point at the time of asynchronous will be obtained using FIG. Here, one point is randomly identified at each signal point clock timing of A, B, C, and D, but at the time of non-synchronization, each area (inside the shaded portion and outside the shaded portion) where the signal point is identified is present. The signal points are shown.

先ず、第3図でAの信号点の回転を見ると、Aの信号点
がa0からa1まで回転すると、回転角は線分0a0と線分0a1
のなす角(以下、角a00a1と省略する)となって斜線部
外から斜線部内に入り、Qch軸まで回転すると第2象限
に入る。
First, looking at the rotation of the signal point of A in FIG. 3, when the signal point of A rotates from a 0 to a 1 , the rotation angles are the line segment 0a 0 and the line segment 0a 1
Becomes an angle (hereinafter abbreviated as angle a 0 0a 1 ) and enters from the outside of the shaded portion to the inside of the shaded portion, and when it rotates to the Qch axis, it enters the second quadrant.

そして、第2象限では第2図に示す様にQch軸に対して
a1点と対称な点(図示しないが、例えばa1′点)で斜線
部外になり、Qch軸に対してa0と対称な点(図示しない
が、例えばa0′とする)で角a00a0′が90度となる。こ
れは0a0とQch軸とのなす角が45度の為である。
Then, in the second quadrant, as shown in FIG.
It is outside the shaded area at a point that is symmetric with a 1 point (not shown, for example, a 1 ′ point), and at the point that is symmetric with a 0 with respect to the Qch axis (not shown, for example, a 0 ′ ) a 0 0a 0 ′ becomes 90 degrees. This is because the angle between 0a 0 and Qch axes is 45 degrees.

斜線部外に出るが、この時の角b00b1は角I40b1から角I3
0b0を引いたものであるが、sin(I30b0)=1/(1
01/2)から、角I30b0は18.4度となる。
It goes out of the shaded area, but the angle b 0 0b 1 at this time is from the angle I 4 0b 1 to the angle I 3
But minus the 0b 0, sin (I 3 0b 0) = 1 / (1
From 0 1/2), the corner I 3 0b 0 is 18.4 degrees.

一方、角I40b1が第3図に示す様に、39.2度だから角b00
b1は20.8度となり、第7図のBの信号点の左側の値にな
る。そして、回転角11.6度の間、斜線部外にあり、再び
斜線部に入って57.6度回転すると90度回転するが、これ
を繰り返す。
On the other hand, as the corner I 4 0b 1 is shown in FIG. 3, the angular b 0 0 because 39.2 degrees
b 1 becomes 20.8 degrees, which is the value on the left side of the signal point of B in FIG. 7. Then, when the rotation angle is 11.6 degrees, it is outside the shaded portion, and when it enters the shaded portion again and rotates 57.6 degrees, it rotates 90 degrees, but this is repeated.

Cの信号点も上記と同様に回転角が求められるが、Dの
信号点は常に斜線部外にあるので“0”の状態にある。
The rotation angle is obtained for the C signal point in the same manner as described above, but the D signal point is always outside the hatched portion, and thus is in the “0” state.

即ち、第7図は非同期時における信号点の存在領域を示
す図で、信号点の検波軸に対する回転角θが0〜360度
の時の各信号点の存在する領域を示している。なお、図
中の○の中の数字は信号点の存在する象限を示す。
That is, FIG. 7 is a diagram showing a region where signal points exist in an asynchronous state, and shows a region where each signal point exists when the rotation angle θ of the signal point with respect to the detection axis is 0 to 360 degrees. The numbers in the circles in the figure indicate the quadrants in which the signal points exist.

さて、第7図より、非同期時、A,B,C,Dの信号点
が斜線領域に入り込む確率は、 Aの信号点:56.2×4/360≒0.624 (1) Bの信号点:78.4×4/360≒0.871 (2) Cの信号点:78.4×4/360≒0.871 (3) Dの信号点: 0 (4) これらの信号点のうち1つの信号点が、ランダムに識別
されるとすると、非同期時、信号点が斜線部内に入る確
率は(1)〜(4)の平均になるので、 (0.624+0.871+0.571+0)/4=0.59 (5) となる。
From Fig. 7, the probability that the A, B, C, and D signal points enter the shaded area when asynchronous is: A signal point: 56.2 x 4/360 ≈ 0.624 (1) B signal point: 78.4 x 4/360 ≈ 0.871 (2) C signal point: 78.4 x 4/360 ≈ 0.871 (3) D signal point: 0 (4) If one of these signal points is randomly identified Then, when asynchronous, the probability that the signal point will fall within the shaded area is the average of (1) to (4), so (0.624 + 0.871 + 0.571 + 0) / 4 = 0.59 (5).

一方、斜線部分から出る確率は上記と同様に、 Aの信号点:33.8×4/360≒0.38 (6) Bの信号点:11.6×4/360≒0.13 (7) Cの信号点:11.6×4/360≒0.13 (8) Dの信号点: 1 (9) これらの信号点のうちの1つの信号点が、ランダムに識
別されるとすると、非同期時、信号点が斜線部内に入る
確率は(6)〜(9)の平均になるので、0.41となる。
On the other hand, the probability of appearing from the shaded area is the same as above, A signal point: 33.8 × 4/360 ≈ 0.38 (6) B signal point: 11.6 × 4/360 ≈ 0.13 (7) C signal point: 11.6 × 4/360 ≈ 0.13 (8) D signal point: 1 (9) If one of these signal points is randomly identified, the probability that the signal point will fall within the shaded area is asynchronous. Since it is the average of (6) to (9), it becomes 0.41.

即ち、同期時には、A,Dの信号点、常に斜線部外にあ
るので“0”、B,Cの信号点は常に斜線部にあるので
“1”となり、第1図に示した、EX-0R 18の出力は
“0”と“1”の確率(第2図の斜線部外と斜線部内)
が50%ずつのパルス列となる。
That is, at the time of synchronization, the A and D signal points are always outside the shaded area, so that they are "0", and the B and C signal points are always in the shaded area, so that they are "1". The output of 0R 18 is the probability of “0” and “1” (outside the shaded area and inside the shaded area in FIG. 2)
Is a pulse train of 50% each.

しかし、非同期時は上記の様に0.59、または0.41とな
り、同期時と異なる値となる。
However, when asynchronous, it becomes 0.59 or 0.41 as described above, which is a different value than when synchronous.

以上は第1象限の信号点にのみ着目したが、2〜4象限
の信号点も第1象限の信号点と回転対称に配列されてい
ることから(5)式の値は変わらない。
Although the above has focused only on the signal points in the first quadrant, since the signal points in the second to fourth quadrants are also arranged in rotational symmetry with the signal points in the first quadrant, the value of equation (5) does not change.

非同期時には“1”の確率即ち、第2図の斜線部内に信
号点が存在する確率が増える事が判る。
It can be seen that the probability of "1", that is, the probability that a signal point exists in the shaded area in FIG.

そこで、この確率の変化を検出して同期、非同期を区別
する事ができる。
Therefore, it is possible to distinguish between synchronous and asynchronous by detecting this change in probability.

第1図は本発明の1実施例のブロック図を示すが、上記
の概念を具体化したものである。
FIG. 1 shows a block diagram of one embodiment of the present invention, which embodies the above concept.

図において、識別器1〜3はIch用,13〜15はQch用の
識別器をそれぞれ示し、識別器2と14の識別結果データ
は直接,識別器1と3及び13と15はEX-OR回路16及び17
を介して識別結果データが外部に送出される。
In the figure, discriminators 1 to 3 are Ich discriminators and 13 to 15 are Qch discriminators. The discrimination result data of discriminators 2 and 14 are direct, and discriminators 1 and 3 and 13 and 15 are EX-OR. Circuits 16 and 17
The identification result data is sent to the outside via the.

一方、EX-OR回路16と17によりそれぞれ第2図に示した
信号点が2本の1点鎖線c,dの間の部分とc,dの外
側の部分と、2本の点線e,fの間の部分とe,fの外
側の部分に分類される。
On the other hand, by the EX-OR circuits 16 and 17, the signal points shown in FIG. 2 are the portions between the two dashed lines c and d, the portions outside c and d, and the two dotted lines e and f. It is classified into a portion between and a portion outside e and f.

そして、EX-OR回路18により第2図に示した信号点は斜
線の部分とそれ以外の部分とに分類される。
Then, the EX-OR circuit 18 classifies the signal points shown in FIG. 2 into a shaded portion and other portions.

そして、搬送波が同期状態の時はEX-OR回路18よりマー
ク率50%の出力が、非同期状態の時はマーク率が50%よ
りも偏った出力が得られるので、これを積分回路19で積
分すると前者の場合は電圧V1が、後者の場合は電圧V
2が得られるので、電圧V1をしきい値にして電圧V2
と比較して電圧V2が電圧V1よりも高くなった時、非
同期状態を示す警報を外部に送出する事ができる。尚、
選択制御型搬送波再生回路の場合は上記の論理が取られ
ているので、検出器としては積分回路のみを備えればよ
い。
Then, when the carrier wave is in the synchronous state, the EX-OR circuit 18 outputs the mark rate of 50%, and when the carrier wave is in the asynchronous state, the mark rate is biased more than 50%. Then, the voltage V1 in the former case and the voltage V1 in the latter case
2 is obtained, the voltage V1 is set as the threshold voltage V2.
When the voltage V2 becomes higher than the voltage V1 as compared with the above, an alarm indicating an asynchronous state can be sent to the outside. still,
In the case of the selective control type carrier recovery circuit, since the above logic is taken, it is sufficient to provide only the integrating circuit as the detector.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明した様に、非同期時と同期時とで特定領
域の信号点の存在確率が異なるので、これを利用して搬
送波の同期状態を識別している。
As described in detail above, since the existence probabilities of the signal points in the specific area are different between the asynchronous state and the synchronous state, the synchronization state of the carrier wave is identified by utilizing this.

この為、同期状態検出する為の識別器が不要となるので
コストダウンの効果が得られる。
For this reason, a discriminator for detecting the synchronization state is not required, and a cost reduction effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のブロック図、 第2図は16値QAM波の信号点配置図、 第3図は第2図の第1象限の配置図、 第4図は16値QAM波のアイパターン図、 第5図は従来例のブロック図、 第6図は別の従来例のブロック図、 第7図は非同期時における信号点の存在領域を示す図で
ある。 図において、 1〜3,13〜15は識別器、 5は遅延回路、 6,7,16〜18はEX-OR回路、 8,19は積分回路を示す。
FIG. 1 is a block diagram of the present invention, FIG. 2 is a signal point arrangement diagram of 16-value QAM waves, FIG. 3 is an arrangement diagram of the first quadrant of FIG. 2, and FIG. 4 is an eye pattern of 16-value QAM waves. FIG. 5, FIG. 5 is a block diagram of a conventional example, FIG. 6 is a block diagram of another conventional example, and FIG. 7 is a diagram showing a region where a signal point exists at an asynchronous time. In the figure, 1 to 3 and 13 to 15 are discriminators, 5 is a delay circuit, 6, 7 and 16 to 18 are EX-OR circuits, and 8 and 19 are integrating circuits.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】同相成分に対するパス1をしきい値とする
識別器(2)と、該同相成分に対するパス1よりも所定量
だけ高いパス2をしきい値とする識別器(1)と、該同相
成分に対するパス1よりも所定量だけ低いパス2をしき
い値とする識別器(3)と、直交成分に対するパス1をし
きい値とする識別器(14)と、該直交成分に対するパス1
よりも所定量だけ高いパス2をしきい値とする識別器(1
3)と、該直交成分に対するパス1よりも所定量だけ低い
パス2をしきい値とする識別器(15)とを設け、入力する
直交ベースバンド信号を識別して識別結果データを取出
す符号再生部において、 該識別器(3)と識別器(1)の出力の排他的論理和を取っ
て、該同相成分に対するパス1よりも所定量だけ離れた
2つのパス2の間の領域に、同相成分の識別結果データ
が入った時に“1”を送出する排他的論理和部分(16)
と、 該識別器(13)と識別器(15)の出力の排他的論理和を取っ
て、該直交成分に対するパス1よりも該所定量だけ離れ
た2つのパス2の間の領域に、直交成分の識別結果デー
タが入った時に“1”を送出する排他的論理和部分(17)
と、 該排他的論理和部分(16)と排他的論理和部分(17)の出力
の論理和を取って、直交するパス1よりも該所定量だけ
離れた直交する2つのパス2の間の領域から重複領域部
分を除いた領域に、識別結果データが入り込んだ時に
“1”を送出する排他的論理和部分(18)と、該排他的論
理和部分(18)の出力電圧を積分する積分部分(19)とを設
け、 該積分部分の出力電圧を利用して警報を送出する様にし
た事を特徴とする搬送波同期検出方式。
1. A discriminator (2) having a threshold value of path 1 for the in-phase component, and a discriminator (1) having a threshold value of path 2 higher than the path 1 for the in-phase component by a predetermined amount. A discriminator (3) having a threshold value of a path 2 lower than the path 1 for the in-phase component by a predetermined amount, a discriminator (14) having a threshold value of the path 1 for an orthogonal component, and a path for the orthogonal component 1
Discriminator (1
3) and a discriminator (15) having a threshold value of a path 2 which is lower than the path 1 for the orthogonal component by a predetermined amount, and reproduces code for extracting an input result data by identifying an input orthogonal baseband signal. In the section, the exclusive OR of the outputs of the discriminator (3) and the discriminator (1) is taken, and an in-phase is formed in a region between two paths 2 separated from the in-phase component by a predetermined amount. Exclusive-OR part that sends "1" when component identification result data is entered (16)
And an exclusive OR of the outputs of the discriminator (13) and the discriminator (15) to obtain an orthogonal region in the area between the two paths 2 separated from the path 1 for the orthogonal component by the predetermined amount. Exclusive OR part that sends out "1" when component identification result data is entered (17)
And the logical sum of the outputs of the exclusive OR part (16) and the exclusive OR part (17), and between the two orthogonal paths 2 separated from the orthogonal path 1 by the predetermined amount. An exclusive OR part (18) that sends out "1" when the identification result data enters the area excluding the overlapping area part and an integration that integrates the output voltage of the exclusive OR part (18) A carrier synchronization detection system characterized in that a part (19) is provided and an alarm is sent out using the output voltage of the integration part.
JP59257887A 1984-12-06 1984-12-06 Carrier synchronization detection method Expired - Lifetime JPH0628363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59257887A JPH0628363B2 (en) 1984-12-06 1984-12-06 Carrier synchronization detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59257887A JPH0628363B2 (en) 1984-12-06 1984-12-06 Carrier synchronization detection method

Publications (2)

Publication Number Publication Date
JPS61135262A JPS61135262A (en) 1986-06-23
JPH0628363B2 true JPH0628363B2 (en) 1994-04-13

Family

ID=17312561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59257887A Expired - Lifetime JPH0628363B2 (en) 1984-12-06 1984-12-06 Carrier synchronization detection method

Country Status (1)

Country Link
JP (1) JPH0628363B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550041B2 (en) * 1986-12-26 1996-10-30 株式会社東芝 Clock reproduction method
JP2785930B2 (en) * 1987-01-30 1998-08-13 日本電気株式会社 Receiver

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148459A (en) * 1983-02-14 1984-08-25 Nippon Telegr & Teleph Corp <Ntt> Carrier regenerating circuit for multi-value amplitude modulation

Also Published As

Publication number Publication date
JPS61135262A (en) 1986-06-23

Similar Documents

Publication Publication Date Title
CA1241068A (en) Carrier recovery circuit
US4458356A (en) Carrier recovery circuit
JP3565966B2 (en) Communication device
EP0709993B1 (en) Phase demodulation method by measuring the time between zero-crossings
US5056055A (en) Coherent surface acoustic wave unique word detector
JPH0628363B2 (en) Carrier synchronization detection method
JPS6361536A (en) Fsk signal demodulating circuit
JPH0654008A (en) Bpsk demodulator
US5867533A (en) Digital delta mode carrier sense for a wireless LAN
EP1112634A1 (en) Carrier frequency estimator for a signal receiver
EP0320058A2 (en) Data demodulator carrier phase error detector
JPH06120995A (en) Frame synchronizing circuit for digital radio receiver
US4464756A (en) System for error detection in frequency shift keyed signals
US4792952A (en) Signal receiver
US20060255156A1 (en) Pll circuit, demodulator circuit, ic card, and ic card processing apparatus
US5566212A (en) Phase-locked loop circuit for Manchester-data decoding
JPH098671A (en) Bus transmission system
RU2235440C1 (en) Demodulator of sixteen-position quadrature amplitude keyed signal
JP2002368829A (en) Modulation system identification device and receiver
JP3288298B2 (en) Absolute phase detection circuit
JP2550041B2 (en) Clock reproduction method
JPS6291044A (en) System for frame synchronizing pattern detection
JP3622887B2 (en) Receiving machine
JPS59160358A (en) Pseudo pull-in evading system of reference carrier wave regeneration circuit
RU2019053C1 (en) Receiver of signals of quadrature on-off keying