JPH06283583A - Wafer for analyzing surface foreign matter and estimation method of metal impurities on wafer surface - Google Patents

Wafer for analyzing surface foreign matter and estimation method of metal impurities on wafer surface

Info

Publication number
JPH06283583A
JPH06283583A JP5092525A JP9252593A JPH06283583A JP H06283583 A JPH06283583 A JP H06283583A JP 5092525 A JP5092525 A JP 5092525A JP 9252593 A JP9252593 A JP 9252593A JP H06283583 A JPH06283583 A JP H06283583A
Authority
JP
Japan
Prior art keywords
wafer
metal
foreign matter
contamination
evaluating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5092525A
Other languages
Japanese (ja)
Other versions
JPH0727946B2 (en
Inventor
Yasujiro Mizue
安次郎 水江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Towa Kagaku KK
Original Assignee
Towa Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa Kagaku KK filed Critical Towa Kagaku KK
Priority to JP5092525A priority Critical patent/JPH0727946B2/en
Publication of JPH06283583A publication Critical patent/JPH06283583A/en
Publication of JPH0727946B2 publication Critical patent/JPH0727946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable high sensitivity estimation of wafer contamination by a TXRF method, by applying an anode formation process to the mirror surface of a semiconductor silicon wafer, and forming a porous silicon layer on the mirror surface polished wafer. CONSTITUTION:A P-type Si (100) wafer 1 is subjected to anode formation in solution represented by a formula HF:C2H5OH=1:1, and a PS layer 2 is formed on the wafer surface. The PS wafer 3 is etched in solution HF/C3H50H/2O, and dipped for 5min in solution (C2H5OH/H2O or C2H5OH/H2O2/H2O base) containing Fe, Ni and Cu of various concentrations (ppt-ppb). Then the PS wafer 3 is taken out and dried. Metal concentration on the PS wafer 3 is measured by using a TXPF method. Thereby wafer contamination of ppt-ppb order caused by trace amounts of metal impurities can be estimated with sensitivity 1 order or more higher than the case of a mirror surface polished wafer, by using the TXRF method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面異物分析用ウエハ
及び全反射蛍光X線分析法によるウエハ表面の金属不純
物の評価方法に係り、詳しくはポーラスシリコン層(以
下、PS層と称する。)を形成した表面異物分析用ウエ
ハを半導体素子製造工程の一又は複数の処理環境へ投入
して金属汚染モニター用ウエハとして使用し、処理環境
中のウエハ汚染を検査するための表面異物分析用ウエハ
及びウエハ表面の金属不純物の評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer for surface foreign matter analysis and a method for evaluating metal impurities on the surface of a wafer by a total reflection fluorescent X-ray analysis method, and more specifically, a porous silicon layer (hereinafter referred to as PS layer). A surface foreign matter analysis wafer for inspecting the wafer contamination in the processing environment by using the formed surface foreign matter analysis wafer as one of a plurality of processing environments of a semiconductor device manufacturing process and using it as a metal contamination monitor wafer, and The present invention relates to a method for evaluating metal impurities on a wafer surface.

【0002】[0002]

【従来の技術】近年の半導体素子の微細化はめざまし
く、3〜5年に4倍の高集積化が進行してきた。半導体
の素材であるシリコンウエハ(以下、単にウエハ又は本
発明の表面分析用ウエハと対照的に使用するときは鏡面
研磨ウエハと指称する。)に対しては、半導体素子の集
積度の高度化に伴い、従来は特に問題とならなかった10
10原子(atoms)/cm2 レベルのウエハ表面の金属不純物
(Fe,Ni,Cu,Na 等)汚染が素子特性や信頼性に重大な影
響をおよぼし、製品の歩留りを左右するようになってき
た。
2. Description of the Related Art In recent years, miniaturization of semiconductor devices has been remarkable, and quadruple integration has been achieved in 3 to 5 years. For a silicon wafer which is a semiconductor material (hereinafter, simply referred to as a wafer or a mirror-polished wafer when used in contrast to the surface analysis wafer of the present invention), the degree of integration of semiconductor elements is improved. Therefore, it has not been a problem in the past. 10
Contamination of metal impurities (Fe, Ni, Cu, Na, etc.) on the wafer surface at the level of 10 atoms / cm 2 has a serious effect on device characteristics and reliability, and has come to influence the yield of products. .

【0003】ウエハ表面の金属不純物の評価法としては
種々の方法が開発されているが、非破壊分析の手法とし
て注目され、普及しつつあるのは全反射蛍光X線分析法
(TXRF;Total Reflection Energy dispersive X-ra
y fluorescence)である。本法によれば、ウエハ表面の
金属不純物を非破壊・非接触で評価することがき、不純
物の深さ方向の分布も同様に非破壊で評価できる。ま
た、測定点を任意に選択することができるため、ウエハ
表面における金属不純物の分布状態を把握することも可
能である。
Various methods have been developed as a method for evaluating metal impurities on the surface of a wafer, but the method is attracting attention as a nondestructive analysis method and is becoming widespread. Energy dispersive X-ra
y fluorescence). According to this method, the metal impurities on the wafer surface can be evaluated in a non-destructive and non-contact manner, and the distribution of the impurities in the depth direction can also be evaluated in a non-destructive manner. Further, since the measurement point can be arbitrarily selected, it is possible to grasp the distribution state of the metal impurities on the wafer surface.

【0004】これまで、ウエハ表面の金属不純物は1010
atoms/cm2レベルで存在すると半導体素子に悪影響をお
よぼす可能性があるとされ、TXRF法による装置の開
発も検出限界として1010 atoms/cm2を目標におこなわ
れ、Cuに対して 6×109 atoms/cm2 検出限界が得られ、
初期の目的である1010 atoms/cm2は達成されていた。
〔松下,土屋:「重金属汚染1010原子/cm2の高感度イン
ライン管理にメド」; 日経マイクロデバイス,10(199
0),pp.99-106 .〕
Up to now, there have been 10 10 metal impurities on the wafer surface.
It is said that the presence of atoms / cm 2 level may adversely affect the semiconductor device, and the development of the device by the TXRF method was also carried out with the target of 10 10 atoms / cm 2 as the detection limit, and it was 6 × 10 for Cu. 9 atoms / cm 2 detection limit was obtained,
The initial goal of 10 10 atoms / cm 2 was achieved.
[Matsushita, Tsuchiya: “Med for high-sensitivity in-line control of heavy metal contamination 10 10 atoms / cm 2 ”; Nikkei Microdevices, 10 (199
0), pp.99-106. ]

【0005】一方、近年の半導体工業におけるウエハ表
面も含めた半導体素子製造環境の清浄度に対する要求は
益々厳しくなってきており、ウエハ表面の金属汚染に関
しては〜1010 atoms/cm2レベルの評価では不十分で、さ
らに高感度な不純物評価法に対する要求が高くなってき
た。
On the other hand, in recent years, the demand for cleanliness of the semiconductor element manufacturing environment including the wafer surface in the semiconductor industry has become more and more strict, and regarding the metal contamination of the wafer surface, the evaluation is about 10 10 atoms / cm 2 level. There has been an increasing demand for an impurity evaluation method that is insufficient and has high sensitivity.

【0006】この超高感度化へのアプローチとして、ウ
エハ全表面の不純物をフッ化水素酸の蒸気で溶解して極
微量の酸液滴中に回収するWSA(Wafer Surface Analy
sis)により一カ所に凝縮し、そこをTXRF法で分析す
る方法が開発されており、本法によればウエハの面積分
だけ検出限界が向上するという利点がある。例えば150m
m 径のウエハの場合、その面積は約180cm2となり、感度
は従来の測定法に比べ180 倍向上することとなる。本方
法をWSSD(Wafer Surface Scanning by a Droplet)
と称し、TXRFと結び付けた方法をWSSD/TXR
F法と指称している。
As an approach to this ultra-high sensitivity, WSA (Wafer Surface Analytical Method) in which impurities on the entire surface of the wafer are dissolved by vapor of hydrofluoric acid and recovered in a very small amount of acid droplets
Sis) is condensed in one place and is analyzed by the TXRF method. This method has an advantage that the detection limit is improved by the area of the wafer. For example 150m
In the case of a wafer with a diameter of m, the area is about 180 cm 2 , and the sensitivity is 180 times higher than that of the conventional measurement method. This method can be used with WSSD (Wafer Surface Scanning by a Droplet)
The method linked with TXRF is called WSSD / TXR
It is called the F method.

【0007】WSSD/TXRF法による元素の検出下
限は Cr,Feで〜108atoms/cm2レベル、Cu,Zn で〜107ato
ms/cm2レベルの値が得られている。ただし、ここでの値
は150mm 径の場合であり、検出下限はウエハの口径が大
きくなってくると当然に下がってくる。以上の他、WS
Aとフレームレス原子吸光分析装置(GFAAS) やICP−
MSを組み合わせた手法も開発されている。
The lower limit of detection of elements by the WSSD / TXRF method is ~ 10 8 atoms / cm 2 level for Cr and Fe, and ~ 10 7 ato for Cu, Zn.
The value at the ms / cm 2 level is obtained. However, the value here is for a diameter of 150 mm, and the lower limit of detection naturally decreases as the diameter of the wafer increases. Other than the above, WS
A and flameless atomic absorption spectrometer (GFAAS) and ICP-
Techniques combining MS have also been developed.

【0008】[0008]

【発明が解決しようとする課題】WSSD/TXRF法
は、上述のとおり高感度化に対し有利であるが、同時に
以下に示す制約的な条件を課すものである。 効率よくウエハ表面の不純物を濃縮すること。 90%以内の再現性を確保するために液滴濃縮位置とX
線照射位置を3mm以下にしなければならないこと。 不純物の濃縮過程で逆汚染が起きないように注意する
こと等。 ただし、これらはWSSD工程の機械化及び自動化によ
り回避される場合がある。
The WSSD / TXRF method is advantageous for increasing the sensitivity as described above, but at the same time imposes the following restrictive conditions. Concentrate impurities on the wafer surface efficiently. Drop concentration position and X to ensure reproducibility within 90%
The line irradiation position must be 3 mm or less. Be careful not to cause reverse contamination during the impurity concentration process. However, these may be avoided by mechanization and automation of the WSSD process.

【0009】しかしながら、ここにおける最大の問題点
は、TXRF法本来の利点である非破壊で不純物の分布
状態を測定することに対しては適用できない点にある。
However, the biggest problem here is that it cannot be applied to the nondestructive measurement of impurity distribution, which is an inherent advantage of the TXRF method.

【0009】本発明はこのような事情に鑑みなされたも
のであって、上記課題を解消し、ウエハ表面にPS層を
形成させて金属不純物を効率良くとらえ、TXRF法に
よるウエハ汚染の高感度評価を可能とする表面異物分析
用ウエハ及びウエハ表面の金属不純物の評価方法を提供
することを目的とするものである。
The present invention has been made in view of the above circumstances, and solves the above problems, forms a PS layer on the wafer surface to efficiently capture metal impurities, and highly sensitively evaluates wafer contamination by the TXRF method. It is an object of the present invention to provide a surface foreign matter analysis wafer and a method for evaluating metal impurities on the surface of the wafer, which enables the above.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、半導体素子製造工程の一又は複数の処理環
境へ投入して金属汚染モニター用ウエハとして使用し、
処理環境中のウエハ汚染を検査するための表面異物分析
用ウエハであって、半導体シリコンウエハの鏡面を陽極
化成処理し、該鏡面研磨ウエハにポーラスシリコン層を
形成したことを特徴とするものである。
In order to achieve the above object, the present invention is used as a wafer for monitoring metal contamination after being put into one or a plurality of processing environments of a semiconductor element manufacturing process,
A wafer for surface foreign matter analysis for inspecting wafer contamination in a processing environment, characterized in that a mirror surface of a semiconductor silicon wafer is subjected to anodization treatment and a porous silicon layer is formed on the mirror-polished wafer. .

【0011】また、好適な例においては、上記ポーラス
シリコン層が数十〜数千オングストローム(以下、Åと
表記する。)の微小孔を有するものとして形成される。
Further, in a preferred example, the porous silicon layer is formed as having minute holes of several tens to several thousand angstroms (hereinafter referred to as Å).

【0012】また、上記表面異物分析用ウエハを用いた
ウエハ表面の金属不純物の評価方法であって、半導体シ
リコンウエハの鏡面を陽極化成処理してポーラスシリコ
ン層を形成するとともに、半導体素子製造工程の一又は
複数の処理環境へ投入して金属汚染モニター用ウエハと
して使用し、回収後ウエハ表面の金属不純物濃度及び分
布状態を評価することを特徴とするものである。
A method for evaluating metal impurities on a wafer surface using the above-mentioned wafer for surface foreign matter analysis, comprising: forming a porous silicon layer by anodizing the mirror surface of a semiconductor silicon wafer and performing a semiconductor element manufacturing process. It is characterized in that it is put into one or a plurality of processing environments and used as a metal contamination monitor wafer, and after collection, the metal impurity concentration and distribution state on the wafer surface are evaluated.

【0013】また、溶液中の金属不純物の評価方法であ
って、上記表面異物分析用ウエハを半導体素子製造工程
の処理溶液中に浸漬し、これを引き上げ乾燥させ、ウエ
ハ表面の金属不純物濃度及び分布状態を評価することを
特徴とするものである。
In addition, in a method for evaluating metal impurities in a solution, the wafer for surface foreign matter analysis is dipped in a processing solution in a semiconductor element manufacturing process, pulled up and dried, and the concentration and distribution of metal impurities on the wafer surface are measured. It is characterized by evaluating the condition.

【0014】[0014]

【作用】鏡面研磨ウエハを陽極化成処理してPS層を形
成させた表面異物分析用ウエハを半導体素子製造工程の
処理環境中に投入することにより該ウエハ表面に金属不
純物を効率良くとらえることができる。そして、表面異
物分析用ウエハを回収後TXRF法により該ウエハ上の
金属不純物濃度を高感度に測定することができる。
The metal impurities can be efficiently captured on the surface of the wafer by placing the wafer for surface foreign matter analysis on which the PS layer is formed by anodizing the mirror-polished wafer into the processing environment of the semiconductor element manufacturing process. . Then, after collecting the surface foreign matter analyzing wafer, the metal impurity concentration on the wafer can be measured with high sensitivity by the TXRF method.

【0015】[0015]

【実施例】本発明の一実施例を添付図面を参照して以下
説明する。本発明の表面異物分析用ウエハ(以下、PS
ウエハと称する。)は、ウエハ鏡面をフッ化水素酸ベー
スの溶液中で陽極とし対向電極(Pt)との間に通電して
数十〜数千Åの微小孔を形成したものである。すなわ
ち、ウエハ鏡面を陽極化成処理してPS層(200m2/cm3
程度の内部表面積を有するスポンジ状組織のSiナノ構
造)を形成したものである。図1はこのPSウエハを模
式的に説明したものであり、(a)が平面図及び(b)
が部分拡大断面図である。また、PS層の形成は化成処
理条件に依存するので、PSウエハの投入環境に適した
開孔(微小孔の形成)条件を選択すればよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. Wafer for surface foreign matter analysis of the present invention (hereinafter referred to as PS
It is called a wafer. ) Is a wafer in which a mirror surface of the wafer is used as an anode in a hydrofluoric acid-based solution and an electric current is applied between it and a counter electrode (Pt) to form tens to thousands of Å micropores. That is, the PS layer (200 m 2 / cm 3
It has a sponge-like structure (Si nanostructure) having a certain internal surface area. FIG. 1 schematically illustrates this PS wafer, where (a) is a plan view and (b) is a plan view.
Is a partially enlarged sectional view. Further, since the formation of the PS layer depends on the chemical conversion treatment conditions, it is only necessary to select the conditions for forming holes (formation of fine holes) suitable for the PS wafer charging environment.

【0016】次に、PSウエハの作製からこのウエハを
用いた金属濃度の測定及び結果について以下詳述する。
なお、この実施例は実験規模でおこなわれたものである
が、以下で実証された本発明の要旨は実施規模の拡大に
よって影響されるものではない。
Next, the production of the PS wafer, the measurement of the metal concentration using this wafer, and the results will be described in detail below.
It should be noted that although this example was carried out on an experimental scale, the gist of the present invention demonstrated below is not affected by the expansion of the operational scale.

【0017】P型Si(100) ウエハをHF:C2H5OH=1:1 に代
表される溶液中で陽極化成し、ウエハ表面にPS層を形
成させる。そして、このPSウエハをHF/C2H5OH/H2O 溶
液中でエッチング処理し、ついでFe,Ni,Cuを種々の濃度
(ppt〜ppb)で含有する溶液(C2H5OH/H2O あるいはC2H5OH
/H2O2/H2O ベース) 中で5分間浸漬処理する。その後、
PSウエハを取り出し、乾燥してPSウエハ上の金属濃
度をTXRF法により測定する。なお、比較のため鏡面
研磨ウエハについても同様に処理し、このウエハ上の金
属濃度を測定している。
A P-type Si (100) wafer is anodized in a solution represented by HF: C 2 H 5 OH = 1: 1 to form a PS layer on the wafer surface. Then, this PS wafer was subjected to an etching treatment in a HF / C 2 H 5 OH / H 2 O solution, and then Fe, Ni, and Cu were mixed at various concentrations.
(ppt ~ ppb) containing solution (C 2 H 5 OH / H 2 O or C 2 H 5 OH
/ H 2 O 2 / H 2 O base) for 5 minutes. afterwards,
The PS wafer is taken out, dried and the metal concentration on the PS wafer is measured by the TXRF method. For comparison, a mirror-polished wafer was similarly processed and the metal concentration on this wafer was measured.

【0018】上記浸漬処理において、C2H5OH:H2O=1:4ベ
ースのFe,Ni,Cu混合汚染溶液に浸漬したPSウエハ上の
金属濃度のX線入射角依存性を図2に示す。C2H5OH/H2O
ベースの金属汚染溶液では、CuのみがPSウエハ上で検
出された。図に示すようにCuはX線入射角0.18度付近ま
では、入射角の増大とともにその濃度が高くなることか
ら、PSウエハ表面に30Å以上深く分布しているものと
考えられる。このPSウエハ表面のX線入射角0.18度に
おけるCu濃度は 5.4×1013atoms/cm2 ,鏡面研磨ウエハ
では 4.8×1012atoms/cm2 であり、PSウエハによる検
出感度が鏡面研磨ウエハに比して1オーダー高く評価で
きるといえる。
In the above immersion treatment, the dependence of the metal concentration on the PS wafer immersed in the mixed contamination solution of Fe, Ni and Cu of C 2 H 5 OH: H 2 O = 1: 4 base on the X-ray incident angle is shown in FIG. Shown in. C 2 H 5 OH / H 2 O
In the base metal contamination solution, only Cu was detected on the PS wafer. As shown in the figure, Cu is considered to be distributed deeper than 30 Å on the surface of the PS wafer because the concentration of Cu increases as the incident angle increases up to an X-ray incident angle of around 0.18 degrees. The Cu concentration at the X-ray incident angle of 0.18 degree on this PS wafer is 5.4 × 10 13 atoms / cm 2 , and that of the mirror-polished wafer is 4.8 × 10 12 atoms / cm 2 , and the detection sensitivity of the PS wafer is higher than that of the mirror-polished wafer. It can be said that it can be evaluated one order higher.

【0019】次にC2H5OH:H2O2:H2O=6:1:23ベースのFe,N
i,Cu混合汚染溶液に浸漬したPSウエハ上の金属濃度の
X線入射角依存性を図3に示す。この図から看て取れる
ように酸化剤としてH2O2を添加するとFe,Ni,Cuのいずれ
の金属もPSウエハ上に残留していることが確認され
た。このことは、Fe,Ni がSi表面の酸化膜形成時に酸化
物としてとりこまれるためと考えられる。これらの金属
濃度の入射角依存性は図2と同様の傾向を示し、金属濃
度についてもPSウエハによる検出感度が鏡面研磨ウエ
ハに比して1オーダー以上高いものであった。
Next, Fe, N based on C 2 H 5 OH: H 2 O 2 : H 2 O = 6: 1: 23
FIG. 3 shows the X-ray incident angle dependence of the metal concentration on the PS wafer immersed in the i, Cu mixed contamination solution. As can be seen from this figure, it was confirmed that when H 2 O 2 was added as an oxidant, any of Fe, Ni, and Cu metals remained on the PS wafer. It is considered that this is because Fe and Ni are incorporated as oxides when forming an oxide film on the Si surface. The dependency of these metal concentrations on the incident angle showed the same tendency as in FIG. 2, and the detection sensitivity of the PS wafer with respect to the metal concentration was one order or more higher than that of the mirror-polished wafer.

【0020】また、本発明が保護される範囲において、
半導体素子製造工程における超純水、化学薬品等の溶液
中に存在する金属不純物によるウエハ汚染の高感度評価
はもとより、クリーンルーム環境中や各種製造装置にお
ける処理環境中のウエハ汚染の高感度評価等、本発明の
手法に基づく種々の用途展開は自由である。
Further, within the scope of protection of the present invention,
Ultra-pure water in the semiconductor device manufacturing process, high sensitivity evaluation of wafer contamination by metal impurities present in solutions such as chemicals, as well as high sensitivity evaluation of wafer contamination in clean room environment and processing environment in various manufacturing equipment, etc. Various applications can be freely developed based on the method of the present invention.

【0021】[0021]

【発明の効果】本発明は以上の構成よりなるものであ
り、PSウエハを作製するとともにこれを用い、微量金
属不純物による ppt〜ppb オーダーのウエハ汚染をTX
RF法により鏡面研磨ウエハの場合に比して1オーダー
以上高感度に評価することができる。
EFFECTS OF THE INVENTION The present invention has the above-described structure. A PS wafer is manufactured and used to prevent TX contamination of wafers in the ppt to ppb order due to trace metal impurities.
By the RF method, the evaluation can be performed with one or more orders of magnitude higher sensitivity than in the case of a mirror-polished wafer.

【0022】また、半導体素子製造工程における超純
水、化学薬品等の溶液中に存在する金属不純物によるウ
エハ汚染の高感度評価はもとより、クリーンルーム環境
中や各種製造装置における処理環境中から金属汚染をモ
ニターしウエハ汚染を高感度評価できるので、本発明の
手法に基づく金属汚染防止対策の検討等、産業上利用で
きる種々の用途展開とそれらへの寄与が期待できる。
Further, in addition to the highly sensitive evaluation of wafer contamination due to metal impurities present in a solution such as ultrapure water or chemicals in the semiconductor device manufacturing process, metal contamination is detected not only in a clean room environment or in a processing environment of various manufacturing apparatuses. Since the wafer contamination can be monitored and evaluated with high sensitivity, it is expected that various industrial applications and contributions to them, such as investigation of metal contamination prevention measures based on the method of the present invention, will be made.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の表面異物分析ウエハ(PSウエハ)を
説明する模式図の(a)が平面図であり、(b)が部分
拡大断面図である。
FIG. 1A is a plan view and FIG. 1B is a partially enlarged cross-sectional view of a schematic diagram for explaining a surface foreign matter analysis wafer (PS wafer) of the present invention.

【図2】本発明の評価方法により一溶液中のウエハ汚染
を検証したPSウエハ上の金属濃度のX線入射角依存性
を示すデータプロットである。
FIG. 2 is a data plot showing the X-ray incident angle dependence of the metal concentration on a PS wafer in which the wafer contamination in one solution was verified by the evaluation method of the present invention.

【図3】同じく他の溶液中のウエハ汚染を検証したPS
ウエハ上の金属濃度のX線入射角依存性を示すデータプ
ロットである。
FIG. 3 is a PS that also verifies wafer contamination in another solution.
It is a data plot which shows the X-ray incident angle dependence of the metal concentration on a wafer.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 PS層 3 表面異物分析ウエハ(PSウエハ) 1 Silicon substrate 2 PS layer 3 Surface foreign matter analysis wafer (PS wafer)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子製造工程の一又は複数の処理
環境へ投入して金属汚染モニター用ウエハとして使用
し、処理環境中のウエハ汚染を検査するための表面異物
分析用ウエハであって、半導体シリコンウエハの鏡面を
陽極化成処理し、該鏡面研磨ウエハにポーラスシリコン
層を形成したことを特徴とする表面異物分析用ウエハ。
1. A surface foreign matter analysis wafer for inspecting wafer contamination in a processing environment, which is used as a wafer for monitoring metal contamination by being put into one or a plurality of processing environments of a semiconductor device manufacturing process, the semiconductor comprising: A wafer for surface foreign matter analysis, characterized in that a mirror surface of a silicon wafer is subjected to anodization treatment and a porous silicon layer is formed on the mirror-polished wafer.
【請求項2】 上記ポーラスシリコン層が数十〜数千オ
ングストロームの微小孔を有するものとして形成された
請求項1記載の表面異物分析用ウエハ。
2. The wafer for surface foreign matter analysis according to claim 1, wherein the porous silicon layer is formed as having minute holes of tens to thousands of angstroms.
【請求項3】 全反射蛍光X線分析法によるウエハ表面
の金属不純物の評価方法において、半導体シリコンウエ
ハの鏡面を陽極化成処理してポーラスシリコン層を形成
するとともに、半導体素子製造工程の一又は複数の処理
環境へ投入して金属汚染モニター用ウエハとして使用
し、回収後ウエハ表面の金属不純物濃度及び分布状態を
評価することを特徴とするウエハ表面の金属不純物の評
価方法。
3. A method for evaluating a metal impurity on a wafer surface by a total reflection X-ray fluorescence analysis method, wherein a mirror surface of a semiconductor silicon wafer is anodized to form a porous silicon layer, and at least one of semiconductor device manufacturing steps is performed. The method for evaluating a metal impurity on a wafer surface, characterized in that the wafer is used as a wafer for monitoring metal contamination after being put into the processing environment, and the concentration and distribution of metal impurities on the wafer surface are evaluated after recovery.
【請求項4】 全反射蛍光X線分析法によるウエハ表面
の金属不純物の評価方法において、上記表面異物分析用
ウエハを半導体素子製造工程の処理溶液中に浸漬し、こ
れを引き上げ乾燥させ、ウエハ表面の金属不純物濃度及
び分布状態を評価することを特徴とするウエハ表面の金
属不純物の評価方法。
4. A method for evaluating a metal impurity on a wafer surface by a total reflection X-ray fluorescence analysis method, wherein the wafer for surface foreign matter analysis is dipped in a processing solution in a semiconductor element manufacturing process, pulled up and dried, and the wafer surface is then dried. A method for evaluating metal impurities on a wafer surface, comprising: evaluating the metal impurity concentration and distribution state of.
JP5092525A 1993-03-25 1993-03-25 Wafer for surface foreign matter analysis and method for evaluating metal impurities on wafer surface Expired - Fee Related JPH0727946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5092525A JPH0727946B2 (en) 1993-03-25 1993-03-25 Wafer for surface foreign matter analysis and method for evaluating metal impurities on wafer surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5092525A JPH0727946B2 (en) 1993-03-25 1993-03-25 Wafer for surface foreign matter analysis and method for evaluating metal impurities on wafer surface

Publications (2)

Publication Number Publication Date
JPH06283583A true JPH06283583A (en) 1994-10-07
JPH0727946B2 JPH0727946B2 (en) 1995-03-29

Family

ID=14056766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5092525A Expired - Fee Related JPH0727946B2 (en) 1993-03-25 1993-03-25 Wafer for surface foreign matter analysis and method for evaluating metal impurities on wafer surface

Country Status (1)

Country Link
JP (1) JPH0727946B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1100092A2 (en) * 1999-11-12 2001-05-16 Helmut Fischer GmbH & Co. X-ray guiding device
JP2003037142A (en) * 2001-07-19 2003-02-07 Shin Etsu Handotai Co Ltd Method for measuring concentration of boron adsorbed on surface of wafer and method for evaluating boron level in environmental atmosphere

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1100092A2 (en) * 1999-11-12 2001-05-16 Helmut Fischer GmbH & Co. X-ray guiding device
EP1100092A3 (en) * 1999-11-12 2003-03-26 Helmut Fischer GmbH & Co. X-ray guiding device
JP2003037142A (en) * 2001-07-19 2003-02-07 Shin Etsu Handotai Co Ltd Method for measuring concentration of boron adsorbed on surface of wafer and method for evaluating boron level in environmental atmosphere

Also Published As

Publication number Publication date
JPH0727946B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
Neumann et al. Ultra-trace analysis of metallic contaminations on silicon wafer surfaces by vapour phase decomposition/total reflection X-ray fluorescence (VPD/TXRF)
JP4992246B2 (en) Method for evaluating Cu in silicon wafer
KR101242246B1 (en) Apparatus for measuring impurities on wafer and Method for measuring impurities on wafer
JP3494102B2 (en) Evaluation method of metal impurity concentration in silicon wafer
JP3044881B2 (en) Method for analyzing metal impurities in surface oxide film of semiconductor substrate
US7601538B2 (en) Method for analyzing impurity
JP2751953B2 (en) Analysis method for contamination inside the hall
Li et al. Effects of ambient and dissolved oxygen concentration in ultrapure water on initial growth of native oxide on a silicon (100) surface
JPH06283583A (en) Wafer for analyzing surface foreign matter and estimation method of metal impurities on wafer surface
JP3690484B2 (en) Method for analyzing metal impurities on silicon substrate surface
JP6819883B2 (en) Metal impurity analysis method for silicon wafers
US6358761B1 (en) Silicon monitor for detection of H2O2 in acid bath
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
JP5541190B2 (en) Metal impurity concentration evaluation method for P-type silicon wafer
US6146909A (en) Detecting trace levels of copper
Lu et al. Evaluation of cleaning efficiency with a radioactive tracer and development of a microwave digestion method for semiconductor processes
Rip et al. Etching of III-V materials determined by ICP-MS with sub-nanometer precision
Li et al. Thickness measurement of submonolayer native oxide films on silicon wafers
Hoff et al. Degradation of oxide properties caused by low-level metallic contamination
JPH05315428A (en) Estimation method of contamination impurities
JP2000040723A (en) Metal-impurity inspecting wafer and metal-impurity inspecting method using wafer thereof
Chen Characteristics of spontaneous reaction occurred by metal contamination and silicon substrate for ultralarge-scale integration semiconductor process
Tokuda et al. Leakage current distribution and dielectric breakdown of Cu-contaminated thin SiO2
JPH05283381A (en) Recovery of contaminant metal element on silicon wafer surface
JP5961076B2 (en) Method for evaluating the surface of an object

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees