EP1100092A2 - X-ray guiding device - Google Patents

X-ray guiding device Download PDF

Info

Publication number
EP1100092A2
EP1100092A2 EP00123501A EP00123501A EP1100092A2 EP 1100092 A2 EP1100092 A2 EP 1100092A2 EP 00123501 A EP00123501 A EP 00123501A EP 00123501 A EP00123501 A EP 00123501A EP 1100092 A2 EP1100092 A2 EP 1100092A2
Authority
EP
European Patent Office
Prior art keywords
reflection
measurement object
reflection surfaces
coating
reflection surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00123501A
Other languages
German (de)
French (fr)
Other versions
EP1100092B1 (en
EP1100092A3 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmut Fischer GmbH and Co
Original Assignee
Helmut Fischer GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmut Fischer GmbH and Co filed Critical Helmut Fischer GmbH and Co
Publication of EP1100092A2 publication Critical patent/EP1100092A2/en
Publication of EP1100092A3 publication Critical patent/EP1100092A3/en
Application granted granted Critical
Publication of EP1100092B1 publication Critical patent/EP1100092B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators

Definitions

  • the invention relates to a device for guiding X-rays from a Radiation source to a measurement object.
  • the X-ray fluorescence method is used to measure thin layers or multiple layers used.
  • the X-ray fluorescence radiation of the individual elements of a sample and verified in Layer thickness (es) and composition (s) is converted.
  • the stimulating X-rays are blocked by a collimator system as fine Beams of rays to the measuring surface. From here the X-ray fluorescence radiation emitted. In a proportional counter tube or other detector the radiation is detected in an energy-dispersive manner.
  • x-ray radiation guides which enable that the X-rays focus on these small functional areas becomes.
  • monocapillaries These are so-called monocapillaries. These monocapillaries are cylindrical designed in the form of a glass tube. By total reflection on the Walls of the glass tube allow the X-rays to be sufficient Intensity to the object to be measured.
  • the collimators designed as monocapillaries are moreover in this regard have been developed so that the inner walls of the glass tube are parabolic are formed so that a focusing of the reflected rays to the measurement object should be done.
  • So-called polycapillaries are also known.
  • it is a monolith that is a bundle of several monocapillaries has, which in turn are arranged such that the specifically guided X-rays emanate at a point outside the exit plane of the Focus on monoliths.
  • the invention is therefore based on the object of a device for guiding the x-rays from a radiation source to a measurement object, in particular for small structure sizes with a functional area under 100 ⁇ m x 100 ⁇ m create, which are inexpensive to manufacture, on the measuring surface to be measured adjustable and a sufficient transmission of the radiation intensity to the measurement object enables.
  • the inventive design of at least two forming a gap Reflective surfaces have the advantage that a simple arrangement is created which allows the x-rays to be of sufficient intensity be guided to the measurement object in order to enable the detector to achieve a sufficient level Can detect the intensity of the emitted fluorescence radiation.
  • At least two reflection surfaces forming a gap are simple to manufacture. Elaborate manufacturing processes for manufacturing the device for X-ray guidance is compared to that of the prior art known mono- and / or polycapillaries are not given.
  • the X-rays by total reflection within a gap to the measurement object formed by at least two reflection surfaces be performed.
  • the X-ray radiation emerging laterally from the column or columns is ineffective for excitation of fluorescent radiation, however by total reflection of the X-rays between the at least two ones Gap-forming reflection surfaces will have an at least sufficient intensity the test object initiated or transferred.
  • the adjustable in width by the gap formed by the at least two reflection surfaces is. This enables the size of the measuring surface to be on the measurement object is adjustable. Thus, the device can respond to different requirements Layer thickness measurement can be adjusted and adjusted.
  • two mutually opposite and parallel reflection surfaces are provided.
  • the gap width is at least close to that Size of the measuring surface of the test objects and advantageously on the outlet opening adapted to the X-ray tube so that the greatest possible radiation intensity can be transferred to the test object.
  • two a gap lying opposite one another and tapering towards the measurement object having reflection surfaces are provided.
  • This approximately wedge-shaped Arrangement of the reflection surfaces can additionally focus the X-rays be achieved.
  • the opening width of the reflection surfaces between the entrance and the exit provided at the tapered end can in Micrometer range or larger.
  • fixed at least one of the reflection surfaces and at least one further reflection surface is adjustable in distance and / or angle. This can make you dependent Depending on the application, both distance / and or angle are set with a reflection surface serving as a reference surface.
  • the reflection surfaces made of a semiconductor material, in particular a silicon wafer are manufactured.
  • the industrial production of silicon wafers is now in the meantime inexpensive.
  • the silicon wafers also have very flat design on a surface that is suitable for the total reflection of the X-rays are suitable.
  • the critical angle of total reflection is at a few mrad depending on the energy of the X-rays.
  • the reflection surfaces at least partially with a precious metal preferably copper, silver, gold, platinum, or palladium the like is steamed.
  • a precious metal preferably copper, silver, gold, platinum, or palladium the like is steamed.
  • the critical angle can be, for example, with a platinum coating be increased to 4.5 mrad, making the critical angle for total reflection can be increased. This in turn leads to the effect that a higher one The intensity of the X-rays on the measurement object is present, which makes it sufficient high intensity for emitting fluorescent beams can be given.
  • the coating at least partially on the beam exit of the X-ray tube facing end is provided. This allows a variety of X-rays are reflected by total reflection in the entrance area, causing a high intensity can be achieved.
  • the reflective surfaces near the measurement object have an area which is a Has coating which prevents total reflection or at least partially coated reflection surfaces has an area without coating or in which a coating preventing total reflection is provided. This can allow the total reflection of rays to be eliminated which is after a last reflection before exiting the reflection surfaces would be outside the measuring range. With this arrangement, a even more precise irradiation of the measuring surface can be achieved on a measuring object, which in turn increases the quality of the measurement.
  • At least a reflection surface can be set by at least one adjustment unit.
  • This Adjustment unit can advantageously as a fine mechanical adjustment electrical, hydraulic, pneumatic or piezoelectric actuator his.
  • This setting unit must have settings at least in the micrometer range allow for an exact alignment and adjustment of the least there are two mutually arranged reflection surfaces.
  • FIG 1 the essential components of a layer thickness measuring device are shown schematically 11, with the representation of an evaluation unit, one Screen for the visualization of a picture taken by a video camera DUT and input keyboard and printer was dispensed with.
  • This Layer thickness measuring device 11 is used, for example, for measuring bond pads, contacts, which are partially provided with selective coating, conductor tracks and functional coatings used on small areas.
  • Layer thicknesses determined or checked their measuring surface or the functional surfaces are smaller than 100 ⁇ m x 100 ⁇ m, in particular smaller than 50 ⁇ m x 50 ⁇ m.
  • an X-ray radiation is generated, which via an anode 14 is directed to a measurement object 16.
  • the X-rays are used in one Layer of the measurement object 16 excited fluorescence radiation.
  • the intensity this fluorescence radiation as a function of energy (spectrum) is one Function of the layer thickness. This or the parameter of the layer system is used, in which with the aid of a detector 17 the system of emitted radiation is registered.
  • Device 12 is provided, which according to the embodiment of two mutually opposite reflection surfaces 18. These reflective surfaces 18 are used for beam bundling and beam transmission, so that the X-ray radiation reaches the measuring surface of the measuring object 16.
  • the reflective surfaces 18 are preferably directly to the anode 14 or to an outlet flange 21 arranged near the anode 14.
  • a collimator 23 is also provided, whereby a measuring area 24 according to FIG. 3 is imaged on a measurement object can.
  • the collimator 23 is advantageously a slit collimator, the Gap width is adjustable.
  • the reflection surfaces 18 are designed as elongated, rectangular surfaces, as can be seen from Figure 1 and Figure 2.
  • the length of the reflection surfaces 18 is essentially determined by the structure and by the degree of total reflection. X-rays that are not parallel between an axis of the measuring range 24 and the anode 14 are at least once by a total reflection distracted.
  • the width of the reflection surfaces 18 is at least one and a half times as large as the maximum functional area to be tested.
  • Advantageously 18 silicon wafers used for the reflection surfaces.
  • This inexpensive Base material can be the appropriate size of the device according to the invention 12 can be easily adjusted.
  • the reflection surfaces 18 made from a silicon wafer are advantageously applied to holding elements 26, 27 according to FIG. 3.
  • these are glued tension-free so that the flatness of the reflective surface 18 can be maintained.
  • the reflective surfaces 18 also tension-free on the holding elements 26, 27 by clamping or the like can be fixed.
  • Figure 3 engages one of the two holding elements 27 to an adjusting unit 28 through which a holding element 27 closes the fixed element 26 is adjustable.
  • the holding element 26 advantageously takes the reflection surface 18 parallel to the central axis 29 of the device 12 on.
  • the gap width can be set by the setting unit 28.
  • the angularity of the holding element 27 to the element 26 is adjustable is.
  • a mirror-image arrangement can also be provided.
  • an adjusting unit 28 is provided on each of the holding elements 26, 27 , whereby the holding elements 26, 27 either be arranged parallel to one another and / or at an angle to one another can, so that a uniform or tapering gap to the measurement object 16th is formed.
  • the setting unit 28 is designed such that gap widths, for example can be set in a range from 10 to 100 ⁇ m can. Fine mechanical adjustment mechanisms, piezoelectric Actuators, as well as electric, hydraulic, pneumatic actuators be provided.
  • the reflection surface 18 can be vapor-coated with a noble metal, for example. This allows the critical angle for total reflection, that for silicon at 1.5 mrad is increased to 4.5 mrad by a platinum coating. This in turn has an advantageous effect on the transmission of the X-rays.
  • the base material can consist of a quartz surface or a plastic material which fulfills the requirement for flatness and has a coating.
  • the coating can advantageously be provided at least at the entrance of the reflection surfaces 18, so that the number of captured and reflected rays is as large as possible.
  • the coating can be continued completely over the course along the reflection surfaces 18 or can also be provided only partially.
  • the coating or the material of the coating can also change depending on the application.
  • the divergence at the exit of the reflection surfaces 18 can be reduced, as a result of which the radiation can be focused and thereby an increase in intensity on the measurement area 24 of the measurement object 16.
  • a coating is not provided in a region near the lower end 22 of the reflection surface 18 or that a coating preventing total reflection is provided, as a result of which the radiation emerging below the reflection surface 18 precisely matches the size of the measuring region 24 from the measurement object 16 is focused. The irradiation of edge areas outside of the measuring area 24 can thereby be considerably reduced.
  • the collimator 23 can also be adapted to this measuring range, so that by focusing the Radiation enables an increase in intensity to a predetermined measuring range is.
  • the reflection surfaces 18 at least slightly are concave.
  • the concave formation can become lower Taper end 22 out, so that a kind of mouthpiece-shaped design of the reflection surfaces 18 is given.
  • the dimensions must be taken into account which can also be in the micrometer range.
  • the opening width of the reflection surfaces 18 at the entrance to the device 12 corresponds essentially the outlet opening of those emitted via the anode X-rays.
  • a slightly larger or smaller opening width can also be used given the diameter of the primary spot of the X-rays his.
  • the device 12 can furthermore have openings and receptacles, which serve to arrange an optics to the measurement object 16 by a Visualize video camera.
  • the device 12 is according to the embodiment by two to each other arranged reflection surfaces 18 which are parallel or at an acute angle to each other are arranged, provided. It can also be provided that instead of these two reflecting surfaces 18, three or more reflecting surfaces are suitably arranged to each other to control the transmission of X-rays to the measuring area 24 of a measurement object 16, so that enables an increase in intensity by focusing the X-rays is.
  • these two reflecting surfaces 18, three or more reflecting surfaces are suitably arranged to each other to control the transmission of X-rays to the measuring area 24 of a measurement object 16, so that enables an increase in intensity by focusing the X-rays is.
  • it is not necessary that a closed, tubular arrangement is used to hold the x-rays to focus to the measuring range by total reflection. More geometrical Embodiments of the reflection surfaces 18 are also conceivable, which the Allow total reflection of the X-rays.

Abstract

Apparatus for guiding X-rays from a radiation source to a measurement object (16) having at least two reflecting areas (18) forming a slit.

Description

Die Erfindung betrifft eine Vorrichtung zur Führung von Röntgenstrahlen von einer Strahlenquelle zu einem Meßobjekt.The invention relates to a device for guiding X-rays from a Radiation source to a measurement object.

Zur Messung dünner Schichten oder Mehrfachschichten wird die Röntgenfluoreszenzmethode eingesetzt. Bei einer derartigen Schichtanalyse wird die Röntgenfluoreszenzstrahlung der einzelnen Elemente einer Probe nachgewiesen und in Schichtdicke(n) und Zusammensetzung(en) umgerechnet wird. Die anregende Röntgenstrahlung gelangt durch ein Kollimatorsystem abgeblendet als feines Strahlenbündel an die Meßfläche. Von hier aus wird die Röntgenfluoreszenzstrahlung emittiert. In einem Proportionalzählrohr oder einem anderen Detektor wird die Strahlung energiedispersiv nachgewiesen. Durch eine derartige Schichtdickenmessung lassen sich berührungslos und zerstörungsfrei Funktionsflächen mit Abmessungen bis einer Größe von beispielsweise 100 µm x 100 µm exakt ermitteln.The X-ray fluorescence method is used to measure thin layers or multiple layers used. In such a layer analysis, the X-ray fluorescence radiation of the individual elements of a sample and verified in Layer thickness (es) and composition (s) is converted. The stimulating X-rays are blocked by a collimator system as fine Beams of rays to the measuring surface. From here the X-ray fluorescence radiation emitted. In a proportional counter tube or other detector the radiation is detected in an energy-dispersive manner. Through such a layer thickness measurement functional surfaces can be made contactless and non-destructive with dimensions up to a size of, for example, 100 µm x 100 µm exactly determine.

Zur Schichtdickenmessung von kleineren Funktionsflächen von beispielsweise weniger als 100 µm x 100 µm sind Röntgenstrahlungsleiter bekannt, welche ermöglichen, daß die Röntgenstrahlung auf diese kleinen Funktionsflächen fokussiert wird. Das sind sogenannte Monokapillare. Diese Monokapillaren sind zylindrisch in Form eines Glasröhrchens ausgebildet. Durch Totalreflexion an den Wänden des Glasrohres wird ermöglicht, daß die Röntgenstrahlen mit hinreichender Intensität zum Meßobjekt geführt werden.For measuring the layer thickness of smaller functional areas, for example less than 100 µm x 100 µm x-ray radiation guides are known which enable that the X-rays focus on these small functional areas becomes. These are so-called monocapillaries. These monocapillaries are cylindrical designed in the form of a glass tube. By total reflection on the Walls of the glass tube allow the X-rays to be sufficient Intensity to the object to be measured.

Die als Monokapillaren ausgebildeten Kollimatoren sind darüber hinaus dahingehend weiterentwickelt worden, daß die Innenwände der Glasröhre parabolisch ausgebildet sind, so daß eine Fokussierung der reflektierten Strahlen zum Meßobjekt erfolgen soll. Des weiteren sind sogenannte Polykapillare bekannt. Hierbei handelt es sich um einen Monolithen, der ein Bündel von mehreren Monokapillaren aufweist, wobei diese wiederum derart angeordnet sind, daß die gezielt geführten Röntgenstrahlen sich in einem Punkt außerhalb der Austrittsebene des Monolithen fokussieren.The collimators designed as monocapillaries are moreover in this regard have been developed so that the inner walls of the glass tube are parabolic are formed so that a focusing of the reflected rays to the measurement object should be done. So-called polycapillaries are also known. Here it is a monolith that is a bundle of several monocapillaries has, which in turn are arranged such that the specifically guided X-rays emanate at a point outside the exit plane of the Focus on monoliths.

Diese Kapillare weisen den Nachteil auf, daß diese im Preis hoch sind und Schichtdickenmeßgeräte mit diesen Kollimatoren wirtschaftlich nicht herstellbar sind. Des weiteren weisen die oben beschriebenen Kollimatoren den Nachteil auf, daß diese in ihrem Durchmesser fest ausgebildet sind, so daß eine Einstellung und Fokussierung der Röntgenstrahlen auf eine unterschiedliche Größe des Meßobjektes nicht ermöglicht ist. Darüber hinaus weisen diese Kollimatoren den Nachteil auf, daß die Beschaffung äußerst erschwert ist, da die Herstellung dieser Kollimatoren insbesondere auf Grund deren Komplexität monopolisiert ist.These capillaries have the disadvantage that they are high in price and Layer thickness measuring devices with these collimators cannot be produced economically are. Furthermore, the collimators described above have the disadvantage that that these are fixed in diameter, so that an adjustment and focusing the X-rays on a different size of the measurement object is not possible. In addition, these collimators have the Disadvantage on that the procurement is extremely difficult because the manufacture of this Collimators, in particular due to their complexity, are monopolized.

Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Vorrichtung zur Führung der Röntgenstrahlen von einer Strahlenquelle zu einem Meßobjekt, insbesondere für kleine Strukturgrößen mit einer Funktionsfläche unter 100 µm x 100 µm zu schaffen, welche kostengünstig herstellbar sind, auf die zu messende Meßfläche einstellbar und eine hinreichende Übermittlung der Strahlungsintensität zum Meßobjekt ermöglicht.The invention is therefore based on the object of a device for guiding the x-rays from a radiation source to a measurement object, in particular for small structure sizes with a functional area under 100 µm x 100 µm create, which are inexpensive to manufacture, on the measuring surface to be measured adjustable and a sufficient transmission of the radiation intensity to the measurement object enables.

Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung gemäß dem Anspruch 1 gelöst.This object is achieved by a device according to the claim 1 solved.

Die erfindungsgemäße Ausgestaltung von zumindest zwei einen Spalt bildenden Reflexionsflächen weist den Vorteil auf, daß eine einfache Anordnung geschaffen wurde, welche ermöglicht, daß die Röntgenstrahlen mit hinreichender Intensität zum Meßobjekt geführt werden, um zu ermöglichen, daß der Detektor eine hinreichende Intensität der emittierten Fluoreszenzstrahlung erfassen kann. Die zumindest zwei einen Spalt bildenden Reflexionsflächen sind in der Herstellung einfach. Aufwendige fertigungstechnische Verfahren zur Herstellung der Vorrichtung zur Führung von Röntgenstrahlen sind im Vergleich zu den aus dem Stand der Technik bekannten Mono- und/oder Polykapillaren nicht gegeben.The inventive design of at least two forming a gap Reflective surfaces have the advantage that a simple arrangement is created which allows the x-rays to be of sufficient intensity be guided to the measurement object in order to enable the detector to achieve a sufficient level Can detect the intensity of the emitted fluorescence radiation. At least two reflection surfaces forming a gap are simple to manufacture. Elaborate manufacturing processes for manufacturing the device for X-ray guidance is compared to that of the prior art known mono- and / or polycapillaries are not given.

Im Gegensatz zum Stand der Technik, bei welchem die Mono- oder Polykapillare aus vollständig geschlossenen Glasröhrchen gebildet sind, genügt es gemäß dem Gegenstand der Erfindung, daß die Röntgenstrahlen durch Totalreflexion innerhalb eines durch zumindest zwei Reflexionsflächen gebildeten Spaltes zum Meßobjekt geführt werden. Die seitlich aus dem oder den Spalten austretende Röntgenstrahlung ist für die Anregung der Fluoreszenzstrahlung unwirksam, aber durch Totalreflexion der Röntgenstrahlen zwischen den zumindest zwei einen Spalt bildenden Reflexionsflächen wird eine zumindest hinreichende Intensität auf das Meßobjekt eingeleitet oder übergeführt.In contrast to the prior art, in which the mono- or polycapillary are formed from completely closed glass tubes, it is sufficient according to the The object of the invention that the X-rays by total reflection within a gap to the measurement object formed by at least two reflection surfaces be performed. The X-ray radiation emerging laterally from the column or columns is ineffective for excitation of fluorescent radiation, however by total reflection of the X-rays between the at least two ones Gap-forming reflection surfaces will have an at least sufficient intensity the test object initiated or transferred.

Nach einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß der durch die zumindest zwei Reflexionsflächen gebildete Spalt in der Breite einstellbar ist. Dadurch ist ermöglicht, daß die Größe der Meßfläche auf dem Meßobjekt einstellbar ist. Somit kann die Vorrichtung auf unterschiedliche Anforderungen der Schichtdickenmessung eingestellt und angepaßt werden.According to an advantageous embodiment of the invention it is provided that the adjustable in width by the gap formed by the at least two reflection surfaces is. This enables the size of the measuring surface to be on the measurement object is adjustable. Thus, the device can respond to different requirements Layer thickness measurement can be adjusted and adjusted.

Nach einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß zwei einander gegenüber liegende und parallel zueinander angeordnete Reflexionsflächen vorgesehen sind. Dadurch kann eine konstruktiv einfache Ausgestaltung für eine Röntgenstrahlungsführung gegeben sein. Die Spaltbreite ist zumindest an die Größe der Meßfläche der Meßobjekte und vorteilhafterweise auf die Austrittsöffnung der Röntgenröhre angepaßt, so daß eine möglichst große Strahlungsintensität zum Meßobjekt übergeführt werden kann.According to an advantageous embodiment of the invention it is provided that two mutually opposite and parallel reflection surfaces are provided. This allows a structurally simple configuration for X-ray guidance can be provided. The gap width is at least close to that Size of the measuring surface of the test objects and advantageously on the outlet opening adapted to the X-ray tube so that the greatest possible radiation intensity can be transferred to the test object.

Nach einer alternativen Ausgestaltung der Erfindung ist vorgesehen, daß zwei einander gegenüber liegende und einen zum Meßobjekt sich verjüngenden Spalt aufweisende Reflexionsflächen vorgesehen sind. Durch diese in etwa keilförmige Anordnung der Reflexionsflächen kann eine zusätzlich Fokussierung der Röntgenstrahlung erzielt werden. Die Öffnungsweite der Reflexionsflächen zwischen dem Eingang und dem am verjüngenden Ende vorgesehene Ausgang kann im Mikrometerbereich oder größer liegen.According to an alternative embodiment of the invention it is provided that two a gap lying opposite one another and tapering towards the measurement object having reflection surfaces are provided. Through this approximately wedge-shaped Arrangement of the reflection surfaces can additionally focus the X-rays be achieved. The opening width of the reflection surfaces between the entrance and the exit provided at the tapered end can in Micrometer range or larger.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß zumindest eine der Reflexionsflächen fixiert und zumindest eine weitere Reflexionsfläche im Abstand und/oder Winkel einstellbar ist. Dadurch kann in Abhängigkeit des Anwendungsfalles wahlweise sowohl Abstand/und oder Winkel eingestellt werden, wobei eine Reflexionsfläche als Referenzfläche dient.According to a further advantageous embodiment of the invention it is provided that fixed at least one of the reflection surfaces and at least one further reflection surface is adjustable in distance and / or angle. This can make you dependent Depending on the application, both distance / and or angle are set with a reflection surface serving as a reference surface.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß die Reflexionsflächen aus einem Halbleitermaterial, insbesondere einem Siliziumwafer hergestellt sind. Die industrielle Herstellung der Siliziumwafer ist zwischenzeitlich kostengünstig. Die Siliziumwafer weisen des weiteren aufgrund der sehr ebenen Ausgestaltung eine Oberfläche auf, die sich für die Totalreflexion der Röntgenstrahlen eignet. Der kritische Winkel der Totalreflexion liegt beispielsweise bei wenigen mrad abhängig von der Energie der Röntgenstrahlung. Durch die hochwertige ebene Oberfläche der Siliziumwafer kann eine hinreichend verlustfreie Strahlweiterleitung gegeben sein.According to a further advantageous embodiment of the invention it is provided that the reflection surfaces made of a semiconductor material, in particular a silicon wafer are manufactured. The industrial production of silicon wafers is now in the meantime inexpensive. The silicon wafers also have very flat design on a surface that is suitable for the total reflection of the X-rays are suitable. For example, the critical angle of total reflection is at a few mrad depending on the energy of the X-rays. Through the high-quality flat surface of the silicon wafer can be a sufficiently loss-free Beam transmission can be given.

Vorteilhafterweise ist vorgesehen, daß die Reflexionsflächen zumindest teilweise mit einem Edelmetall, vorzugsweise Kupfer, Silber, Gold, Platin, Paladium oder dergleichen bedampft ist. Durch diese vorzugsweise auf einem Siliziumwafer vorgesehene Beschichtung, kann der kritische Winkel beispielsweise bei einer Platinbeschichtung auf 4,5 mrad erhöht sein, wodurch der kritische Winkel für die Totalreflexion erhöht sein kann. Dies führt wiederum zu dem Effekt, daß eine höhere Intensität der Röntgenstrahlung am Meßobjekt vorliegt, wodurch eine hinreichend hohe Intensität zur Emittierung von Fluoreszenzstrahlen gegeben sein kann.It is advantageously provided that the reflection surfaces at least partially with a precious metal, preferably copper, silver, gold, platinum, or palladium the like is steamed. Through this, preferably provided on a silicon wafer Coating, the critical angle can be, for example, with a platinum coating be increased to 4.5 mrad, making the critical angle for total reflection can be increased. This in turn leads to the effect that a higher one The intensity of the X-rays on the measurement object is present, which makes it sufficient high intensity for emitting fluorescent beams can be given.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß die Beschichtung zumindest teilweise an einem dem Strahlaustritt der Röntgenröhre zugewandten Ende vorgesehen ist. Dadurch können eine Vielzahl von Röntgenstrahlen durch Totalreflexion im Eingangsbereich reflektiert werden, wodurch eine hohe Intensität erzielt werden kann.According to a further advantageous embodiment of the invention it is provided that the coating at least partially on the beam exit of the X-ray tube facing end is provided. This allows a variety of X-rays are reflected by total reflection in the entrance area, causing a high intensity can be achieved.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß die Reflexionsflächen nahe dem Meßobjekt einen Bereich aufweisen, der eine die Totalreflexion unterbindende Beschichtung aufweist oder bei zumindest teilweise beschichteten Reflexionsflächen einen Bereich aufweist, der ohne Beschichtung oder bei dem eine die Totalreflexion unterbindende Beschichtung vorgesehen ist. Dadurch kann ermöglicht werden, daß die Totalreflexion von Strahlen eliminiert wird, welche nach einer letzten Reflexion vor Austritt aus den Reflexionsflächen außerhalb des Meßbereiches liegen würde. Durch diese Anordnung kann eine noch exaktere Bestrahlung der Meßfläche an einem Meßobjekt erzielt werden, wodurch wiederum die Qualität der Messung erhöht wird.According to a further advantageous embodiment of the invention it is provided that the reflective surfaces near the measurement object have an area which is a Has coating which prevents total reflection or at least partially coated reflection surfaces has an area without coating or in which a coating preventing total reflection is provided. This can allow the total reflection of rays to be eliminated which is after a last reflection before exiting the reflection surfaces would be outside the measuring range. With this arrangement, a even more precise irradiation of the measuring surface can be achieved on a measuring object, which in turn increases the quality of the measurement.

Nach einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß zumindest eine Reflexionsfläche durch zumindest eine Einstelleinheit einstellbar ist. Diese Einstelleinheit kann vorteilhafterweise als feinmechanische Justierung, als elektrischer, hydraulischer, pneumatischer oder piezoelektronischer Aktuator ausgebildet sein. Diese Einstelleinheit muß zumindest im Mikrometerbereich Einstellungen ermöglichen, damit eine exakte Ausrichtung und Einstellung der zumindest zwei zueinander angeordneten Reflexionsflächen gegeben ist.According to an advantageous embodiment of the invention it is provided that at least a reflection surface can be set by at least one adjustment unit. This Adjustment unit can advantageously as a fine mechanical adjustment electrical, hydraulic, pneumatic or piezoelectric actuator his. This setting unit must have settings at least in the micrometer range allow for an exact alignment and adjustment of the least there are two mutually arranged reflection surfaces.

Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den weiteren Ansprüchen angegeben.Further advantageous refinements and developments of the invention are shown in specified the further claims.

Anhand der nachfolgenden Zeichnungen und Beschreibungen wird ein bevorzugtes Ausführungsbeispiel näher beschrieben. Es zeigen,

Figur 1
eine schematische Ansicht eines Schichtdickenmeßgerätes mit einer erfindungsgemäßen Vorrichtung,
Figur 2
eine schematische Seitenansicht des in Figur 1 dargestellten Schichtdickenmeßgerätes,
Figur3
eine schematische Detaildarstellung der erfindungsgemäßen Vorrichtung und
Figur 4
eine schematisch vergrößerte Darstellung eines zum Meßobjekt weisenden Ende der erfindungsgemäßen Vorrichtung.
A preferred exemplary embodiment is described in more detail with reference to the following drawings and descriptions. Show it,
Figure 1
2 shows a schematic view of a layer thickness measuring device with a device according to the invention,
Figure 2
2 shows a schematic side view of the layer thickness measuring device shown in FIG. 1,
Figure 3
a schematic detailed view of the device according to the invention and
Figure 4
a schematic enlarged view of an end of the device according to the invention facing the measurement object.

In Figur 1 sind schematisch die wesentlichen Komponenten eines Schichtdickenmeßgerätes 11 dargestellt, wobei auf die Darstellung einer Auswerteeinheit, eines Bildschirms zur Visualisierung eines durch eine Videokamera aufgenommenen Meßobjektes sowie Eingabetastatur und Drucker verzichtet wurde. Dieses Schichtdickenmeßgerät 11 wird beispielsweise zur Messung von Bondpads, Kontakten, die zum Teil mit selektiver Beschichtung versehen sind, Leiterbahnen und funktionelle Beschichtungen an kleinen Flächen eingesetzt. Bevorzugt werden durch ein Schichtdickenmeßgerät 11 mit der erfindungsgemäßen Vorrichtung 12 Schichtdicken ermittelt oder geprüft, deren Meßfläche bzw. die Funktionsflächen kleiner als 100 µm x 100 µm, insbesondere kleiner als 50 µm x 50 µm sind. In einer Röntgenröhre 13 wird eine Röntgenstrahlung erzeugt, welche über eine Anode 14 auf ein Meßobjekt 16 gerichtet ist. Durch die Röntgenstrahlung wird in einer Schicht des Meßobjekts 16 eine Fluoreszenzstrahlung angeregt. Die Intensität dieser Fluoreszenzstrahlung in Abhängigkeit der Energie (Spektrum) ist eine Funktion der Schichtdicke. Dies oder der Prameter des Schichtsystems wird ausgenutzt, in dem mit Hilfe eines Detektors 17 das System der emittierten Strahlung registriert wird.In Figure 1, the essential components of a layer thickness measuring device are shown schematically 11, with the representation of an evaluation unit, one Screen for the visualization of a picture taken by a video camera DUT and input keyboard and printer was dispensed with. This Layer thickness measuring device 11 is used, for example, for measuring bond pads, contacts, which are partially provided with selective coating, conductor tracks and functional coatings used on small areas. To be favoured by means of a layer thickness measuring device 11 with the device 12 according to the invention Layer thicknesses determined or checked, their measuring surface or the functional surfaces are smaller than 100 µm x 100 µm, in particular smaller than 50 µm x 50 µm. In a X-ray tube 13, an X-ray radiation is generated, which via an anode 14 is directed to a measurement object 16. The X-rays are used in one Layer of the measurement object 16 excited fluorescence radiation. The intensity this fluorescence radiation as a function of energy (spectrum) is one Function of the layer thickness. This or the parameter of the layer system is used, in which with the aid of a detector 17 the system of emitted radiation is registered.

Zwischen der Röntgenröhre 13 und dem Meßobjekt 16 ist die erfindungsgemäße Vorrichtung 12 vorgesehen, welche gemäß dem Ausführungsbeispiel aus zwei einander gegenüber liegenden Reflexionsflächen 18 besteht. Diese Reflexionsflächen 18 dienen zur Strahlenbündelung und Strahlenweiterleitung, so daß die Röntgenstrahlung an die Meßfläche des Meßobjekts 16 gelangt. Die Reflexionsflächen 18 sind vorzugsweise unmittelbar zur Anode 14 bzw. zu einem Austrittsflansch 21 nahe der Anode 14 angeordnet. Am unteren Ende 22 der einander zugeordneten Reflexionsflächen 18 ist des weiteren ein Kollimator 23 vorgesehen, wodurch ein Meßbereich 24 gemäß Figur 3 auf einem Meßobjekt abgebildet werden kann. Der Kollimator 23 ist vorteilhafterweise ein Spaltkollimator, dessen Spaltbreite einstellbar ist.Between the X-ray tube 13 and the measurement object 16 is the one according to the invention Device 12 is provided, which according to the embodiment of two mutually opposite reflection surfaces 18. These reflective surfaces 18 are used for beam bundling and beam transmission, so that the X-ray radiation reaches the measuring surface of the measuring object 16. The reflective surfaces 18 are preferably directly to the anode 14 or to an outlet flange 21 arranged near the anode 14. At the lower end 22 of each other Reflection surfaces 18, a collimator 23 is also provided, whereby a measuring area 24 according to FIG. 3 is imaged on a measurement object can. The collimator 23 is advantageously a slit collimator, the Gap width is adjustable.

Die Reflexionsflächen 18 sind als längliche, rechteckförmige Flächen ausgebildet, wie aus Figur 1 und Figur 2 zu entnehmen ist. Die Länge der Reflexionsflächen 18 ist im wesentlichen durch den Aufbau bestimmt sowie durch den Grad der Totalreflexion. Röntgenstrahlen, welche nicht parallel zwischen einer Achse des Meßbereichs 24 und der Anode 14 verlaufen, werden zumindest einmal durch eine Totalreflexion abgelenkt. Die Breite der Reflexionsflächen 18 sind zumindest eineinhalb mal so groß wie die maximal zu prüfende Funktionsfläche. Vorteilhafterweise werden für die Reflexionsflächen 18 Siliziumwafer verwendet. Dieses kostengünstige Grundmaterial kann auf die entsprechende Größe der erfindungsgemäßen Vorrichtung 12 einfach angepaßt werden.The reflection surfaces 18 are designed as elongated, rectangular surfaces, as can be seen from Figure 1 and Figure 2. The length of the reflection surfaces 18 is essentially determined by the structure and by the degree of total reflection. X-rays that are not parallel between an axis of the measuring range 24 and the anode 14 are at least once by a total reflection distracted. The width of the reflection surfaces 18 is at least one and a half times as large as the maximum functional area to be tested. Advantageously 18 silicon wafers used for the reflection surfaces. This inexpensive Base material can be the appropriate size of the device according to the invention 12 can be easily adjusted.

Die aus einem Siliziumwafer hergestellten Reflexionsflächen 18 werden vorteilhafterweise auf Halteelemente 26, 27 gemäß Figur 3 aufgebracht. Vorteilhafterweise sind diese verspannungsfrei aufgeklebt, so daß die Ebenheit der Reflexionsfläche 18 aufrecht erhalten werden kann. Alternativ können die Reflexionsflächen 18 auch spannungsfrei an den Halteelementen 26, 27 durch eine Klemmung oder dergleichen fixiert werden. Gemäß Figur 3 greift an einem der beiden Halteelemente 27 eine Einstelleinheit 28 an, durch welche ein Halteelement 27 zu dem feststehenden Element 26 einstellbar ist. Das Halteelement 26 nimmt vorteilhafterweise die Reflexionsfläche 18 parallel zur Mittelachse 29 der Vorrichtung 12 auf. Durch die Einstelleinheit 28 kann die Spaltbreite eingestellt werden. Ebenso ist ermöglicht, daß die Winkligkeit des Halteelements 27 zum Element 26 einstellbar ist. Alternativ kann ebenso eine spiegelbildliche Anordnung vorgesehen sein. Ebenso kann alternativ vorgesehen sein, daß an jedem der Halteelemente 26, 27 eine Einstelleinheit 28 vorgesehen ist, wodurch die Halteelemente 26, 27 entweder parallel zueinander und/oder in einem Winkel zueinander angeordnet sein können, so daß ein gleichmäßiger oder sich verjüngender Spalt zum Meßobjekt 16 hin gebildet ist. Die Einstelleinheit 28 ist derart ausgebildet, daß Spaltbreiten beispielsweise in einem Bereich von 10 bis 100 µm wahlweise eingestellt werden können. Hierfür können feinmechanische Einstellmechanismen, piezoelektrische Aktuatoren, sowie elektrisch, hydraulisch, pneumatisch betriebene Stellantriebe vorgesehen sein.The reflection surfaces 18 made from a silicon wafer are advantageously applied to holding elements 26, 27 according to FIG. 3. Advantageously these are glued tension-free so that the flatness of the reflective surface 18 can be maintained. Alternatively, the reflective surfaces 18 also tension-free on the holding elements 26, 27 by clamping or the like can be fixed. According to Figure 3 engages one of the two holding elements 27 to an adjusting unit 28 through which a holding element 27 closes the fixed element 26 is adjustable. The holding element 26 advantageously takes the reflection surface 18 parallel to the central axis 29 of the device 12 on. The gap width can be set by the setting unit 28. As well it is possible that the angularity of the holding element 27 to the element 26 is adjustable is. Alternatively, a mirror-image arrangement can also be provided. Alternatively, it can also be provided that on each of the holding elements 26, 27 an adjusting unit 28 is provided, whereby the holding elements 26, 27 either be arranged parallel to one another and / or at an angle to one another can, so that a uniform or tapering gap to the measurement object 16th is formed. The setting unit 28 is designed such that gap widths, for example can be set in a range from 10 to 100 µm can. Fine mechanical adjustment mechanisms, piezoelectric Actuators, as well as electric, hydraulic, pneumatic actuators be provided.

An einem zum Meßobjekt 16 weisenden Ende ist an dem Halteelement 26 eine Abflachung 31 vorgesehen. Durch diese Abflachung ist ermöglicht, daß für die emittierte Fluoreszenzstrahlung eine hinreichende Öffnungsweite 32 zur Verfügung steht, um die emittierte Fluoreszenzstrahlung zu detektieren.At one end facing the measurement object 16 there is a holding element 26 on Flattening 31 is provided. This flattening makes it possible for the emitted fluorescence radiation a sufficient opening width 32 available stands to detect the emitted fluorescence radiation.

Die Reflexionsfläche 18 kann beispielsweise mit einem Edelmetall bedampft sein. Dadurch kann der kritische Winkel für die Totalreflexion, der für Silizium bei 1,5
mrad liegt, durch eine Platinbeschichtung auf 4,5 mrad erhöht werden. Dies schlägt sich wiederum vorteilhafterweise auf die Transmission der Röntgenstrahlung nieder. Alternativ ist denkbar, daß bei dem Einsatz von beschichteten Reflexionsflächen der Grundwerkstoff aus einer Quarzoberfläche oder einem Kunststoffmaterial bestehen kann, welches die Anforderung an die Ebenheit erfüllt und eine Beschichtung aufweist. Vorteilhafterweise kann die Beschichtung zumindest am Eingang der Reflexionsflächen 18 vorgesehen sein, so daß die Anzahl der eingefangenen und reflektierten Strahlen möglichst groß ist. Über den Verlauf entlang der Reflexionsflächen 18 kann die Beschichtung vollständig fortgeführt werden oder auch nur teilweise vorgesehen sein. Ebenso kann sich die Beschichtung bzw. das Material der Beschichtung in Abhängigkeit der Anwendungsfälle auch ändern. Beispielsweise kann durch Verkleinerung des Grenzwinkels für die Totalreflexion die Divergenz am Ausgang der Reflexionsflächen 18 verkleinert werden, wodurch eine Fokussierung der Strahlung und dadurch eine Intensitätserhöhung auf dem Meßbereich 24 des Meßobjektes 16 erzielt werden kann. Dazu ist beispielsweise denkbar, daß in einem Bereich nahe dem unteren Ende 22 der Reflexionsfläche 18 eine Beschichtung nicht vorgesehen ist oder eine die Totalreflexion verhindernde Beschichtung vorgesehen ist, wodurch die unterhalb der Reflexionsfläche 18 austretende Strahlung gerade auf die Größe des Meßbereiches 24 von dem Meßobjekt 16 fokusiert ist. Die Bestrahlung von Randbereichen außerhalb des Meßbereiches 24 kann dadurch erheblich verringert werden.
The reflection surface 18 can be vapor-coated with a noble metal, for example. This allows the critical angle for total reflection, that for silicon at 1.5
mrad is increased to 4.5 mrad by a platinum coating. This in turn has an advantageous effect on the transmission of the X-rays. Alternatively, it is conceivable that when using coated reflection surfaces, the base material can consist of a quartz surface or a plastic material which fulfills the requirement for flatness and has a coating. The coating can advantageously be provided at least at the entrance of the reflection surfaces 18, so that the number of captured and reflected rays is as large as possible. The coating can be continued completely over the course along the reflection surfaces 18 or can also be provided only partially. The coating or the material of the coating can also change depending on the application. For example, by reducing the critical angle for the total reflection, the divergence at the exit of the reflection surfaces 18 can be reduced, as a result of which the radiation can be focused and thereby an increase in intensity on the measurement area 24 of the measurement object 16. For this purpose, it is conceivable, for example, that a coating is not provided in a region near the lower end 22 of the reflection surface 18 or that a coating preventing total reflection is provided, as a result of which the radiation emerging below the reflection surface 18 precisely matches the size of the measuring region 24 from the measurement object 16 is focused. The irradiation of edge areas outside of the measuring area 24 can thereby be considerably reduced.

Durch die erfindungsgemäße Ausgestaltung der Vorrichtung 12 kann je nach Meßaufgabe der Meßbereich eingestellt werden. Der Kollimator 23 kann ebenso an diesen Meßbereich angepaßt werden, so daß durch die Fokussierung der Strahlung eine Intensitätserhöhung auf einen vorbestimmten Meßbereich ermöglicht ist.Due to the inventive design of the device 12, depending on Measurement task of the measuring range can be set. The collimator 23 can also be adapted to this measuring range, so that by focusing the Radiation enables an increase in intensity to a predetermined measuring range is.

Alternativ kann vorgesehen sein, daß die Reflexionsflächen 18 zumindest leicht konkav ausgebildet sind. Ebenso kann die konkave Ausbildung sich zum unteren Ende 22 hin verjüngen, so daß eine Art sprachrohrförmige Ausgestaltung der Reflexionsflächen 18 gegeben ist. Dabei sind jedoch die Dimensionen zu berücksichtigen, die auch im Mikrometerbereich liegen können.Alternatively, it can be provided that the reflection surfaces 18 at least slightly are concave. Likewise, the concave formation can become lower Taper end 22 out, so that a kind of mouthpiece-shaped design of the reflection surfaces 18 is given. However, the dimensions must be taken into account which can also be in the micrometer range.

Die Öffnungsweite der Reflexionsflächen 18 am Eingang der Vorrichtung 12 entspricht im wesentlichen der Austrittsöffnung der über die Anode ausgesandten Röntgenstrahlung. Ebenso kann auch eine geringfügig größere oder kleinere Öffnungsbreite zu dem Durchmesser des Primärspots der Röntgenstrahlung gegeben sein.The opening width of the reflection surfaces 18 at the entrance to the device 12 corresponds essentially the outlet opening of those emitted via the anode X-rays. A slightly larger or smaller opening width can also be used given the diameter of the primary spot of the X-rays his.

Die Vorrichtung 12 kann des weiteren noch Öffnungen und Aufnahmen aufweisen, welche zur Anordnung einer Optik dienen, um den Meßgegenstand 16 durch eine Videokamera zu visualisieren.The device 12 can furthermore have openings and receptacles, which serve to arrange an optics to the measurement object 16 by a Visualize video camera.

Die Vorrichtung 12 ist gemäß dem Ausführungsbeispiel durch zwei zueinander angeordneten Reflexionsflächen 18, die parallel oder in einem spitzen Winkel zueinander angeordnet sind, vorgesehen. Es kann auch vorgesehen sein, daß anstelle von diesen zwei Reflexionsflächen 18, drei oder mehrere Reflexionsflächen in geeigneter Weise zueinander angeordnet sind, um die Transmission von Röntgenstrahlung zum Meßbereich 24 eines Meßobjektes 16 zu ermöglichen, so daß durch die Fokussierung der Röntgenstrahlung eine Intensitätserhöhung ermöglicht ist. Es ist jedoch nicht, wie aus dem Stand der Technik bekannt, erforderlich, daß eine geschlossene, röhrenförmige Anordnung eingesetzt wird, um die Röntgenstrahlen zum Meßbereich durch Totalreflexion zu fokussieren. Weitere geometrische Ausgestaltungen der Reflexionsflächen 18 sind ebenso denkbar, welche die Totalreflexion der Röntgenstrahlung ermöglichen.The device 12 is according to the embodiment by two to each other arranged reflection surfaces 18 which are parallel or at an acute angle to each other are arranged, provided. It can also be provided that instead of these two reflecting surfaces 18, three or more reflecting surfaces are suitably arranged to each other to control the transmission of X-rays to the measuring area 24 of a measurement object 16, so that enables an increase in intensity by focusing the X-rays is. However, as is known from the prior art, it is not necessary that a closed, tubular arrangement is used to hold the x-rays to focus to the measuring range by total reflection. More geometrical Embodiments of the reflection surfaces 18 are also conceivable, which the Allow total reflection of the X-rays.

Claims (15)

Vorrichtung zur Führung von Röntgenstrahlen von einer Strahlenquelle zu einem Meßobjekt (16), dadurch gekennzeichnet, daß zumindest zwei einen Spalt bildenden Reflexionsflächen (18) vorgesehen sind.Device for guiding X-rays from a radiation source a measurement object (16), characterized in that at least two one Gap-forming reflection surfaces (18) are provided. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der durch die zumindest zwei Reflexionsflächen (18) gebildete Spalt in der Breite einstellbar ist.Apparatus according to claim 1, characterized in that the at least two reflection surfaces (18) formed in width adjustable is. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß zwei einander gegenüberliegende und parallel zueinander angeordnete Reflexionsflächen (18) vorgesehen sind.Device according to one of claims 1 or 2, characterized in that that two opposite and arranged parallel to each other Reflection surfaces (18) are provided. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß zwei einander gegenüberliegende und einen zum Meßobjekt (16) sich verjüngenden Spalt aufweisende Reflexionsflächen (18) vorgesehen sind.Device according to one of claims 1 or 2, characterized in that that two opposite one another and one to the measurement object (16) tapering gap reflecting surfaces (18) are provided. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest eine Reflexionsfläche (18) fixiert und zumindest eine weitere Reflexionsfläche (18) im Abstand und/oder Winkel einstellbar ist. Device according to one of the preceding claims, characterized in that that at least one reflection surface (18) fixed and at least one further reflection surface (18) is adjustable in distance and / or angle. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest eine, vorzugsweise die Reflexionsfläche (18) im wesentlichen unmittelbar an dem Strahlaustritt der Strahlaustrittseinrichtung angeordnet sind.Device according to one of the preceding claims, characterized in that that at least one, preferably the reflection surface (18) in essentially directly at the beam outlet of the beam outlet device are arranged. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest eine Reflexionsfläche (18) eben ausgebildet ist.Device according to one of the preceding claims, characterized in that that at least one reflection surface (18) is flat. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß zumindest eine Reflexionsfläche (18) im Querschnitt gesehen konkav gekrümmt ausgebildet ist.Device according to one of claims 1 to 6, characterized in that that at least one reflecting surface (18) is concave in cross section is curved. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Reflexionsflächen (18) aus einem Halbleitermaterial, insbesondere aus einem Siliziumwafer, hergestellt ist.Device according to one of the preceding claims, characterized in that that the reflection surfaces (18) made of a semiconductor material, in particular is made of a silicon wafer. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest eine Reflexionsfläche (18) zumindest teilweise mit einem Edelmetall, vorzugsweise Gold, Platin, Kupfer, Silber, Palladium, beschichtet ist.Device according to one of the preceding claims, characterized in that that at least one reflection surface (18) at least partially with a precious metal, preferably gold, platinum, copper, silver, palladium is. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die zumindest teilweise Beschichtung an einem am Strahlaustritt der Röntgenröhre zugewandten Ende vorgesehen ist.Apparatus according to claim 10, characterized in that the at least partial coating on one facing the X-ray tube at the beam exit End is provided. Vorrichtung nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, daß die zumindest eine teilweise beschichtete Reflexionsfläche (18) nahe dem Meßobjekt (16) einen Bereich aufweist, der ohne Beschichtung vorgesehen ist oder eine die Totalreflexion unterbindende Beschichtung aufweist.Device according to one of claims 10 or 11, characterized in that that the at least one partially coated reflection surface (18) is close the measurement object (16) has an area which is provided without a coating or has a coating that prevents total reflection. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die nicht beschichtete Reflexionsfläche (18) nahe dem Meßobjekt (16) einen Bereich mit einer die Totalreflexion unterbindenden Beschichtung aufweist.Device according to one of claims 1 to 11, characterized in that that the non-coated reflection surface (18) near the measurement object (16) has an area with a coating that prevents total reflection. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest eine der Reflexionsflächen (18) an einer die Öffnungsweite des Spaltes einstellbaren Einstelleinheit (28) vorgesehen ist. Device according to one of the preceding claims, characterized in that that at least one of the reflection surfaces (18) has an opening width of the gap adjustable adjustment unit (28) is provided. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß an einem zum Meßobjekt (16) weisenden Ende ein den Reflexionsflächen (18) zugeordneter Kollimator (23) vorgesehen ist, dessen Spaltbreite vorzugsweise einstellbar ist.Device according to one of the preceding claims, characterized in that that at one end facing the measurement object (16) has the reflection surfaces (18) assigned collimator (23) is provided, the gap width is preferably adjustable.
EP00123501A 1999-11-12 2000-10-27 X-ray guiding device Expired - Lifetime EP1100092B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19954520A DE19954520A1 (en) 1999-11-12 1999-11-12 Device for guiding X-rays
DE19954520 1999-11-12

Publications (3)

Publication Number Publication Date
EP1100092A2 true EP1100092A2 (en) 2001-05-16
EP1100092A3 EP1100092A3 (en) 2003-03-26
EP1100092B1 EP1100092B1 (en) 2006-07-19

Family

ID=7928847

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00123501A Expired - Lifetime EP1100092B1 (en) 1999-11-12 2000-10-27 X-ray guiding device

Country Status (7)

Country Link
US (1) US6438209B1 (en)
EP (1) EP1100092B1 (en)
JP (1) JP2001201599A (en)
CN (1) CN1202416C (en)
AT (1) ATE333702T1 (en)
DE (2) DE19954520A1 (en)
HK (1) HK1035400A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193492B1 (en) * 2000-09-27 2007-08-08 Euratom A micro beam collimator for high resolution XRD investigations with conventional diffractometers

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304063A (en) * 2006-05-15 2007-11-22 Shimadzu Corp Solar slit
US8831175B2 (en) * 2010-05-19 2014-09-09 Eric H. Silver Hybrid X-ray optic apparatus and methods
EP3115809B1 (en) * 2015-07-06 2021-04-28 Exruptive A/S A method of security scanning of carry-on items, and a security scanning system of carry-on items
US10765383B2 (en) * 2015-07-14 2020-09-08 Koninklijke Philips N.V. Imaging with enhanced x-ray radiation
DE102022105838B3 (en) 2022-03-14 2023-08-17 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Adjusting unit for X-ray optics in an X-ray fluorescence device and X-ray fluorescence device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2217036A (en) * 1988-03-11 1989-10-18 Rosser Roy J Saddle-toriod mirrors.
US5101422A (en) * 1990-10-31 1992-03-31 Cornell Research Foundation, Inc. Mounting for X-ray capillary
JPH06283583A (en) * 1993-03-25 1994-10-07 Towa Kagaku Kk Wafer for analyzing surface foreign matter and estimation method of metal impurities on wafer surface
EP0724150A1 (en) * 1994-07-08 1996-07-31 Muradin Abubekirovich Kumakhov Device for obtaining an image of an object using a stream of neutral or charged particles and a lens for converting the said stream of neutral or charged particles
JPH10221500A (en) * 1997-02-03 1998-08-21 Olympus Optical Co Ltd Soft x-ray tester
EP0873565A2 (en) * 1996-01-10 1998-10-28 Bastian Niemann Condenser-monochromator arrangement for x-radiation
JPH11132970A (en) * 1997-11-01 1999-05-21 Horiba Ltd Fluorescent x-ray-analyzing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958363A (en) * 1986-08-15 1990-09-18 Nelson Robert S Apparatus for narrow bandwidth and multiple energy x-ray imaging
US5016267A (en) * 1986-08-15 1991-05-14 Commonwealth Scientific And Industrial Research Instrumentation for conditioning X-ray or neutron beams
US5001737A (en) * 1988-10-24 1991-03-19 Aaron Lewis Focusing and guiding X-rays with tapered capillaries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2217036A (en) * 1988-03-11 1989-10-18 Rosser Roy J Saddle-toriod mirrors.
US5101422A (en) * 1990-10-31 1992-03-31 Cornell Research Foundation, Inc. Mounting for X-ray capillary
JPH06283583A (en) * 1993-03-25 1994-10-07 Towa Kagaku Kk Wafer for analyzing surface foreign matter and estimation method of metal impurities on wafer surface
EP0724150A1 (en) * 1994-07-08 1996-07-31 Muradin Abubekirovich Kumakhov Device for obtaining an image of an object using a stream of neutral or charged particles and a lens for converting the said stream of neutral or charged particles
EP0873565A2 (en) * 1996-01-10 1998-10-28 Bastian Niemann Condenser-monochromator arrangement for x-radiation
JPH10221500A (en) * 1997-02-03 1998-08-21 Olympus Optical Co Ltd Soft x-ray tester
JPH11132970A (en) * 1997-11-01 1999-05-21 Horiba Ltd Fluorescent x-ray-analyzing device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 01, 28. Februar 1995 (1995-02-28) & JP 06 283583 A (TOWA KAGAKU KK), 7. Oktober 1994 (1994-10-07) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 13, 30. November 1998 (1998-11-30) & JP 10 221500 A (OLYMPUS OPTICAL CO LTD), 21. August 1998 (1998-08-21) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 10, 31. August 1999 (1999-08-31) & JP 11 132970 A (HORIBA LTD), 21. Mai 1999 (1999-05-21) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193492B1 (en) * 2000-09-27 2007-08-08 Euratom A micro beam collimator for high resolution XRD investigations with conventional diffractometers
US7397900B2 (en) 2000-09-27 2008-07-08 Euratom Micro beam collimator for high resolution XRD investigations with conventional diffractometers

Also Published As

Publication number Publication date
ATE333702T1 (en) 2006-08-15
CN1202416C (en) 2005-05-18
HK1035400A1 (en) 2001-11-23
JP2001201599A (en) 2001-07-27
EP1100092B1 (en) 2006-07-19
CN1296178A (en) 2001-05-23
US6438209B1 (en) 2002-08-20
DE19954520A1 (en) 2001-05-17
DE50013184D1 (en) 2006-08-31
EP1100092A3 (en) 2003-03-26

Similar Documents

Publication Publication Date Title
DE2256736C3 (en) Measuring arrangement for the automatic testing of the surface quality and evenness of a workpiece surface
DE3134552C2 (en) X-ray diffractometer
DE102018205163A1 (en) Measuring device for measuring reflection properties of a sample in the extreme ultraviolet spectral range
EP1647840B1 (en) X-ray-optical or neutron-optical analyser comprising a stripdetector having variable light-transmission
DE60035876T2 (en) Micro-beam collimator for high-resolution X-ray diffraction analysis using conventional diffractometers
DE3147689C2 (en) Additional device for performing reflection measurements with an IR spectrometer
DE3104468C2 (en) X-ray fluorescence spectrometer
DE102005011467B4 (en) Adjustable focal length collimator, directed method and X-ray inspection system
EP1100092B1 (en) X-ray guiding device
EP0550542B1 (en) Device for the qualitative and/or quantitative determination of the compositon of a sample to be analysed
DE10125454B4 (en) Device for X-ray analysis with a multi-layer mirror and an output collimator
WO2010127872A1 (en) Device and method for angularly resolved scattered light measurement
EP0372278A2 (en) Method and apparatus for the X-ray fluorescence analysis of samples
DE10221200A1 (en) X-ray fluorescence spectrometer has field limiting stop opening shape enabling intensity changes no greater than 1 per cent if specimen surface height variations are no greater then 1 mm
DE2803149C2 (en) Method for measuring hardness test impressions in material surfaces as well as device for carrying out the method
DE102006044417B4 (en) Method for micro-X-ray fluorescence analysis of a sample with three-dimensional resolution
EP0547081B1 (en) Process and device for the analysis and determination of the concentration of elements in the surface region of objects
DE19738408C2 (en) Device for the wavelength-dispersive analysis of fluorescent radiation
DE2003753A1 (en) Diaphragm arrangement for limiting an X-ray bundle
WO1991018284A1 (en) Coated-mirror device for inspecting samples by the x-ray fluorescence analysis method
DE4430615C2 (en) Method and device for imaging powder diffractometry
EP1075014A2 (en) Gas chamber detector with gas electron multiplier
DE19644936C2 (en) Arrangement for elemental analysis of samples using an X-ray source
DE102022112765A1 (en) Detection unit for the spectral analysis of a laser-induced plasma and laser-induced plasma spectrometer
CH646521A5 (en) METHOD AND DEVICE FOR DETECTING THE FINEST SURFACES ON A WIRE-SHAPED BODY THAT HAS A COATING OF INSULATING LACQUER.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030926

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040924

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060719

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50013184

Country of ref document: DE

Date of ref document: 20060831

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061019

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061019

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061219

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20070420

BERE Be: lapsed

Owner name: HELMUT FISCHER G.M.B.H. & CO.

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20061031

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190913

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191024

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191024

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50013184

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20201026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20201026