JPH06281369A - Liquid fluidized bed heat exchanger, liquid fluidized bed heat exchanging system and its operating method - Google Patents

Liquid fluidized bed heat exchanger, liquid fluidized bed heat exchanging system and its operating method

Info

Publication number
JPH06281369A
JPH06281369A JP7352493A JP7352493A JPH06281369A JP H06281369 A JPH06281369 A JP H06281369A JP 7352493 A JP7352493 A JP 7352493A JP 7352493 A JP7352493 A JP 7352493A JP H06281369 A JPH06281369 A JP H06281369A
Authority
JP
Japan
Prior art keywords
liquid
particles
fluidized bed
heat exchanger
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7352493A
Other languages
Japanese (ja)
Inventor
Norimitsu Abe
法光 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7352493A priority Critical patent/JPH06281369A/en
Publication of JPH06281369A publication Critical patent/JPH06281369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To maintain excellent liquid dispersing state even in a heat exchanger which makes liquid containing waste oil, scale component, aquatic organism, etc., fluidized fluid and to effectively clean a position for liquid dispersing without stopping an operation. CONSTITUTION:The liquid fluidized bed heat exchanger comprises a heat exchanging unit 3, a first particle group containing fluidized particles 8 fluidized by liquid flow in the unit 3, a second particle group 10 provided at an upstream side of the first group to be so formed of rough particles 11 having larger fluidizing velocity than that of the particles 8 for constituting the first group, and a liquid supply tube 25 having particle invasion preventing means for preventing invasion of the particles 11 to an interior to supply liquid flow into the unit 3 through the group 10. At the time of cleaning, a flow rate of liquid fluid (a) is increased at a velocity or more in which the particles 11 become a fluidized state to clean the second group 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体を流動化流体とし
て熱交換操作を行う液相流動層熱交換器と液相流動層熱
交換システムおよびそのシステムの運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid phase fluidized bed heat exchanger for performing a heat exchange operation using a liquid as a fluidizing fluid, a liquid phase fluidized bed heat exchange system, and a method for operating the system.

【0002】[0002]

【従来の技術】液相流動層熱交換器は、伝熱管が配置さ
れた熱交換部内に流動粒子を保持し、この流動粒子を熱
交換部内を流れる液流体により流動化状態とする(流動
層の形成)ことによって、熱交換効率の向上を図った熱
交換器である。
2. Description of the Related Art A liquid-phase fluidized bed heat exchanger holds fluidized particles in a heat exchange section in which heat transfer tubes are arranged, and brings the fluidized particles into a fluidized state by a liquid fluid flowing in the heat exchange section (fluidized bed). Is formed) to improve heat exchange efficiency.

【0003】このような液相流動層熱交換器において、
安定した熱交換性能を得るためには、流動粒子の均一な
流動化状態を保つことが不可欠であり、機械的な撹拌を
用いる場合を除いては、液体流を均一に分散させるため
に、流動層の上流側に多孔板、金網、あるいはそれらを
組み合せた液分散板が設置される。このような液分散板
においては、一般的にはその整流効果を増加させるため
に開孔率を低くし、また孔径を小さくして液流通抵抗を
増加させる必要がある。さらに、層内の流動粒子を保持
する目的から、分散板の開孔径は流動粒子径よりも小径
のものが使用される。
In such a liquid phase fluidized bed heat exchanger,
In order to obtain stable heat exchange performance, it is essential to keep the fluidized particles in a uniform fluidized state, and except for the case where mechanical stirring is used, in order to uniformly disperse the liquid flow, A perforated plate, a wire net, or a liquid dispersion plate combining them is installed on the upstream side of the layer. In such a liquid dispersion plate, it is generally necessary to lower the aperture ratio and increase the liquid flow resistance by reducing the hole diameter in order to increase the rectifying effect. Further, for the purpose of retaining the fluidized particles in the layer, a dispersion plate having an opening diameter smaller than the fluidized particle diameter is used.

【0004】ところで、上記したような液相流動層熱交
換器によれば、伝熱管への廃油等の汚れ物質の付着、堆
積による熱交換効率の低下を抑止できることから、海
水、工場排水、あるいは下水等からの熱回収に応用する
ことが考えられている。しかしながら、上記したような
開孔部の径が小さい液分散板を有する液相流動層熱交換
器において、廃油、スケール成分、水棲生物等は、液分
散板に容易に付着、堆積し、ついには液分散板の閉塞を
引き起こし、熱交換器の運転に重大な支障を来すという
問題がある。
By the way, according to the liquid-phase fluidized bed heat exchanger as described above, it is possible to prevent the deterioration of the heat exchange efficiency due to the adhesion and accumulation of the contaminants such as waste oil on the heat transfer pipes, and therefore the seawater, the factory wastewater, or the Application to heat recovery from sewage is considered. However, in a liquid phase fluidized bed heat exchanger having a liquid dispersion plate having a small diameter of the opening as described above, waste oil, scale components, aquatic organisms, etc. easily adhere to and accumulate on the liquid dispersion plate, and finally, There is a problem that the liquid dispersion plate is clogged and the operation of the heat exchanger is seriously hindered.

【0005】このため、液分散板の洗浄装置として、ブ
ラシによる掻き落とし、ハンマーによる衝撃等が考えら
れているが、これらは熱交換器の運転を定期的に停止す
る必要があり、頻繁な洗浄操作による運転費用の高騰を
まねく等といった難点を有している。
For this reason, as a cleaning device for the liquid dispersion plate, scraping with a brush, impact with a hammer, etc. are considered, but these require frequent stoppage of operation of the heat exchanger. There are some drawbacks such as high operating costs due to operation.

【0006】[0006]

【発明が解決しようとする課題】上述したように、液相
流動層熱交換器において、廃油、スケール成分、水棲生
物等を含む液を流動化流体とした場合、それらが液分散
板に容易に付着、堆積して、熱交換器の性能を低下させ
るため、付着、堆積物を定期的に液分散板から除去しな
ければならない。そして、従来の液相流動層熱交換器に
おける洗浄操作は、熱交換器の運転を停止して行わなけ
ればならないため、実運転時間が減少することによっ
て、運転コストが高くなるという問題を有していた。
As described above, in a liquid-phase fluidized bed heat exchanger, when a liquid containing waste oil, scale components, aquatic organisms, etc. is used as the fluidizing fluid, they are easily dispersed in the liquid dispersion plate. The deposits and deposits must be regularly removed from the liquid dispersion plate because they deposit and deposit and reduce the performance of the heat exchanger. Further, since the cleaning operation in the conventional liquid phase fluidized bed heat exchanger has to be performed with the operation of the heat exchanger stopped, there is a problem that the operating cost increases due to the reduction of the actual operating time. Was there.

【0007】このようなことから、通常運転行程時にお
ける液の分散状態を悪化させることなく、熱交換器を運
転(熱交換操作)した状態で液分散部の洗浄を行うこと
が可能な、運転効率に優れた液相流動層熱交換器が強く
求められている。
From the above, it is possible to wash the liquid dispersion portion while the heat exchanger is in operation (heat exchange operation) without deteriorating the liquid dispersion state during the normal operation process. There is a strong demand for an efficient liquid-phase fluidized bed heat exchanger.

【0008】本発明は、このような課題に対処するため
になされたもので、廃油、スケール成分、水棲生物等を
含む液を流動化流体とする熱交換器においても、液の良
好な分散状態を維持した上で、液分散を行う部位の洗浄
を運転を停止することなく、かつ確実に行い、さらに流
動化流体を供給するためのポンプにかかる負荷を大きく
変化させることなく熱交換操作と洗浄操作を行えるよう
にすることによって、高信頼性の下での連続運転を可能
にした液相流動層熱交換器と液相流動層熱交換システム
およびそのシステムの運転方法を提供することを目的と
している。
The present invention has been made in order to solve such a problem, and even in a heat exchanger using a liquid containing waste oil, scale components, aquatic organisms, etc. as a fluidizing fluid, a good dispersion state of the liquid is obtained. The heat exchange operation and cleaning can be performed without stopping operation and reliably, and without significantly changing the load on the pump for supplying the fluidized fluid while maintaining the With the objective of providing a liquid-phase fluidized bed heat exchanger and a liquid-phase fluidized bed heat exchange system that enable continuous operation with high reliability by enabling operation, and an operating method of the system. There is.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の液相流
動層熱交換器は、熱交換器本体と、この熱交換器本体内
に収納され該本体内に供給される液体流により流動せし
められる第1の粒子群と、この粒子群の上流側に設けら
れ、前記第1の粒子群の粒子より流動化流速が大きい粒
子を含んだ第2の粒子群と、前記第2の粒子群の粒子が
内部に侵入するのを防止するための粒子侵入防止手段を
有し前記第2の粒子群を通して前記熱交換部内に液体流
を供給する液供給管とを具備することを特徴としてい
る。
A liquid phase fluidized bed heat exchanger according to claim 1 is fluidized by a heat exchanger main body and a liquid flow housed in the heat exchanger main body and supplied into the main body. A first particle group, a second particle group that is provided on the upstream side of the particle group and that contains particles having a higher fluidization velocity than the particles of the first particle group, and the second particle group. And a liquid supply pipe for supplying a liquid flow into the heat exchange unit through the second particle group, the liquid supply pipe having particle invasion preventing means for preventing the particles from invading inside.

【0010】また、請求項2に記載の液相流動層熱交換
システムは、並列に設置される複数の液相流動層熱交換
器と、該複数の熱交換器内に各々液体流を供給し熱交換
を行った後の前記液体流を排出するための配管路と、前
記各々の液相流動層熱交換器に供給される前記液体流の
流量を調整するための複数の流量調整弁と、この複数の
流量調整弁の各々の開度を独立に制御可能な流量調整制
御装置とを具備することを特徴としている。
In the liquid phase fluidized bed heat exchange system according to the second aspect of the present invention, a plurality of liquid phase fluidized bed heat exchangers installed in parallel and a liquid flow are respectively supplied into the plurality of heat exchangers. A pipe line for discharging the liquid flow after heat exchange, and a plurality of flow rate adjusting valves for adjusting the flow rate of the liquid flow supplied to each of the liquid phase fluidized bed heat exchangers, The present invention is characterized by comprising a flow rate adjusting control device capable of independently controlling the opening of each of the plurality of flow rate adjusting valves.

【0011】さらに、請求項3に記載の液相流動層熱交
換システムの運転方法は、熱交換器本体と、この熱交換
器本体内に収納され該本体内に供給される液体流により
流動せしめられる第1の粒子群と、この粒子群の上流側
に設けられ、前記第1の粒子群の粒子より流動化流速が
大きい粒子を含んだ第2の粒子群とを具備する液相流動
層熱交換器を複数設置することにより構成される液相流
動層熱交換システムの運転方法において、該熱交換部内
の液体流の流速を、前記第1の粒子が流動化状態となり
かつ前記第2の粒子が静止状態となる流速に設定して熱
交換操作を行う通常運転行程と、前記複数の熱交換器の
少なくとも1基の液流速を、前記第2の粒子が流動化状
態となる流速以上に増大させ熱交換操作を行いつつ前記
第2の粒子群の洗浄を行い、この洗浄時の液体流の増大
分をその他の前記熱交換器に供給されている液体流の一
部を供給することにより賄うように制御した洗浄運転行
程とを有することを特徴としている。
Further, the operating method of the liquid phase fluidized bed heat exchange system according to claim 3 is that the heat exchanger main body and the liquid flow accommodated in the heat exchanger main body and supplied to the main body are caused to flow. Liquid-phase fluidized bed heat comprising a first particle group and a second particle group that is provided on the upstream side of the particle group and that contains particles having a higher fluidization flow rate than the particles of the first particle group. In a method of operating a liquid phase fluidized bed heat exchange system configured by installing a plurality of exchangers, the flow velocity of a liquid flow in the heat exchange section is such that the first particles are in a fluidized state and the second particles are The normal operation process in which the heat exchange operation is performed by setting the flow rate at which the second particles are in a stationary state and the liquid flow rate of at least one of the plurality of heat exchangers is increased to a flow rate at which the second particles are in a fluidized state or more. Washing the second particle group while performing a heat exchange operation. And a cleaning operation step in which the increased amount of the liquid flow at the time of cleaning is controlled by supplying a part of the liquid flow supplied to the other heat exchanger. .

【0012】[0012]

【作用】請求項1に記載の液相流動層熱交換器において
は、通常運転行程時には流動化状態形成流速が流動粒子
より大きい粒子により構成された第2の粒子群(以下、
液分散層と略称する)によって、流動粒子の均一な流動
化状態を保つことができる。すなわち、通常運転行程時
には液分散層の構成粒子は静止状態を保ち、十分な液分
散機能を発揮する。また、洗浄運転行程時には、液分散
層を構成する粒子が流動化状態となる流速以上に液体流
の流速を高め、液分散層を流動化状態とすることによっ
て、液分散層への廃油、スケール成分、水棲生物等の付
着、堆積を、粒子間の摩擦力、液体流の搬送力、粒子自
身の運動によって除去することが可能となり、液分散層
の閉塞を防止することができる。また、液供給管として
流動化状態形成流速が流動粒子より大きい第2の粒子群
の粒子が内部に侵入するのを防止する粒子侵入防止手段
を有しているので、第2の粒子群の粒子を保持するため
の支持板が不要となり、この支持板の目詰まりを簡単に
防止することができる。
In the liquid phase fluidized bed heat exchanger according to claim 1, a second particle group (hereinafter, referred to as a second particle group composed of particles having a fluidized state forming flow velocity larger than a fluidized particle during a normal operation stroke)
By the liquid dispersion layer), it is possible to keep the fluidized particles in a uniform fluidized state. That is, the constituent particles of the liquid dispersion layer remain stationary during the normal operation process and exhibit a sufficient liquid dispersion function. Further, during the cleaning operation process, the flow velocity of the liquid flow is increased to a speed higher than the flow velocity of the particles forming the liquid dispersion layer to make the liquid dispersion layer in the fluidized state, thereby allowing waste oil and scale to the liquid dispersion layer. Adhesion and deposition of components, aquatic organisms, etc. can be removed by the frictional force between particles, the liquid flow transporting force, and the movement of the particles themselves, and the clogging of the liquid dispersion layer can be prevented. Further, since the liquid supply pipe has a particle invasion preventing means for preventing the particles of the second particle group having a fluidized state forming flow velocity higher than that of the fluid particles from invading the inside thereof, the particles of the second particle group Since a support plate for holding the support plate is unnecessary, clogging of the support plate can be easily prevented.

【0013】さらに、請求項2および3に記載の発明に
おいては液相流動層熱交換器を複数基設置し、少なくと
も1基の液体流の流速を、前記第2の粒子群(以下、液
分散層と略称する)構成粒子が流動化状態となる流速以
上に増大させ、熱交換操作を行いつつ前記液分散層の洗
浄を行い、その時の液体流の増大分をその他の熱交換器
群に供給されている液体流の一部を供給することにより
賄うように、例えば各々の液相流動層熱交換器に供給さ
れる液体流の流量を調整するための複数の流量調整弁と
この複数の流量調整弁の各々の開度を独立に制御可能な
流量調整制御装置とで制御しているので、このことによ
って、液流体を供給するためのポンプにかかる負荷を大
きく変化させることなく熱交換操作と洗浄操作を行うこ
とができると共に、熱交換器群全体の熱交換能力をほと
んど低下させることなく連続運転が可能となり、熱交換
器の信頼性向上および運転費用の低減が実現できる。
Furthermore, in the inventions according to claims 2 and 3, a plurality of liquid phase fluidized bed heat exchangers are installed, and the flow velocity of at least one liquid flow is set to the second particle group (hereinafter referred to as liquid dispersion). (Abbreviated as a layer) The constituent particles are increased to a flow velocity at which they are in a fluidized state or more, the liquid dispersion layer is washed while performing a heat exchange operation, and the increased amount of the liquid flow at that time is supplied to other heat exchanger groups. A plurality of flow rate adjusting valves for adjusting the flow rate of the liquid flow supplied to each liquid phase fluidized bed heat exchanger so as to cover the flow rate by supplying a part of the liquid flow. Since each opening of the adjusting valve is controlled by the flow rate adjusting control device that can independently control, the heat exchange operation can be performed without significantly changing the load applied to the pump for supplying the liquid fluid. Can be washed Continuous operation without decreasing the heat exchange capacity of the entire heat exchanger group becomes possible, reduce the reliability and operating costs of the heat exchanger can be achieved.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (第1の発明:請求項2および3に記載の発明に対応)
第1の発明に係る液相流動層熱交換システムは、液相流
動層熱交換器を複数台用いたシステムとしての特徴を有
し、そのシステムに適用される各々の液相流動層熱交換
器の構成は、例えば本発明者が先に提案している特願平
3−298978号に記載されているものを採用するこ
とができる。したがって、第1の発明のシステムとして
の特徴部分を説明する前に、このシステムに採用するこ
とができる上記液相流動層熱交換器の構成について説明
する。
Embodiments of the present invention will be described below with reference to the drawings. (First invention: Corresponding to the invention described in claims 2 and 3)
The liquid phase fluidized bed heat exchange system according to the first aspect of the present invention is characterized by a system using a plurality of liquid phase fluidized bed heat exchangers, and each liquid phase fluidized bed heat exchanger applied to the system. For example, the configuration described in Japanese Patent Application No. 3-298978, which the present inventor has previously proposed, can be adopted as the above configuration. Therefore, before describing the characteristic part of the system of the first invention, the configuration of the liquid phase fluidized bed heat exchanger that can be adopted in this system will be described.

【0015】図1は第1の発明に適用可能な液相流動層
熱交換器の通常運転行程時における状態を示す図であ
る。同図において、1は熱交換器本体である。この熱交
換器本体1は、液流入部2、熱交換部3および出口バッ
ファー部4を有しており、この熱交換器本体1内を廃
油、スケール成分、水棲生物等を含む液流体aが流通す
るように構成されている。また、熱交換器本体1には、
液流体aの上流側に液供給管5が、また下流側に液排出
管6がそれぞれ設けられている。
FIG. 1 is a diagram showing a state of a liquid phase fluidized bed heat exchanger applicable to the first invention during a normal operation stroke. In the figure, 1 is a heat exchanger body. The heat exchanger body 1 has a liquid inflow portion 2, a heat exchange portion 3 and an outlet buffer portion 4, and the inside of the heat exchanger body 1 is filled with a liquid fluid a containing waste oil, scale components, aquatic organisms and the like. It is designed to be distributed. Also, in the heat exchanger body 1,
A liquid supply pipe 5 is provided on the upstream side of the liquid fluid a, and a liquid discharge pipe 6 is provided on the downstream side thereof.

【0016】熱交換部3には、複数本の伝熱管7が液流
体aと直行するように設置されていると共に、流動層
(特許請求の範囲の第1の粒子群に相当する)を構成す
る多数の微細流動粒子8が保持されている。この微細流
動粒子8は、比較的小さな液流速によって流動化状態を
呈するように、粒径および密度が設定されている。微細
流動粒子8の具体例としては、ガラスビーズ、アルミナ
ボール、金属球、珪砂等が挙げられ、例えば平均粒径が
500 μm 〜3000μm 程度のものが好ましく用いられる。
In the heat exchange section 3, a plurality of heat transfer tubes 7 are installed so as to be orthogonal to the liquid fluid a, and a fluidized bed (corresponding to the first particle group in the claims) is constructed. A large number of fine fluid particles 8 are retained. The particle size and density of the fine fluid particles 8 are set so as to be in a fluidized state with a relatively low liquid flow rate. Specific examples of the fine fluid particles 8 include glass beads, alumina balls, metal balls, silica sand, etc.
Those having a thickness of about 500 μm to 3000 μm are preferably used.

【0017】また、この熱交換部3の上流側にあたる液
流入部2には、粗粒子支持板9が設置されており、この
粗粒子支持板9上に液分散層(特許請求の範囲における
第2の粒子群に相当する)10を構成する多数の粗粒子
11が設置されている。液分散層10を構成する粗粒子
11としては、上記微細流動粒子8より流動化流速が大
きい粒子、具体的には微細流動粒子8より粒径が大き
く、かつ密度の大きい粒子が用いられる。なお、粗粒子
11として、微細流動粒子8と粒径が同等で密度が大き
い材質の粒子や、微細流動粒子8と同一材質で粒径が大
きい粒子を用いることも可能である。
A coarse particle support plate 9 is installed in the liquid inflow section 2 which is an upstream side of the heat exchange section 3, and a liquid dispersion layer (on the coarse particle support plate 9 in the claims). A large number of coarse particles 11 constituting a particle group (corresponding to particle group 2) are provided. As the coarse particles 11 constituting the liquid dispersion layer 10, particles having a fluidization flow velocity higher than that of the fine fluidized particles 8 described above, specifically, particles having a larger particle size and a higher density than the fine fluidized particles 8 are used. It is also possible to use, as the coarse particles 11, particles made of a material having the same particle size as the fine fluid particles 8 and a large density, or particles made of the same material as the fine fluid particles 8 and having a large particle diameter.

【0018】通常運転行程においては、図1に示したよ
うに、廃油、スケール成分、水棲生物等を含む液流体a
は、液供給管5から熱交換器本体1内に供給され、粗粒
子支持板9および粗粒子11間を通過した後、熱交換部
3内で微細流動粒子8を激しく流動させ、流動層を形成
する。この流動層内で、伝熱管7中を流れる流体bとの
間で熱交換が行われる。微細流動粒子8による流動層
は、液流体a側の伝熱管7外表面に形成される温度境界
層を薄くして熱交換効率を高める。しかる後、液流体a
は出口バッファー部4を経て液排出管6から排出され
る。この際、液流体aの流速は、微細流動粒子8が流動
化状態となり、かつ粗粒子11が流動化状態となる流速
より小さくされているため、粗粒子11は静止状態を保
ち、液分散層10が形成される。このような液分散層1
0を液流体aは通過することにより均一に分散されるた
め、微細流動粒子8の良好な流動状態が保たれる。
In the normal operation process, as shown in FIG. 1, a liquid fluid a containing waste oil, scale components, aquatic organisms, etc.
Is supplied from the liquid supply pipe 5 into the heat exchanger body 1, passes between the coarse particle support plate 9 and the coarse particles 11, and then the fine fluidized particles 8 are violently flowed in the heat exchange section 3 to form a fluidized bed. Form. In this fluidized bed, heat exchange is performed with the fluid b flowing in the heat transfer tube 7. The fluidized bed of the fine fluidized particles 8 thins the temperature boundary layer formed on the outer surface of the heat transfer tube 7 on the liquid fluid a side to enhance heat exchange efficiency. After that, the liquid fluid a
Is discharged from the liquid discharge pipe 6 through the outlet buffer section 4. At this time, since the flow velocity of the liquid fluid a is smaller than the flow velocity of the fine fluidized particles 8 in the fluidized state and the coarse particles 11 in the fluidized state, the coarse particles 11 remain stationary and the liquid dispersion layer 10 is formed. Such a liquid dispersion layer 1
Since the liquid fluid a passes through 0, it is uniformly dispersed, so that the fine fluidized particles 8 are kept in a good flow state.

【0019】しかし、通常運転行程を続けていると、液
流体aに含有された廃油、スケール成分、水棲生物等が
粗粒子11間や粗粒子支持板9に徐々に付着、堆積し、
液分散層10が閉塞するおそれが生じる。そこで、定期
的に液流体aの流量を増加させて、洗浄運転行程へと切
り替える。
However, if the normal operation process is continued, waste oil, scale components, aquatic organisms, etc. contained in the liquid fluid a gradually adhere and accumulate between the coarse particles 11 and on the coarse particle support plate 9,
The liquid dispersion layer 10 may be clogged. Therefore, the flow rate of the liquid fluid a is periodically increased to switch to the cleaning operation process.

【0020】図2は、この上述の液相流動層熱交換器の
洗浄運転行程時における状態を示す図である。液流体a
の流量を増加させると、粗粒子11は流動を開始し、そ
こに付着、堆積した廃油、スケール成分、水棲生物等
が、粗粒子11間の摩擦力、液流体aの搬送力および粗
粒子11自身の運動等によって除去される。この際、微
細流動粒子8は下流側へ流出する場合があるが、出口バ
ッファー部4の流路断面積を熱交換部3の流路断面積よ
りも十分広く設定しておくことにより液流体aの流速は
減少し、微細流動粒子8は出口バッファー部4内におい
て流動化状態となり、熱交換器本体1外へ流出されるこ
となく出口バッファー部4内に保持される。
FIG. 2 is a diagram showing a state of the above-described liquid phase fluidized bed heat exchanger during the cleaning operation process. Liquid fluid a
When the flow rate of the coarse particles 11 is increased, the coarse particles 11 start to flow, and the waste oil, scale components, aquatic organisms and the like attached and deposited on the coarse particles 11 cause frictional force between the coarse particles 11, a conveying force of the liquid fluid a and the coarse particles 11 It is removed by the exercise etc. At this time, the fine fluidized particles 8 may flow out to the downstream side, but by setting the flow passage cross-sectional area of the outlet buffer unit 4 to be sufficiently wider than the flow passage cross-sectional area of the heat exchange unit 3, the liquid fluid a The flow velocity of is decreased, and the fine fluidized particles 8 are fluidized in the outlet buffer unit 4, and are retained in the outlet buffer unit 4 without flowing out of the heat exchanger main body 1.

【0021】ここで、図3に微細流動粒子および粗粒子
の圧力損失と液流速との関係を示す。同図において、実
線Aは微細流動粒子、実線Bは粗粒子の圧力損失特性を
示している。一般に流動層においては、液流速が小さい
場合には粒子は動かず、静止層を形成する。液流速が増
加して最小流動化速度umfに達すると流動を開始し、さ
らに液流速を増加させると、やがて流動終端速度ut に
達し、それ以上では粒子が液流体に同伴されて流出して
しまう。すなわち、液流体流速がumfからutの間が粒
子の流動層形成範囲であり、この間の圧力損失は液流速
に関係無くほぼ一定の値となる。
FIG. 3 shows the relationship between the pressure loss of the fine fluid particles and the coarse particles and the liquid flow velocity. In the figure, the solid line A shows the pressure loss characteristics of the fine fluid particles and the solid line B shows the pressure loss characteristics of the coarse particles. Generally, in a fluidized bed, when the liquid flow velocity is low, the particles do not move and form a stationary bed. When the liquid flow velocity increases and reaches the minimum fluidization velocity umf, the flow starts, and when the liquid flow velocity is further increased, it eventually reaches the terminal flow velocity ut, and above that, particles are entrained in the liquid fluid and flow out. . That is, the range of the fluid flow velocity between umf and ut is the fluidized bed formation range of particles, and the pressure loss during this is a substantially constant value regardless of the liquid flow velocity.

【0022】通常運転行程時の熱交換部3内の液流速を
u1 とすると、u1 は微細流動粒子8の最小流動化速度
umf1 と流動終端速度ut1の間に設定されているが、粗
粒子11の最小流動化速度umf2 よりも小さいため、粗
粒子11は静止して液分散層10を形成する。
Assuming that the liquid flow velocity in the heat exchange section 3 during the normal operation process is u1, u1 is set between the minimum fluidization velocity umf1 of the fine fluidized particles 8 and the flow end velocity ut1. Since it is smaller than the minimum fluidization speed u mf2 of, the coarse particles 11 stand still to form the liquid dispersion layer 10.

【0023】また、洗浄運転行程時には、液流体の流量
を増加させて、熱交換部3内の液流速をumf2 よりも大
きいu2 とすることにより、粗粒子11を流動させ、粗
粒子11表面やその間に付着、堆積した廃油、スケール
成分、水棲生物等を除去することができる。この際、微
細流動粒子8はu2 がut1より大きいため、熱交換部3
からは流出状態となるが、出口側バッファー部4の流路
断面積を熱交換部3の流路断面積よりも十分大きくして
おくことによって、出口側バッファー部4内での液流速
がut1以下となり、微細流動粒子8は出口側バッファー
部4内で流動化状態となり流動層を形成するため熱交換
器本体1外へ流出することは無い。
During the cleaning operation, the flow rate of the liquid fluid is increased so that the liquid flow velocity in the heat exchange section 3 becomes u2, which is higher than umf2. It is possible to remove waste oil, scale components, aquatic organisms, etc. that have adhered and accumulated during that time. At this time, since u2 of the fine fluidized particles 8 is larger than ut1, the heat exchange section 3
However, by setting the flow passage cross-sectional area of the outlet side buffer part 4 to be sufficiently larger than the flow passage cross-sectional area of the heat exchange part 3, the liquid flow velocity in the outlet side buffer part 4 becomes ut1. Below, the fine fluidized particles 8 are in a fluidized state in the outlet side buffer portion 4 and form a fluidized bed, so that they do not flow out of the heat exchanger body 1.

【0024】また図4は、微細流動粒子の流動層の場合
と、流動粒子が存在しない液単相流の場合の熱伝達率と
液流速の関係を示した図である、図4において、実線C
は液相流動層の熱伝達率特性、一点鎖線Dは液単相流
(微細流動粒子が無い場合)の熱伝達率特性を示してい
る。
FIG. 4 is a diagram showing the relationship between the heat transfer coefficient and the liquid flow velocity in the case of a fluidized bed of fine fluidized particles and in the case of a liquid single-phase flow in which the fluidized particles do not exist. The solid line in FIG. C
Indicates the heat transfer coefficient characteristic of the liquid-phase fluidized bed, and the alternate long and short dash line D indicates the heat transfer coefficient characteristic of the liquid single-phase flow (when there are no fine fluidized particles).

【0025】通常運転行程時の液流速u1 では、熱伝達
率は同一流速での液単相流の場合よりもはるかに大きい
値を示している。そして、液流速を洗浄運転行程時のu
2 まで増加させると、微細流動粒子8は熱交換部3より
流出状態となり、伝熱管7の周りには粒子が存在しなく
なるが、液流速の増加と共に液単相流の熱伝達率も増加
するため、通常運転行程時と同等の熱伝達率を得ること
ができ、熱交換部3での交換熱量を減少させることはな
い。
At the liquid flow velocity u1 during the normal operation stroke, the heat transfer coefficient shows a much larger value than in the case of the liquid single-phase flow at the same flow velocity. Then, the liquid flow rate is set to u during the cleaning operation process.
When it is increased to 2, the fine fluidized particles 8 become outflow from the heat exchange section 3 and the particles do not exist around the heat transfer tube 7, but the heat transfer coefficient of the liquid single-phase flow also increases as the liquid flow velocity increases. Therefore, it is possible to obtain the same heat transfer coefficient as in the normal operation stroke, and the amount of heat exchanged in the heat exchange section 3 is not reduced.

【0026】次に、図5は第1の発明に係る液相流動層
熱交換システムの具体的な系統構成の一例を示すシステ
ム構成図である。図5に示すように第1の発明の液相流
動層熱交換システムは、複数台の液相流動層熱交換器、
例えばこの実施例の場合には6基(H1,H2,H3,
H4,H5,H6)有している。液流体aは、液流体供
給ポンプ12により液流体入口側マニホルド13で分岐
され、流量調整弁14を介して各々の流動層熱交換器H
1、H2、H3、H4、H5およびH6へ供給さる。そ
して、液流体aは、上記各々の流動層熱交換器内で熱交
換を行なった後、液流体出口側マニホルド15に集めら
れ系外へ排出される。
Next, FIG. 5 is a system configuration diagram showing an example of a specific system configuration of the liquid phase fluidized bed heat exchange system according to the first invention. As shown in FIG. 5, the liquid-phase fluidized bed heat exchange system of the first invention comprises a plurality of liquid-phase fluidized bed heat exchangers,
For example, in the case of this embodiment, 6 groups (H1, H2, H3,
H4, H5, H6). The liquid fluid a is branched at the liquid fluid inlet side manifold 13 by the liquid fluid supply pump 12, and each fluidized bed heat exchanger H is passed through the flow rate adjusting valve 14.
1, H2, H3, H4, H5 and H6. Then, the liquid fluid a is heat-exchanged in each of the fluidized bed heat exchangers, and then collected in the liquid fluid outlet side manifold 15 and discharged to the outside of the system.

【0027】このように構成された液相流動層熱交換シ
ステムにおいては、流量調整弁14が各々の液相流動層
熱交換器H1、H2、H3、H4、H5およびH6に対
応して設けられ、この流量調整弁14の開度制御を行う
流量調整制御装置により、上記6基の各々の液相流動層
熱交換器に所定の量の液流体aを供給するように制御さ
れる。
In the liquid phase fluidized bed heat exchange system thus constructed, the flow rate adjusting valve 14 is provided corresponding to each of the liquid phase fluidized bed heat exchangers H1, H2, H3, H4, H5 and H6. The flow rate adjusting control device for controlling the opening degree of the flow rate adjusting valve 14 controls to supply a predetermined amount of the liquid fluid a to each of the six liquid phase fluidized bed heat exchangers.

【0028】この液流体aの供給制御は以下に示すよう
に行われる。つまり、第1の発明の液相流動層熱交換シ
ステムの運転方法の一例を以下に示す図6を参照して説
明する。ここで図6は、上記のごとく構成された液相流
動層熱交換システムにおける、各液相流動層熱交換器に
供給される液流体の流量と運転時間の関係を示す関係図
である。同図において通常運転行程時の液流体aの流量
をVO 、洗浄運転行程時の液流体aの流量をVC とす
る。
The supply control of the liquid fluid a is performed as follows. That is, an example of the operating method of the liquid phase fluidized bed heat exchange system of the first invention will be described with reference to FIG. 6 shown below. Here, FIG. 6 is a relationship diagram showing the relationship between the flow rate of the liquid fluid supplied to each liquid phase fluidized bed heat exchanger and the operating time in the liquid phase fluidized bed heat exchange system configured as described above. In the figure, the flow rate of the liquid fluid a in the normal operation step is VO, and the flow rate of the liquid fluid a in the cleaning operation step is VC.

【0029】全液相流動層熱交換器H1、H2、H3、
H4、H5、H6にそれぞれ液流体を流量VO で供給し
て通常運転行程を続けていると、液流体aに含有された
廃油、スケール成分、水棲生物等が液分散層10に徐々
に付着、堆積し液分散層10が閉塞するおそれが生じ
る。そこで、定期的に洗浄運転行程を行うのであるが、
この発明における洗浄運転行程では、まず液相流動層熱
交換器H1の液流量をVC まで増加させ、洗浄運転行程
を行う。この時の液相流動層熱交換器H1の液流量増加
分は、他の液相流動層熱交換器H2、H3、H4、H
5、H6に供給されている液流体aの一部を振り分ける
ことによって賄う。例えば、洗浄運転行程時の液流量V
C を通常運転行程時の液流量VO の2倍(VC =2×V
O )とすれば、他の液相流動層熱交換器H2、H3、H
4、H5、H6へ供給されている液流量のうちのそれぞ
れ2割づつを振り分けてやれば、液相流動層熱交換器H
1の液流量増加分を賄うことができることになる。
All liquid phase fluidized bed heat exchangers H1, H2, H3,
When the liquid fluid is supplied to each of H4, H5, and H6 at the flow rate Vo and the normal operation process is continued, waste oil, scale components, aquatic organisms, etc. contained in the liquid fluid a gradually adhere to the liquid dispersion layer 10, There is a risk that the liquid dispersion layer 10 will be deposited and clogged. Therefore, the cleaning operation process is regularly performed.
In the cleaning operation step of the present invention, first, the liquid flow rate of the liquid phase fluidized bed heat exchanger H1 is increased to VC, and the cleaning operation step is performed. At this time, the increase in the liquid flow rate of the liquid phase fluidized bed heat exchanger H1 is due to the other liquid phase fluidized bed heat exchangers H2, H3, H4, H.
5 and H6 are provided by distributing a part of the liquid fluid a. For example, the liquid flow rate V during the cleaning operation process
C is twice the liquid flow rate VO during normal operation (VC = 2 × V
O), other liquid phase fluidized bed heat exchangers H2, H3, H
Liquid phase fluidized bed heat exchanger H can be obtained by allocating 20% of each of the liquid flow rates supplied to 4, H5 and H6.
Therefore, the increase in the liquid flow rate of 1 can be covered.

【0030】また、この時の液流動層熱交換器H2、H
3、H4、H5、H6での流動層の熱伝達率は、図4に
示したように、液流体流速がわずかに減少しても熱伝達
率はほとんど変化することなく通常運転行程時に近い熱
交換性能を発揮することができる。
Further, at this time, the liquid fluidized bed heat exchangers H2, H
As shown in FIG. 4, the heat transfer coefficient of the fluidized bed at 3, H4, H5, and H6 was almost the same as that at the time of normal operation stroke even if the liquid fluid flow velocity slightly decreased. Exchange performance can be demonstrated.

【0031】そして、液相流動層熱交換器H1の洗浄運
転行程が終了したら、次に液相流動層熱交換器H2の液
流量をVC まで増加させて洗浄運転行程へと切り替え
る。この時の液相流動層熱交換器H2の液流量増加分
は、他の液相流動層熱交換器H1、H3、H4、H5、
H6に供給されている液流体aの一部を振り分けること
によって賄う。
When the cleaning operation step of the liquid phase fluidized bed heat exchanger H1 is completed, the liquid flow rate of the liquid phase fluidized bed heat exchanger H2 is then increased to VC and the cleaning operation step is switched to. The increase in the liquid flow rate of the liquid phase fluidized bed heat exchanger H2 at this time is due to the other liquid phase fluidized bed heat exchangers H1, H3, H4, H5,
It is covered by distributing a part of the liquid fluid a supplied to H6.

【0032】その後H3、H4と順次同様の操作を繰り
返し、液相流動層熱交換器H6の洗浄行程が終了した時
点で全液相流動層熱交換器が通常運転行程へ戻る。以上
のように、洗浄運転行程時でも液流体供給用ポンプ12
にかかる負荷を増加させることなく、通常運転行程時と
同一の能力で運転できるため、液流体供給用ポンプ12
の信頼性向上につながる。さらに、洗浄運転行程のため
に通常運転行程に必要な能力に比べて過大な能力の液流
体供給用ポンプ12を用いる必要が無くなり、設備投資
費用の低減も可能となる。
After that, the same operations as H3 and H4 are repeated in sequence, and when the cleaning step of the liquid phase fluidized bed heat exchanger H6 is completed, the entire liquid phase fluidized bed heat exchanger returns to the normal operation step. As described above, the liquid-fluid supply pump 12 is used even during the cleaning operation process.
Since the pump can be operated with the same capacity as in the normal operation stroke without increasing the load applied to the liquid 12
Leads to improved reliability. Further, it is not necessary to use the liquid-fluid supply pump 12 having an excessive capacity for the cleaning operation process as compared with the capacity required for the normal operation process, and the capital investment cost can be reduced.

【0033】なお、システム構成としては、液相流動層
熱交換器の具体的な構成や連結数等は上記実施例に限定
されることは無く、また入口側マニホルドや出口側マニ
ホルドの具体的構成や、流量調整弁の構成も種々変形し
て実施することができる。さらに、運転方法において
も、洗浄運転行程を同時に複数の液相流動層熱交換器で
行なわせたり、洗浄運転行程を行う液相流動層熱交換器
の液流量増加分に他の全ての液相流動層熱交換器から均
等に賄う必要もないなど、種々変形して運転することが
できる。以上、第1の発明においては、上記一例に限定
されること無く、その要旨を逸脱しない範囲で変形して
実施することができる。 (第2の発明:請求項1に記載の発明に対応)図7は、
第2の発明に係る液相流動層熱交換器の具体的な構成を
示すための構成図であり、図1に対応して通常運転行程
時における状態を示しており、図1に示す部分と同一部
分には同一符号を付して説明を省略する。
As for the system configuration, the specific configuration of the liquid phase fluidized bed heat exchanger and the number of connections are not limited to those in the above embodiment, and the specific configuration of the inlet side manifold and the outlet side manifold. Alternatively, the structure of the flow rate adjusting valve can be modified in various ways. Further, in the operation method, the cleaning operation process can be simultaneously performed by a plurality of liquid-phase fluidized bed heat exchangers, or the liquid flow rate increase of the liquid-phase fluidized bed heat exchanger performing the cleaning operation process can be applied to all other liquid phases. It can be operated in various modifications such that it is not necessary to evenly cover the fluidized bed heat exchanger. As described above, the first aspect of the invention is not limited to the above example, and can be modified and implemented without departing from the scope of the invention. (Second invention: Corresponding to the invention described in claim 1) FIG.
It is a block diagram for showing the concrete structure of the liquid phase fluidized bed heat exchanger which concerns on 2nd invention, and has shown the state at the time of a normal driving | running process corresponding to FIG. 1, and shows the part shown in FIG. The same parts are designated by the same reference numerals and the description thereof will be omitted.

【0034】この第2の発明に係る液相流動層熱交換器
の具体的な構成が、図1に示す液相流動層熱交換器と異
なる部分は、熱交換器内本体1内に液流体aを供給する
ための液供給管25である。
The specific structure of the liquid phase fluidized bed heat exchanger according to the second aspect of the present invention is different from the liquid phase fluidized bed heat exchanger shown in FIG. A liquid supply pipe 25 for supplying a.

【0035】この液供給管25は、上部が閉塞され流出
口26が下向きに構成され、かつ液分散層10内に埋設
するように設置されている。すなわち、液供給管25は
粗粒子の侵入防止手段として上部が閉塞され流出口が下
向きに構成されている。
The liquid supply pipe 25 is installed so that the upper part thereof is closed and the outlet 26 is directed downward and the liquid supply pipe 25 is embedded in the liquid dispersion layer 10. That is, the liquid supply pipe 25 is configured so that the upper part thereof is closed and the outflow port is directed downward as a means for preventing coarse particles from entering.

【0036】このように構成された液供給管25を用い
ることにより、粗粒子11が液供給管25内に侵入する
ことがなくなり、図1に示される液相流動層熱交換器で
設置されていた粗粒子支持板9が不要となる。その結
果、液流体aに含有された廃油、スケール成分、水棲生
物等の粗粒子支持板9への付着、堆積を考慮する必要が
まったく無くなり、図1に示す構成の熱交換器第を用い
た場合に比べて長時間の通常運転行程が可能となり、洗
浄運転行程が短くなるという利点を有する。
By using the liquid supply pipe 25 thus constructed, the coarse particles 11 are prevented from entering the liquid supply pipe 25, and the coarse particles 11 are installed in the liquid phase fluidized bed heat exchanger shown in FIG. The coarse particle support plate 9 is unnecessary. As a result, there is no need to consider attachment or deposition of waste oil, scale components, aquatic organisms, etc. contained in the liquid fluid a on the coarse particle support plate 9, and the heat exchanger No. 1 having the configuration shown in FIG. 1 was used. Compared with the case, the normal operation process can be performed for a long time, and the cleaning operation process can be shortened.

【0037】なお、この第2の発明で示した液相流動層
熱交換器においても、洗浄運転行程時の微細流動粒子
8、粗粒子11の挙動は、図2に示した場合と同様であ
るため、その説明は省略する。
Also in the liquid phase fluidized bed heat exchanger shown in the second aspect of the invention, the behavior of the fine fluidized particles 8 and the coarse particles 11 during the cleaning operation process is the same as that shown in FIG. Therefore, the description thereof is omitted.

【0038】また図8は、図7に示した第2の発明の液
相流動層熱交換器の液供給管25の変形例を示すもので
あり、液供給管25の断面を拡大して示す。この液供給
管25は、供給源(図示省略)から接続される接続管3
4と、この接続管34に接続される内管31と、この内
管31の周囲に配置され、半円筒状の外管30とこれら
内管31と外管30の側面を閉塞する側壁板35a,3
5bとから構成されている。そして内管31の上部に
は、液供給管25から液流体を熱交換器内に供給するた
めの孔32が形成されている。しかるに、接続管34内
から供給される液流体aは、内管31内から孔32を通
して内管31と外管30との隙間を通って、流出口26
から下方に向けて供給される。このような構成の液供給
管25を用いても、液供給管内に粗粒子11が侵入せ
ず、図7に示したものと同等の効果が得られる。
FIG. 8 shows a modification of the liquid supply pipe 25 of the liquid-phase fluidized bed heat exchanger of the second invention shown in FIG. 7, and shows an enlarged cross section of the liquid supply pipe 25. . The liquid supply pipe 25 is a connection pipe 3 connected from a supply source (not shown).
4, an inner pipe 31 connected to the connecting pipe 34, a semi-cylindrical outer pipe 30 arranged around the inner pipe 31, and a side wall plate 35a that closes side surfaces of the inner pipe 31 and the outer pipe 30. , 3
5b and. A hole 32 for supplying the liquid fluid from the liquid supply pipe 25 into the heat exchanger is formed in the upper portion of the inner pipe 31. However, the liquid fluid a supplied from the inside of the connecting pipe 34 passes from the inside of the inner pipe 31 through the hole 32 and the gap between the inner pipe 31 and the outer pipe 30 to the outlet 26.
Is supplied downward from. Even if the liquid supply pipe 25 having such a configuration is used, the coarse particles 11 do not enter the liquid supply pipe, and the same effect as that shown in FIG. 7 can be obtained.

【0039】なお、第2の発明の液相流動層熱交換器と
しては、液供給管内に粗粒子11が侵入しない構成であ
れば、図7、図8に示した一例以外にもどのような構成
でも良く、液供給管の出口部分に逆止弁を設けたり、図
1に示す液供給管の出口部分の上部を覆うような蓋部材
を設け、この蓋部材を、常に液供給管の出口部分を塞ぐ
方向の力を付与する弾性体で支持し、この弾性体の弾性
力を供給する液流体aの供給圧力よりも弱く設定してお
けば、液流体aの供給中は蓋部材が液供給管の出口部分
から浮上がり、液流体aが蓋部材と液供給管の隙間から
横方向あるいは下方向に向けて供給され、液流体aの供
給が停止されると蓋部材が弾性体の弾性力で液供給管の
出口部分を塞ぎ、液供給管内に粗粒子が侵入するのを防
止する構成となる。
The liquid-phase fluidized bed heat exchanger of the second invention is not limited to the example shown in FIGS. 7 and 8 as long as the coarse particles 11 do not enter the liquid supply pipe. Alternatively, a check valve may be provided at the outlet of the liquid supply pipe, or a lid member may be provided to cover the upper portion of the outlet of the liquid supply pipe shown in FIG. If the lid member is supported by an elastic body that gives a force in the direction of closing the portion and is set to be weaker than the supply pressure of the liquid fluid a that supplies the elastic force of this elastic body, the lid member will be in a liquid state during the supply of the liquid fluid a. The liquid fluid a floats from the outlet portion of the supply pipe and is supplied laterally or downward from the gap between the lid member and the liquid supply pipe. When the supply of the liquid fluid a is stopped, the lid member is elastic. The outlet part of the liquid supply pipe is blocked by force to prevent coarse particles from entering the liquid supply pipe.

【0040】このように、第2の発明の液相流動層熱交
換器としても、その要旨を逸脱しない範囲において種々
変形して実施することができる。さらに、上記第1、2
の発明において、その液相流動層熱交換器の構成とし
て、伝熱管7を液流体aと直行するように水平配列とし
て構成したが、液流体aと平行となるよう垂直に配列し
てもよく、本発明を何等限定するものではない。
As described above, the liquid-phase fluidized bed heat exchanger of the second invention can be modified in various ways without departing from the scope of the invention. Further, the above first and second
In the invention, the liquid-phase fluidized bed heat exchanger has a configuration in which the heat transfer tubes 7 are horizontally arranged so as to be orthogonal to the liquid fluid a, but may be vertically arranged so as to be parallel to the liquid fluid a. However, the present invention is not limited thereto.

【0041】また、熱交換部3の下流側に微細流動粒子
8の流出防止のために出口バッファー部4を設置し流動
断面積を広げているが、最小流動化速度umf2 が微細流
動粒子8の流動終端流速ut1よりも小さい粗粒子11を
用いれば、出口バッファー部4は不要である。
Further, an outlet buffer section 4 is installed on the downstream side of the heat exchange section 3 in order to prevent the outflow of the fine fluidized particles 8 to widen the flow cross-sectional area, but the minimum fluidization speed umf2 is equal to that of the fine fluidized particles 8. If the coarse particles 11 smaller than the flow end flow velocity ut1 are used, the outlet buffer section 4 is unnecessary.

【0042】さらに、液流入部2の流路断面積を熱交換
部3よりも広くするために入口バッファーを設置してお
けば、粗粒子11に微細流動粒子8と同一の粒子を用い
たとしても、通常運転行程時の入口バッファー部におけ
る液流速が微細流動粒子8の最小流動化速度umf1 より
も小さくなるようにすれば第の発明と同様の運転が行え
る。
Further, if an inlet buffer is provided in order to make the cross-sectional area of the liquid inflow section 2 wider than that of the heat exchange section 3, it is assumed that the same particles as the fine fluid particles 8 are used as the coarse particles 11. However, the same operation as that of the first aspect of the invention can be performed if the liquid flow velocity in the inlet buffer section during the normal operation process is set to be lower than the minimum fluidization velocity umf1 of the fine fluidized particles 8.

【0043】[0043]

【発明の効果】以上、説明したように本発明による液相
流動層熱交換器では、通常運転行程時には、流動化状態
形成流速が流動粒子より大きい粒子により構成された液
分散層によって、流動粒子の均一な流動化状態を保つこ
とができる。すなわち、通常運転行程時には液分散層を
構成する粒子は静止状態を保ち、十分な液分散機能を発
揮する。また、洗浄運転行程時には、液分散層を構成す
る粒子が流動化状態となる流速以上に液体流の流速を高
め、液分散層を流動化状態とすることによって、液分散
層への廃油、スケール成分、水棲生物等の付着、堆積
を、粒子間の摩擦力、液体流の搬送力、粒子自身の運動
によって除去することが可能となり、液分散層の閉塞を
防止することができる。
As described above, in the liquid phase fluidized bed heat exchanger according to the present invention, during the normal operation process, the fluidized bed is formed by the fluidized bed formed of particles having a fluidized state forming flow velocity higher than that of the fluidized particles. It is possible to maintain a uniform fluidized state of. That is, during the normal operation process, the particles constituting the liquid dispersion layer remain stationary and exhibit a sufficient liquid dispersion function. Further, during the cleaning operation process, the flow velocity of the liquid flow is increased to a speed higher than the flow velocity of the particles forming the liquid dispersion layer to make the liquid dispersion layer in the fluidized state, thereby allowing waste oil and scale to the liquid dispersion layer. Adhesion and deposition of components, aquatic organisms, etc. can be removed by the frictional force between particles, the liquid flow transporting force, and the movement of the particles themselves, and the clogging of the liquid dispersion layer can be prevented.

【0044】さらに、液相流動層熱交換器を複数基設置
し熱交換器システムを構成することによって、熱交換器
群の少なくとも1基の液体流の流速を、液分散層構成粒
子が流動化状態となる流速以上に増加させ、熱交換操作
を行いつつ液分散層の洗浄を行い、その時の液体流の増
加分をその他の熱交換器に供給されている液体流の一部
を振り分けることにより賄っているため、液流体を供給
するための供給系にかかる負荷を大きく変化させること
なく熱交換操作と洗浄操作を行うことができると共に、
熱交換器システム全体の熱交換能力を低下させることな
く、連続運転が可能となり、熱交換器の信頼性向上およ
び運転費用の低減が実現できる。
Further, a plurality of liquid phase fluidized bed heat exchangers are installed to constitute a heat exchanger system, so that the liquid dispersion layer forming particles fluidize the flow velocity of at least one liquid stream in the heat exchanger group. By increasing the flow velocity above the state, washing the liquid dispersion layer while performing the heat exchange operation, and dividing the increase in the liquid flow at that time by allocating a part of the liquid flow supplied to the other heat exchangers. Since it is covered, it is possible to perform heat exchange operation and cleaning operation without significantly changing the load on the supply system for supplying the liquid fluid, and
Continuous operation is possible without reducing the heat exchange capacity of the entire heat exchanger system, and the reliability of the heat exchanger can be improved and the operating cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液相流動層熱交換システムに適用可能
な液相流動層熱交換器の通常運転行程における状態を示
す断面図。
FIG. 1 is a cross-sectional view showing a state of a liquid phase fluidized bed heat exchanger applicable to a liquid phase fluidized bed heat exchange system of the present invention in a normal operation process.

【図2】本発明の液相流動層熱交換システムに適用可能
な液相流動層熱交換器の洗浄運転行程における状態を示
す断面図。
FIG. 2 is a cross-sectional view showing a state in a cleaning operation process of a liquid phase fluidized bed heat exchanger applicable to the liquid phase fluidized bed heat exchange system of the present invention.

【図3】微粒子層と粗粒子層の圧力損失特性を示す図。FIG. 3 is a diagram showing pressure loss characteristics of a fine particle layer and a coarse particle layer.

【図4】液相流動層と液単相流の熱伝達率特性を示す
図。
FIG. 4 is a diagram showing heat transfer coefficient characteristics of a liquid-phase fluidized bed and a liquid single-phase flow.

【図5】本発明の液相流動層熱交換システムの構成を示
す概略構成図。
FIG. 5 is a schematic configuration diagram showing the configuration of a liquid phase fluidized bed heat exchange system of the present invention.

【図6】本発明の液相流動層熱交換器システムの運転方
法の一実施例における各液相流動層熱交換器に供給され
る液流体の流量と運転時間の関係を示す図である。
FIG. 6 is a diagram showing the relationship between the flow rate of the liquid fluid supplied to each liquid phase fluidized bed heat exchanger and the operating time in one embodiment of the method for operating the liquid phase fluidized bed heat exchanger system of the present invention.

【図7】本発明の液相流動層熱交換器の通常運転行程に
おける状態を示す断面図である。
FIG. 7 is a cross-sectional view showing a state in a normal operation process of the liquid phase fluidized bed heat exchanger of the present invention.

【図8】本発明の液相流動層熱交換器に用いられる液供
給管の変形例を示すための断面図である。
FIG. 8 is a cross-sectional view showing a modified example of a liquid supply pipe used in the liquid phase fluidized bed heat exchanger of the present invention.

【符号の説明】[Explanation of symbols]

1 熱交換器本体 2 液流入部 3 熱交換部 4 出口バッファー部 5 液供給管 7 伝熱管 8 微細流動粒子(第1の粒子) 9 粗粒子支持板 10 液分散層(第2の粒子群) 11 粗粒子(第2の粒子) 12 液流体供給用ポンプ 25 液供給管 26 流出口 1 heat exchanger main body 2 liquid inflow part 3 heat exchange part 4 outlet buffer part 5 liquid supply pipe 7 heat transfer pipe 8 fine fluidized particles (first particles) 9 coarse particle support plate 10 liquid dispersion layer (second particle group) 11 Coarse Particles (Second Particles) 12 Liquid Fluid Supply Pump 25 Liquid Supply Pipe 26 Outlet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱交換器本体と、この熱交換器本体内に収
納され該本体内に供給される液体流により流動せしめら
れる第1の粒子群と、この粒子群の上流側に設けられ、
前記第1の粒子群の粒子より流動化流速が大きい粒子を
含んだ第2の粒子群と、前記第2の粒子群の粒子が内部
に侵入するのを防止するための粒子侵入防止手段を有し
前記第2の粒子群を通して前記熱交換部内に液体流を供
給する液供給管とを具備することを特徴とする液相流動
層熱交換器。
1. A heat exchanger main body, a first particle group housed in the heat exchanger main body and made to flow by a liquid flow supplied into the main body, and provided on the upstream side of the particle group,
A second particle group including particles having a fluidization velocity higher than that of the particles of the first particle group; and a particle intrusion prevention unit for preventing particles of the second particle group from entering the inside. And a liquid supply pipe for supplying a liquid flow into the heat exchange section through the second particle group.
【請求項2】並列に設置される複数の液相流動層熱交換
器と、該複数の熱交換器内に各々液体流を供給し熱交換
を行った後の前記液体流を排出するための配管路と、前
記各々の液相流動層熱交換器に供給される前記液体流の
流量を調整するための複数の流量調整弁と、この複数の
流量調整弁の各々の開度を独立に制御可能な流量調整制
御装置とを具備することを特徴とする液相流動層熱交換
システム。
2. A plurality of liquid-phase fluidized bed heat exchangers installed in parallel, and a liquid flow which is supplied to each of the plurality of heat exchangers to discharge the liquid flow after heat exchange. A pipeline, a plurality of flow rate adjusting valves for adjusting the flow rate of the liquid flow supplied to each of the liquid phase fluidized bed heat exchangers, and the opening of each of the plurality of flow rate adjusting valves is independently controlled. A liquid-phase fluidized bed heat exchange system comprising a possible flow rate control device.
【請求項3】熱交換器本体と、この熱交換器本体内に収
納され該本体内に供給される液体流により流動せしめら
れる第1の粒子群と、この粒子群の上流側に設けられ、
前記第1の粒子群の粒子より流動化流速が大きい粒子を
含んだ第2の粒子群とを具備する液相流動層熱交換器を
複数設置することにより構成される液相流動層熱交換シ
ステムの運転方法において、 該熱交換部内の液体流の流速を、前記第1の粒子が流動
化状態となりかつ前記第2の粒子が静止状態となる流速
に設定して熱交換操作を行う通常運転行程と、前記複数
の熱交換器の少なくとも1基の液流速を、前記第2の粒
子が流動化状態となる流速以上に増大させ熱交換操作を
行いつつ前記第2の粒子群の洗浄を行い、この洗浄時の
液体流の増大分をその他の前記熱交換器に供給されてい
る液体流の一部を供給することにより賄うように制御し
た洗浄運転行程とを有することを特徴とする液相流動層
熱交換システムの運転方法。
3. A heat exchanger main body, a first particle group housed in the heat exchanger main body and made to flow by a liquid flow supplied into the main body, and provided on the upstream side of the particle group,
Liquid-phase fluidized-bed heat exchange system configured by installing a plurality of liquid-phase fluidized-bed heat exchangers each including a second particle group containing particles having a fluidization velocity higher than that of the first particle group In the operating method described above, the flow rate of the liquid flow in the heat exchange section is set to a flow rate at which the first particles are in a fluidized state and the second particles are in a stationary state, and the heat exchange operation is performed in a normal operation process. And increasing the liquid flow velocity of at least one of the plurality of heat exchangers to a flow velocity at which the second particles are in a fluidized state or more and performing the heat exchange operation to wash the second particle group, A liquid phase flow characterized by having a cleaning operation step controlled so as to cover the increase in the liquid flow at the time of cleaning by supplying a part of the liquid flow supplied to the other heat exchanger. Operating method of bed heat exchange system.
JP7352493A 1993-03-31 1993-03-31 Liquid fluidized bed heat exchanger, liquid fluidized bed heat exchanging system and its operating method Pending JPH06281369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7352493A JPH06281369A (en) 1993-03-31 1993-03-31 Liquid fluidized bed heat exchanger, liquid fluidized bed heat exchanging system and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7352493A JPH06281369A (en) 1993-03-31 1993-03-31 Liquid fluidized bed heat exchanger, liquid fluidized bed heat exchanging system and its operating method

Publications (1)

Publication Number Publication Date
JPH06281369A true JPH06281369A (en) 1994-10-07

Family

ID=13520717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7352493A Pending JPH06281369A (en) 1993-03-31 1993-03-31 Liquid fluidized bed heat exchanger, liquid fluidized bed heat exchanging system and its operating method

Country Status (1)

Country Link
JP (1) JPH06281369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202543A (en) * 2014-04-15 2015-11-16 トヨタ自動車東日本株式会社 object gripping device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202543A (en) * 2014-04-15 2015-11-16 トヨタ自動車東日本株式会社 object gripping device

Similar Documents

Publication Publication Date Title
US4567940A (en) Apparatus for carrying out physical and/or chemical processes, more specifically a heat exchanger of the continuous type
EP0694152B1 (en) Apparatus for carrying out a physical and/or chemical process, such as a heat exchanger
EP0274032B1 (en) Fuel cell coolant inlet manifold and system
RU2455049C2 (en) Method and device for cleaning filters with loose packing
JP4957299B2 (en) Steel plate cleaning equipment
US5308479A (en) Sewage disposal apparatus employing circulating filter media
JPH06281369A (en) Liquid fluidized bed heat exchanger, liquid fluidized bed heat exchanging system and its operating method
EP0428747A1 (en) Method and apparatus of filtering medium circulation type for purifying contaminated water
JPH0821694A (en) Liquid phase fluidized-bed heat exchanger
JPH05133689A (en) Liquid phase fluidized bed heat exchanger and operating method thereof
JPH07120191A (en) Liquid phase fluidized bed heat-exchanger system
Monk Design options for water filtration
JP3854743B2 (en) Antibacterial blocking prevention method and water treatment apparatus in water treatment apparatus
JP3297257B2 (en) Dust collection device
KR0127594Y1 (en) Regenerative apparatus of rapid band filter basin
JP3366041B2 (en) Bathtub cleaning equipment
CA1246542A (en) Apparatus for carrying out physical and/or chemical processes, more specifically a heat exchanger of the continuous type
JP2503085Y2 (en) Fluid supply header-tube
JPS6335280Y2 (en)
JPH11106996A (en) Electrodeposition coating apparatus and electrodeposition coating method using the same
KR20220033779A (en) Small size filtering device of aero type of cycling up/down vertical flow with float filter material and system recycling the polluted float filter material thereof
JP3258414B2 (en) Fluid contact purification device
JPH05295788A (en) Cleaning device with water recycle
TW552155B (en) Y-shaped filtering device
EP0626550B1 (en) Apparatus for carrying out a physical and/or chemical process, such as a heat exchanger