JPH05133689A - Liquid phase fluidized bed heat exchanger and operating method thereof - Google Patents

Liquid phase fluidized bed heat exchanger and operating method thereof

Info

Publication number
JPH05133689A
JPH05133689A JP29897891A JP29897891A JPH05133689A JP H05133689 A JPH05133689 A JP H05133689A JP 29897891 A JP29897891 A JP 29897891A JP 29897891 A JP29897891 A JP 29897891A JP H05133689 A JPH05133689 A JP H05133689A
Authority
JP
Japan
Prior art keywords
liquid
particles
fluidized
fluidized bed
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29897891A
Other languages
Japanese (ja)
Inventor
Norimitsu Abe
法光 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29897891A priority Critical patent/JPH05133689A/en
Publication of JPH05133689A publication Critical patent/JPH05133689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain a liquid phase fluidized bed heat exchanger, capable of effecting continuous operation under a high reliability, and the operating method of the same, by a method wherein the good dispersing condition of liquid is maintained in the heat exchanger employing fluidizing fluid containing waste oil, the constituents of scale, aquatic plants and the like while the washing of the site effecting the dispersion of the liquid can be effected surely without stopping the operation of the heat exchanger. CONSTITUTION:A plurality of heat transfer tubes 7 and a fluidized bed, retaining fine fluidized particles 8 fluidized by liquid current (a), are arranged in a heat exchanging unit 3. A liquid dispersing layer 10, constituted of rough particles 11 having a fluidizing flow speed larger than the fluidizing flow speed of the fine fluidized particles 8, is provided in the upstream side of the fluidized bed. Upon normal operation, heat exchanging operation is effected while setting the flow speed of the liquid current (a) in the heat exchanging unit 3 at a speed, whereat the fine fluidized particles 8 become fluidized condition and the dispersing layer constituting rough particles 11 become stopped condition. Upon washing operation, the flow speed of the liquid current (a) is increased to a speed higher than a flow speed whereat the liquid dispersing layer constituting rough particles 11 become fluidized condition while the washing of the liquid dispersing layer is effected while effecting heat exchanging operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体を流動化流体とし
て熱交換操作を行う液相流動層熱交換器およびその運転
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid phase fluidized bed heat exchanger for performing heat exchange operation using a liquid as a fluidizing fluid and a method for operating the same.

【0002】[0002]

【従来の技術】液相流動層熱交換器は、伝熱管が配置さ
れた熱交換部内に流動粒子を保持し、この流動粒子を熱
交換部内を流れる液体流により流動化状態とする(流動
層の形成)ことによって、熱交換効率の向上を図った熱
交換器である。
2. Description of the Related Art A liquid-phase fluidized bed heat exchanger holds fluidized particles in a heat exchange section in which heat transfer tubes are arranged, and brings the fluidized particles into a fluidized state by a liquid flow flowing in the heat exchange section (fluidized bed). Is formed) to improve heat exchange efficiency.

【0003】このような液相流動層熱交換器において、
安定した伝熱性能を得るためには、流動粒子の均一な流
動化状態を保つことが不可欠であり、機械的な撹拌を用
いる場合を除いては、液体流を均一に分散させるため
に、流動層の上流側に多孔板、金網、あるいはそれらを
組み合せた液分散板が設置される。このような液分散板
においては、一般的にはその整流効果を増加させるため
に開孔率を低くし、また孔径を小さくして液流通抵抗を
増加させる必要がある。さらに、層内の流動粒子を保持
する目的からは、分散板の開孔径は流動粒子径よりも小
径のものが使用される。
In such a liquid phase fluidized bed heat exchanger,
In order to obtain stable heat transfer performance, it is essential to keep the fluidized particles in a uniform fluidized state, and except for the case where mechanical stirring is used, in order to uniformly disperse the liquid flow, A perforated plate, a wire mesh, or a liquid dispersion plate combining them is installed on the upstream side of the layer. In such a liquid dispersion plate, it is generally necessary to reduce the aperture ratio and increase the liquid flow resistance by reducing the hole diameter in order to increase the rectifying effect. Further, for the purpose of retaining the fluidized particles in the layer, a dispersion plate having an opening diameter smaller than the fluidized particle diameter is used.

【0004】ところで、上記したような液相流動層熱交
換器によれば、伝熱管へのスケール等の付着による熱交
換効率の低下を抑制できることから、海水等からの熱回
収に応用することが考えられている。しかしながら、上
記したような開口部の径が小さい液分散板を有する液相
流動層熱交換器において、廃油、スケール成分、水棲生
物等を含む液を流動化液体とした場合、液中に含まれる
廃油、スケール成分、水棲生物等は、液分散板に容易に
付着、堆積し、ついには液分散板の開孔部の閉塞を引き
起こし、熱交換器の性能に重大な支障を来すという問題
がある。
By the way, according to the liquid phase fluidized bed heat exchanger as described above, it is possible to suppress a decrease in heat exchange efficiency due to adhesion of scale or the like to the heat transfer tube, and therefore it can be applied to heat recovery from seawater or the like. It is considered. However, in a liquid phase fluidized bed heat exchanger having a liquid dispersion plate with a small opening diameter as described above, when a liquid containing waste oil, scale components, aquatic organisms, etc. is used as a fluidizing liquid, it is contained in the liquid. Waste oil, scale components, aquatic organisms, etc. easily adhere to and accumulate on the liquid dispersion plate, eventually causing blockage of the apertures of the liquid dispersion plate, which seriously hinders the performance of the heat exchanger. is there.

【0005】このため、液分散板の洗浄装置として、ブ
ラシによる掻き落とし、ハンマーによる衝撃等が考えら
れているが、これらは熱交換器の運転を定期的に停止す
る必要があり、頻繁な洗浄操作による運転費用の高騰を
まねく等といった難点を有している。
Therefore, as a cleaning device for the liquid dispersion plate, scraping with a brush, impact with a hammer, etc. are considered, but these require frequent stoppage of operation of the heat exchanger. There are some drawbacks such as high operating costs due to operation.

【0006】[0006]

【発明が解決しようとする課題】上述したように、液相
流動層熱交換器において、廃油、スケール成分、水棲生
物等を含む液を流動化流体とした場合、それらが液分散
板に容易に付着、堆積して、熱交換器の性能を低下させ
るため、付着物を定期的に液分散板から除去しなければ
ならない。そして、従来の液相流動層熱交換器における
洗浄操作は、熱交換器の運転を停止して行わなければな
らないため、実運転時間が減少することによって、運転
コストが高くなるという問題を有していた。
As described above, in a liquid phase fluidized bed heat exchanger, when a liquid containing waste oil, scale components, aquatic organisms, etc. is used as a fluidizing fluid, they are easily dispersed in a liquid dispersion plate. The deposits must be regularly removed from the liquid dispersion plate as they deposit and accumulate and reduce the performance of the heat exchanger. Further, since the cleaning operation in the conventional liquid phase fluidized bed heat exchanger has to be performed with the operation of the heat exchanger stopped, there is a problem that the operating cost increases due to the reduction of the actual operating time. Was there.

【0007】このようなことから、通常運転時における
液の分散状態を低下させることなく、熱交換器を運転
(熱交換操作)した状態で液分散部の洗浄を行うことが
可能な、運転効率に優れた液相流動層熱交換器が強く求
められている。
For this reason, it is possible to wash the liquid dispersion portion while the heat exchanger is operating (heat exchange operation) without lowering the liquid dispersion state during normal operation. There is a strong demand for an excellent liquid phase fluidized bed heat exchanger.

【0008】本発明は、このような課題に対処するため
になされたもので、廃油、スケール成分、水棲生物等を
含む液を流動化流体とする熱交換器においても、液の良
好な分散状態を維持した上で、液分散を行う部位の洗浄
を運転を停止することなく、かつ確実に行えるようにす
ることによって、高信頼性の下での連続運転を可能にし
た液相流動層熱交換器およびその運転方法を提供するこ
とを目的としている。
The present invention has been made in order to solve such a problem, and even in a heat exchanger using a liquid containing waste oil, scale components, aquatic organisms, etc. as a fluidizing fluid, a good dispersion state of the liquid is obtained. The liquid phase fluidized bed heat exchange that enables continuous operation with high reliability by maintaining the above-mentioned value and reliably performing the cleaning of the part where the liquid is dispersed without stopping the operation. It is intended to provide a container and a method of operating the container.

【0009】[0009]

【課題を解決するための手段】本発明の液相流動層熱交
換器は、伝熱管が配置された熱交換部と、前記熱交換部
内の液体流により流動せしめられる流動粒子を保持した
流動層と、前記流動層の上流側に設けられ、該流動層を
構成する流動粒子より流動化流速が大きい粒子により構
成された液分散層とを具備することを特徴としている。
A liquid-phase fluidized bed heat exchanger according to the present invention is a fluidized bed in which a heat exchange section in which heat transfer tubes are arranged and fluid particles held by a liquid flow in the heat exchange section are held. And a liquid dispersion layer which is provided on the upstream side of the fluidized bed and which is composed of particles having a higher fluidization flow velocity than the fluidized particles forming the fluidized bed.

【0010】また、本発明の液相流動層熱交換器の運転
方法は、上記した構成を具備する液相流動層熱交換器の
運転方法において、前記熱交換部内の液体流の流速を、
前記流動層を構成する流動粒子が流動化状態となると共
に、前記液分散層構成粒子が静止状態となる流速に設定
し、熱交換操作を行う通常運転工程と、前記熱交換部内
の液体流の流速を、前記液分散層構成粒子が流動化状態
となる流速以上に増大させ、熱交換操作を行いつつ前記
液分散層の洗浄を行う洗浄運転工程とを有することを特
徴としている。
Further, the operating method of the liquid phase fluidized bed heat exchanger of the present invention is the same as the operating method of the liquid phase fluidized bed heat exchanger having the above-mentioned structure, wherein the flow velocity of the liquid flow in the heat exchange section is
Along with the fluidized particles forming the fluidized bed being in a fluidized state, the liquid dispersion layer constituting particles are set to a flow velocity so as to be in a stationary state, a normal operation step of performing a heat exchange operation, and a liquid flow in the heat exchange section. And a washing operation step of washing the liquid dispersion layer while performing a heat exchange operation by increasing the flow velocity to a flow velocity at which the particles constituting the liquid dispersion layer are in a fluidized state or more.

【0011】[0011]

【作用】本発明の液相流動層熱交換器においては、通常
運転時には流動化状態形成流速が流動粒子より大きい粒
子により構成された液分散層によって、流動粒子の均一
な流動化状態を保つことができる。すなわち、通常運転
時には液分散層の構成粒子は静止状態を保ち、十分かつ
均一な液分散機能を発揮する。また、洗浄運転時には、
液分散層を構成する粒子が流動化状態となる流速以上に
液体流の流速を高め、液分散層を流動化状態とすること
によって、液分散層への廃油、スケール成分、水棲生物
等の付着、堆積物を、粒子間の摩擦力、液体流の搬送
力、粒子自身の重量等によって除去することが可能とな
り、液分散層の閉塞を防止することができる。そして、
この洗浄運転時においても、熱交換操作は継続されるた
め、熱交換器の能力を低下させることなく、連続運転が
可能となり、熱交換器の信頼性向上および運転費用の低
減が実現できる。
In the liquid-phase fluidized bed heat exchanger of the present invention, in a normal operation, a fluidized bed formed of particles having a fluidized state forming flow velocity higher than that of the fluidized particles maintains a uniform fluidized state of the fluidized particles. You can That is, during normal operation, the constituent particles of the liquid dispersion layer remain stationary and exhibit a sufficient and uniform liquid dispersion function. Also, during the washing operation,
Adhesion of waste oil, scale components, aquatic organisms, etc. to the liquid dispersion layer by increasing the flow velocity of the liquid flow above the flow velocity of the particles that make up the liquid dispersion layer The deposits can be removed by the frictional force between the particles, the conveying force of the liquid flow, the weight of the particles themselves, etc., and the clogging of the liquid dispersion layer can be prevented. And
Since the heat exchange operation is continued even during this cleaning operation, continuous operation is possible without lowering the capacity of the heat exchanger, and the reliability of the heat exchanger can be improved and the operating cost can be reduced.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の一実施例による液相流動層
熱交換器の通常運転時における状態を示す図である。同
図において、1は熱交換器本体である。この熱交換器本
体1は、液流入部2、熱交換部3および出口バッファー
部4を有しており、この熱交換器本体1内を廃油、スケ
ール成分、水棲生物等を含む液体aが流通するように構
成されている。また、熱交換器本体1には、液体流aの
上流側に液入口5が、また下流側に液出口6がそれぞれ
設けられている。
FIG. 1 is a diagram showing the state of a liquid phase fluidized bed heat exchanger according to an embodiment of the present invention during normal operation. In the figure, 1 is a heat exchanger body. The heat exchanger body 1 has a liquid inflow portion 2, a heat exchange portion 3 and an outlet buffer portion 4, and a liquid a containing waste oil, scale components, aquatic organisms, etc. flows through the heat exchanger body 1. Is configured to. Further, the heat exchanger body 1 is provided with a liquid inlet 5 on the upstream side of the liquid flow a and a liquid outlet 6 on the downstream side thereof.

【0014】熱交換部3には、複数本の伝熱管7が液体
流aと直交するように埋設されていると共に、流動層を
構成する多数の微細流動粒子8が保持されている。この
微細流動粒子8は、比較的小さな液流速によって流動化
状態を呈するように、粒径および重量が設定されてい
る。微細流動粒子8の具体例としては、ガラスビーズ、
アルミナボール、珪砂等が挙げられ、例えば平均粒径が
500μm 〜3000μm 程度のものが好ましく用いられる。
In the heat exchange section 3, a plurality of heat transfer tubes 7 are embedded so as to be orthogonal to the liquid flow a, and a large number of fine fluid particles 8 forming a fluidized bed are held. The particle size and weight of the fine fluidized particles 8 are set so as to be in a fluidized state with a relatively small liquid flow velocity. Specific examples of the fine fluid particles 8 include glass beads,
Alumina balls, silica sand, etc. may be mentioned.
Those having a size of about 500 μm to 3000 μm are preferably used.

【0015】また、この熱交換部3の上流側にあたる液
流入部2には、粗粒子支持板9が設置されており、この
粗粒子支持板9上に液分散層10を構成する多数の粗粒
子11が配置されている。液分散層10を構成する粗粒
子11としては、上記微細流動粒子8より流動化流速が
大きい粒子、具体的には微細流動粒子8より粒径が大き
く、かつ重い粒子等が用いられる。なお、粗粒子11と
して、微細流動粒子8と粒径が同等で比重が大きい粒子
や、微細流動粒子8と同一材質で粒径が大きい粒子等を
用いることも可能である。
A coarse particle support plate 9 is installed in the liquid inflow section 2 which is the upstream side of the heat exchange section 3, and a large number of coarse particles constituting the liquid dispersion layer 10 are formed on the coarse particle support plate 9. Particles 11 are arranged. As the coarse particles 11 constituting the liquid dispersion layer 10, particles having a fluidization flow velocity higher than that of the fine fluidized particles 8, specifically, particles having a larger particle diameter than the fine fluidized particles 8 and heavier are used. It is also possible to use, as the coarse particles 11, particles having the same particle size as the fine fluid particles 8 and a large specific gravity, or particles made of the same material as the fine fluid particles 8 and having a large particle diameter.

【0016】通常運転工程においては、図1に示したよ
うに、廃油、スケール成分、水棲生物等を含む液体a
は、液入口5から熱交換器本体1内に供給され、粗粒子
支持板9および粗粒子11間を通過した後、熱交換部3
内で微細流動粒子8を激しく流動させ、流動層を形成す
る。この流動層内で、伝熱管7中を流れる液体bとの間
で熱交換が行われる。微細流動粒子8による流動層は、
液体流a側の境界層を薄くして熱交換効率を高める。し
かる後、液体流aは出口バッファー部4を経て液出口6
から排出される。この際、液体流aの流量は、微細流動
粒子8が流動化状態となり、かつ粗粒子11が流動化状
態となる流量より小さく設定されているため、粗粒子1
1は静止状態を保ち、液分散層10が形成される。この
ような液分散層10を液体流aは通過することにより均
一に分散されるため、微細流動粒子8の均一な流動化状
態が保たれる。
In the normal operation process, as shown in FIG. 1, a liquid a containing waste oil, scale components, aquatic organisms, etc.
Is supplied into the heat exchanger body 1 from the liquid inlet 5, passes between the coarse particle support plate 9 and the coarse particles 11, and then the heat exchange section 3
The fine fluidized particles 8 are vigorously fluidized therein to form a fluidized bed. In this fluidized bed, heat exchange is performed with the liquid b flowing in the heat transfer tube 7. The fluidized bed of fine fluidized particles 8 is
The boundary layer on the liquid flow a side is thinned to improve heat exchange efficiency. After that, the liquid flow a passes through the outlet buffer section 4 and the liquid outlet 6
Discharged from. At this time, the flow rate of the liquid flow a is set to be smaller than the flow rate at which the fine fluidized particles 8 are in the fluidized state and the coarse particles 11 are in the fluidized state.
No. 1 remains stationary, and the liquid dispersion layer 10 is formed. Since the liquid flow a passes through the liquid dispersion layer 10 and is uniformly dispersed, the uniform fluidized state of the fine fluidized particles 8 is maintained.

【0017】しかし、通常運転状態を続けていると、液
体aに含有された廃油、スケール成分、水棲生物等が粗
粒子11間や粗粒子支持板9に徐々に付着、堆積し、液
分散層10が閉塞するおそれが生じる。そこで、定期的
に液体aの流量を増加させて、洗浄運転へと切り替え
る。
However, when the normal operation state is continued, waste oil, scale components, aquatic organisms and the like contained in the liquid a gradually adhere and accumulate between the coarse particles 11 and on the coarse particle support plate 9, and the liquid dispersion layer. There is a possibility that 10 will be blocked. Therefore, the flow rate of the liquid a is periodically increased to switch to the cleaning operation.

【0018】図2は、この実施例の液相流動層熱交換器
の洗浄運転状態を示す図である。液体流aの流量を増加
させると、粗粒子11は流動を開始し、そこに付着、堆
積した廃油、スケール成分、水棲生物等が、粗粒子11
間の摩擦力、液体流aの搬送力および粗粒子11自身の
重量等によって除去される。この際、微細流動粒子8は
下流側へ流出するが、出口バッファー部4の流路断面積
を熱交換部3の流路断面積よりも十分広く設定しておく
ことにより液体aの流速は減少し、微細流動粒子8は出
口バッファー部4内において流動化状態となり、熱交換
器外へ放出されることなく出口バッファー部4内に保持
される。
FIG. 2 is a diagram showing a cleaning operation state of the liquid phase fluidized bed heat exchanger of this embodiment. When the flow rate of the liquid flow a is increased, the coarse particles 11 start to flow, and waste oil, scale components, aquatic organisms, etc., which are attached and accumulated on the coarse particles 11 are removed.
It is removed by the frictional force between them, the transport force of the liquid flow a, the weight of the coarse particles 11 themselves, and the like. At this time, the fine fluidized particles 8 flow out to the downstream side, but the flow velocity of the liquid a is reduced by setting the flow passage cross-sectional area of the outlet buffer unit 4 sufficiently wider than the flow passage cross-sectional area of the heat exchange unit 3. Then, the fine fluidized particles 8 are in a fluidized state in the outlet buffer unit 4, and are retained in the outlet buffer unit 4 without being discharged to the outside of the heat exchanger.

【0019】ここで、図3に微細粒子および粗粒子の圧
力損失と液流速との関係を示す。同図において、実線A
は微細粒子、実線Bは粗粒子の圧力損失特性を示してい
る。一般に流動層においては、流体流速が小さい場合に
は粒子は動かず、固定層を形成する。流速が増加して最
小流動化速度umfに達すると流動を開始し、さらに流速
を増加させると、やがて流動終端速度ut に達し、それ
以上では粒子が流体に同伴されて流出してしまう。すな
わち、流体流速umfからut の間が粒子の流動層形成範
囲であり、この間の圧力損失は流速に関係無くほぼ一定
の値となる。
FIG. 3 shows the relationship between the pressure loss of fine particles and coarse particles and the liquid flow velocity. In the figure, the solid line A
Indicates fine particles, and the solid line B indicates coarse particle pressure loss characteristics. Generally, in a fluidized bed, particles do not move and form a fixed bed when the fluid velocity is low. When the flow velocity increases and reaches the minimum fluidization velocity u mf , the flow starts, and when the flow velocity is further increased, the end velocity of the flow reaches u t , and beyond that, the particles are entrained in the fluid and flow out. That is, the region between the fluid velocities u mf and u t is the fluidized bed formation range of particles, and the pressure loss during this is a substantially constant value regardless of the flow velocity.

【0020】通常運転工程時の熱交換部3内の液流速を
1 とすると、u1 は微細流動粒子8の最小流動化速度
mf1 と流動終端速度ut1の間に設定されているが、粗
粒子11の最小流動化速度umf2 よりも小さいため、粗
粒子11は静止して液分散層10を形成する。
Assuming that the liquid flow velocity in the heat exchange section 3 during the normal operation process is u 1 , u 1 is set between the minimum fluidization velocity u mf1 of the fine fluidized particles 8 and the end flow velocity u t1 . Since it is smaller than the minimum fluidization speed u mf2 of the coarse particles 11, the coarse particles 11 stand still to form the liquid dispersion layer 10.

【0021】また、洗浄運転工程時には、液流量を増加
させて、熱交換部3内の液流速をumf2 よりも大きいu
2 とすることにより、粗粒子11を流動させ、粗粒子1
1表面やその間に付着、堆積した廃油、スケール成分、
水棲生物等を除去することができる。この際、微細流動
粒子8はu2がut1より大きいため、熱交換部3からは
流出状態となるが、出口側バッファー部4の流路断面積
を熱交換部3の流路断面積よりも十分大きく設定してお
くことによって、出口側バッファー部4内での液流速が
t1以下となり、微細流動粒子8は流動化状態となって
出口側バッファー部4内に保持される。
During the cleaning operation step, the liquid flow rate is increased so that the liquid flow velocity in the heat exchange section 3 is larger than u mf2.
By setting 2 , the coarse particles 11 are made to flow, and the coarse particles 1
1 Surface and waste oil deposited and accumulated between them, scale components,
Can remove aquatic organisms. At this time, since the microfluidic particles 8 have an outflow state from the heat exchange section 3 because u 2 is larger than u t1 , the flow passage cross-sectional area of the outlet side buffer section 4 is smaller than that of the heat exchange section 3. Is set sufficiently high, the liquid flow velocity in the outlet side buffer section 4 becomes u t1 or less, and the fine fluidized particles 8 are kept in the outlet side buffer section 4 in a fluidized state.

【0022】また図4は、微細粒子流動層の場合と、粒
子が存在しない液単相流の場合の熱伝達率と液流速との
関係を示した図である。図4において、実線Dは流動層
の熱伝達率特性、実線Dは液単相流の熱伝達率特性を示
している。通常運転時の液流速u1 では、熱伝達率は同
一流速での液単相流の場合よりもはるかに大きい値を示
している。そして、液流速を洗浄運転時の液流速u2
で増加させると、微細流動粒子8は熱交換部3より流出
状態となり、伝熱管7の周りに粒子が存在しなくなる
が、流速の増加と共に液単相流の熱伝達率も増加するた
め、通常運転時と同等の熱伝達率を得ることができ、熱
交換部3での交換熱量を減少させることはない。
FIG. 4 is a diagram showing the relationship between the heat transfer coefficient and the liquid flow velocity in the case of a fluidized bed of fine particles and the liquid single-phase flow in which no particles are present. In FIG. 4, the solid line D shows the heat transfer coefficient characteristic of the fluidized bed, and the solid line D shows the heat transfer coefficient characteristic of the liquid single-phase flow. At the liquid flow velocity u 1 in the normal operation, the heat transfer coefficient shows a value much larger than that in the case of the liquid single-phase flow at the same flow velocity. Then, when the liquid flow velocity is increased to the liquid flow velocity u 2 during the cleaning operation, the fine fluidized particles 8 are brought into the outflow state from the heat exchange section 3 and no particles are present around the heat transfer tube 7. Since the heat transfer coefficient of the single-phase flow also increases, it is possible to obtain a heat transfer coefficient equivalent to that during normal operation, and the amount of heat exchanged in the heat exchange section 3 is not reduced.

【0023】なお、上記実施例においては、伝熱管7を
水平に配列して構成したが、垂直配列としてもよく、本
発明を何等限定するものではない。
Although the heat transfer tubes 7 are arranged horizontally in the above embodiment, they may be arranged vertically, and the present invention is not limited thereto.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、通
常運転時には粗粒子による液分散層によって微細粒子流
動層の均一な流動化状態を保つことができ、また洗浄運
転時には粗粒子層を流動させることにより、廃油、スケ
ール成分、水棲生物等の付着、堆積物を除去することが
できる。これによって、液分散層の閉塞が防止できると
共に、熱交換器の交換熱量を減少させることなく連続運
転が可能となるため、液相流動層熱交換器の信頼性向上
および運転費用の低減が実現できる。
As described above, according to the present invention, it is possible to maintain a uniform fluidized state of the fine particle fluidized bed by the liquid dispersion layer of coarse particles during the normal operation, and the coarse particle layer during the washing operation. By fluidizing, it is possible to remove waste oil, scale components, aquatic organisms, and deposits. This prevents clogging of the liquid dispersion bed and enables continuous operation without reducing the heat exchange amount of the heat exchanger, improving the reliability of the liquid phase fluidized bed heat exchanger and reducing operating costs. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の液相流動層熱交換器の通常
運転状態を示す断面図である。
FIG. 1 is a cross-sectional view showing a normal operation state of a liquid phase fluidized bed heat exchanger according to an embodiment of the present invention.

【図2】図1に示す液相流動層熱交換器の洗浄運転状態
を示す断面図である。
FIG. 2 is a sectional view showing a cleaning operation state of the liquid phase fluidized bed heat exchanger shown in FIG.

【図3】微細粒子と粗粒子の圧力損失特性を示す図であ
る。
FIG. 3 is a diagram showing pressure loss characteristics of fine particles and coarse particles.

【図4】流動層と液単相流の熱伝達率特性を示す図であ
る。
FIG. 4 is a diagram showing heat transfer coefficient characteristics of a fluidized bed and a liquid single-phase flow.

【符号の説明】[Explanation of symbols]

1……熱交換器本体 2……液流入部 3……熱交換部 4……出口バッファー部 7……伝熱管 8……微細流動粒子 9……粗粒子支持板 10…液分散層 11…粗粒子 1 ... Heat exchanger body 2 ... Liquid inflow part 3 ... Heat exchange part 4 ... Outlet buffer part 7 ... Heat transfer tube 8 ... Fine fluidized particles 9 ... Coarse particle support plate 10 ... Liquid dispersion layer 11 ... Coarse particles

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 伝熱管が配置された熱交換部と、前記熱
交換部内の液体流により流動せしめられる流動粒子を保
持した流動層と、前記流動層の上流側に設けられ、該流
動層を構成する流動粒子より流動化流速が大きい粒子に
より構成された液分散層とを具備することを特徴とする
液相流動層熱交換器。
1. A heat exchange section in which a heat transfer tube is disposed, a fluidized bed holding fluidized particles that are made to flow by a liquid flow in the heat exchange section, and a fluidized bed provided upstream of the fluidized bed. A liquid-phase fluidized bed heat exchanger, comprising: a liquid dispersion layer composed of particles having a fluidization velocity higher than that of the fluidized particles.
【請求項2】 請求項1記載の液相流動層熱交換器の運
転方法において、 前記熱交換部内の液体流の流速を、前記流動層を構成す
る流動粒子が流動化状態となると共に、前記液分散層構
成粒子が静止状態となる流速に設定し、熱交換操作を行
う通常運転工程と、前記熱交換部内の液体流の流速を、
前記液分散層構成粒子が流動化状態となる流速以上に増
大させ、熱交換操作を行いつつ前記液分散層の洗浄を行
う洗浄運転工程とを有することを特徴とする液相流動層
熱交換器の運転方法。
2. The method for operating a liquid phase fluidized bed heat exchanger according to claim 1, wherein the flow velocity of the liquid flow in the heat exchange section is such that the fluidized particles forming the fluidized bed are in a fluidized state, and The liquid dispersion layer constituting particles are set to a flow rate at which the particles are in a stationary state, a normal operation step of performing a heat exchange operation, and a flow rate of the liquid flow in the heat exchange section,
A liquid phase fluidized bed heat exchanger comprising: a washing operation step of increasing the flow velocity of the particles constituting the liquid dispersed layer to a fluidized state or more and washing the liquid dispersed layer while performing a heat exchange operation. Driving method.
JP29897891A 1991-11-14 1991-11-14 Liquid phase fluidized bed heat exchanger and operating method thereof Pending JPH05133689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29897891A JPH05133689A (en) 1991-11-14 1991-11-14 Liquid phase fluidized bed heat exchanger and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29897891A JPH05133689A (en) 1991-11-14 1991-11-14 Liquid phase fluidized bed heat exchanger and operating method thereof

Publications (1)

Publication Number Publication Date
JPH05133689A true JPH05133689A (en) 1993-05-28

Family

ID=17866655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29897891A Pending JPH05133689A (en) 1991-11-14 1991-11-14 Liquid phase fluidized bed heat exchanger and operating method thereof

Country Status (1)

Country Link
JP (1) JPH05133689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022017065A (en) * 2020-07-13 2022-01-25 株式会社大川原製作所 Method of removing deposit on heat exchanger, and mechanism thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022017065A (en) * 2020-07-13 2022-01-25 株式会社大川原製作所 Method of removing deposit on heat exchanger, and mechanism thereof

Similar Documents

Publication Publication Date Title
US7270690B1 (en) Separator with vane assembly and filter arrangement
WO1994024508A1 (en) Apparatus for carrying out a physical and/or chemical process, such as a heat exchanger
JP3625844B2 (en) Device for continuous filtration of liquids
CN101116804B (en) Integrated reacting and separating device
WO1999019045B1 (en) Ultra-filtration vacuum system
JPH0353559B2 (en)
CA2878785C (en) Media bed filters for filtering fine particles from a raw liquid flow and method of using the same
US5582722A (en) Continuous self-cleaning filtration unit
CN101842141A (en) Magnetic separation combined with dynamic settling for fischer-tropsch processes
EP0475062B1 (en) Pulse cleaning apparatus and method for removing particulates from a high temperature gas
JPH0318483B2 (en)
JPS5811008A (en) Filter device
WO1992014535A1 (en) Multiple screen filter and method
JPH05133689A (en) Liquid phase fluidized bed heat exchanger and operating method thereof
AU666755B2 (en) Treatment device
CA2171132C (en) Parts washer with solvent flow control
CA1291953C (en) Buoyant filter media
JPH0420655B2 (en)
JPH06281369A (en) Liquid fluidized bed heat exchanger, liquid fluidized bed heat exchanging system and its operating method
JPH07120191A (en) Liquid phase fluidized bed heat-exchanger system
JPH0821693A (en) Liquid phase fluidized-bed heat exchanger
US4976934A (en) Nested, recirculating-fiber filter
GB2279890A (en) Filter element
JP5453363B2 (en) Solid-liquid separator
JPH0821694A (en) Liquid phase fluidized-bed heat exchanger

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000815