JPH06280044A - Surface treatment method and device by electric discharge machining - Google Patents

Surface treatment method and device by electric discharge machining

Info

Publication number
JPH06280044A
JPH06280044A JP8934093A JP8934093A JPH06280044A JP H06280044 A JPH06280044 A JP H06280044A JP 8934093 A JP8934093 A JP 8934093A JP 8934093 A JP8934093 A JP 8934093A JP H06280044 A JPH06280044 A JP H06280044A
Authority
JP
Japan
Prior art keywords
electric discharge
machining
discharge machining
discharge
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8934093A
Other languages
Japanese (ja)
Other versions
JP3098654B2 (en
Inventor
Nagao Saito
齋藤長男
Naotake Mori
毛利尚武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP05089340A priority Critical patent/JP3098654B2/en
Publication of JPH06280044A publication Critical patent/JPH06280044A/en
Application granted granted Critical
Publication of JP3098654B2 publication Critical patent/JP3098654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a surface treatment technique by electric discharge machining capable of forming a smooth and uniform coating layer even in the case of a thin surface coating layer. CONSTITUTION:A gas which does not form toxic gases by electric discharge is supplied together with a working liquid between working electrodes, or, the current which can suppress the rise of a discharge current is passed to decrease the discharge trace current density at the time of depositing a conductive or nonconductive material by pulse electric discharge machining on the surface of a material to be surface treated. The splashing of the deposited layer induced by the explosive pressure generated by the discharge is thereby suppressed and the smooth and uniform surface coating layer is obtd. Argon, helium, carbon dioxide or gaseous nitrogen is used as the gas which does not form the toxic gases by the discharge if the working liquid contains petroleum, etc. Air is used if the working liquid consists essentially of water. The electric discharge machining may be executed as a primary operation or may be executed as a secondary operation after the surface of the material to be treated is coated with the nonconductive or conductive material as the primary operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放電加工による表面処
理技術に関し、より詳しくは、放電による爆発圧力によ
って起こる堆積層の飛散を抑制して、平滑にして均一な
被覆層を形成する表面処理方法及び装置に関し、一次表
面処理として、或いは適当な一次表面処理後の二次表面
処理として、導電性材料(例、金属)等からなる被処理材
料の上に、耐摩耗性、耐食性或いは低い摩擦係数を与え
るための表面処理として適している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment technique by electric discharge machining, and more particularly, a surface treatment for suppressing scattering of a deposited layer caused by an explosion pressure due to electric discharge to form a smooth and uniform coating layer. Regarding the method and apparatus, as a primary surface treatment or as a secondary surface treatment after an appropriate primary surface treatment, wear resistance, corrosion resistance or low friction is applied on a material to be treated made of a conductive material (e.g., metal). Suitable as a surface treatment to give a coefficient.

【0002】[0002]

【従来の技術】従来より、金属表面に耐摩耗性、耐食性
などを与えるための手段として、CVD(化学蒸着)、P
VD(真空蒸着)、電着、窒化、電気化学的めっき、無電
解めっき等が知られている。
2. Description of the Related Art Conventionally, as means for imparting wear resistance and corrosion resistance to a metal surface, CVD (chemical vapor deposition), P
VD (vacuum deposition), electrodeposition, nitriding, electrochemical plating, electroless plating and the like are known.

【0003】しかし、CVD、PVDはいずれも、母材
の温度を360℃以上、1100℃程度まで上昇してコ
ーティングするため、母材が寸法変化又は硬度低下を生
じるという欠点があることは、広く知られている。硬化
層も数μmと薄い。また、窒化も、鋼材を500℃程度
にまで加熱して処理するという難点がある。
However, in both CVD and PVD, the temperature of the base material is raised to 360 ° C. or more and up to about 1100 ° C. for coating, so that the base material has a drawback of causing dimensional change or hardness reduction. Are known. The hardened layer is as thin as a few μm. Further, nitriding also has a problem that the steel material is heated to about 500 ° C. to be treated.

【0004】電着による表面は、母材に析出金属が単に
堆積若しくは析出するだけであり、拡散していないた
め、剥離し易いことは良く知られており、また水素脆性
を生ずるなどの欠点がある。電気化学的めっき、無電解
めっきの場合も同様である。
It is well known that the electrodeposited surface is easy to be peeled off because the deposited metal is simply deposited or deposited on the base material and is not diffused, and there are drawbacks such as hydrogen embrittlement. is there. The same applies to electrochemical plating and electroless plating.

【0005】溶射により母材表面に堆積させたものは、
多孔質で且つ剥離し易いことは既に知られている。ま
た、これをレーザー光で再溶融させようとしても、入熱
がスポットの位置により不均一となり、またビーム進行
の境界に条痕を発生するため、美麗な表面を得ることが
できない。また、レーザー光等では、三次元の加工形状
には、構造上、適用困難である。
What is deposited on the surface of the base material by thermal spraying is
It is already known that it is porous and easily peeled off. Further, even if it is attempted to be re-melted by a laser beam, the heat input becomes non-uniform depending on the position of the spot, and streaks are generated at the boundary of beam travel, so that a beautiful surface cannot be obtained. Further, it is difficult to apply a laser beam or the like to a three-dimensional processed shape because of its structure.

【0006】また、従来の表面処理法では、母材への拡
散が殆ど生じないので、ファインセラミックスなどの拡
散しにくい材料を充分な厚さ(例、数10μm〜100μ
m)でコーティングすることは困難である。
Further, in the conventional surface treatment method, since diffusion into the base material hardly occurs, a material such as fine ceramics, which is difficult to diffuse, has a sufficient thickness (eg, several 10 μm to 100 μm).
It is difficult to coat with m).

【0007】[0007]

【発明が解決しようとする課題】一方、本発明者は、こ
れらの表面処理法とは異なり、母材の金属材料全体を高
温に保つことにより生ずる寸法変化、母材の硬度(強度)
の低下、皮膜剥離等の欠点がなく、しかも充分な厚みで
耐食性、耐熱性等々の所望の表面特性を有する強固な被
覆層を形成し得る表面処理方法を先に提案した(特願平
3−329499号)。これは、まず、金属母材表面に
放電析出、蒸着、溶射等の方法により金属、セラミック
ス等の被覆を形成(一次加工)した後、被覆しようとする
材料(例、WC、TiC、TiB2、TiN、VCなどの硬
質材料及びW、Ti、V、Moなどの金属)を圧粉体とし
て電極形状に成形したものを電極として、被表面処理材
料(例、炭素鋼など)の上にパルス放電加工(二次加工)に
よって移転堆積せしめる方法である。
On the other hand, the present inventor, unlike these surface treatment methods, the dimensional change and hardness (strength) of the base material caused by keeping the entire metal material of the base material at a high temperature.
We have previously proposed a surface treatment method that is capable of forming a strong coating layer having desired surface characteristics such as corrosion resistance and heat resistance with a sufficient thickness without the drawbacks such as deterioration of the coating and film peeling (Japanese Patent Application No. 3- 329499). This is because, first, a coating of metal, ceramics, etc. is formed (primary processing) on the surface of the metal base material by a method such as discharge deposition, vapor deposition, thermal spraying, etc., and then the material to be coated (eg, WC, TiC, TiB 2 , Pulse discharge on surface treated material (eg, carbon steel, etc.) by using hard material such as TiN, VC etc. and metal such as W, Ti, V, Mo etc. molded into an electrode shape as green compact It is a method of transferring and depositing by processing (secondary processing).

【0008】上記提案の方法によれば、放電析出、蒸
着、溶射等によって母材表面をコーティング(一次加工)
した場合は、付着力が弱く、組成も緻密でないが、液中
又は気体中でパルス放電(二次加工)を行うことにより、
微視的に放電点に発生する高温高圧力によって放電点を
再溶融及び母材に対して拡散させるので、全体の平均温
度を母材の寸法変化や硬度変化を生じる温度まで高める
ことなく、強固な表面被覆を形成することができる。
According to the method proposed above, the surface of the base material is coated (primary processing) by discharge deposition, vapor deposition, thermal spraying, etc.
In the case of, the adhesion is weak and the composition is not dense, but by performing pulse discharge (secondary processing) in liquid or gas,
The high temperature and high pressure microscopically generated at the discharge point causes the discharge point to be remelted and diffused to the base material, so that the average temperature of the whole is increased without increasing to the temperature that causes dimensional change or hardness change of the base material It is possible to form various surface coatings.

【0009】しかし、この方法は、数回の加工操作を繰
り返す必要があり、特に厚い表面被覆層を形成する際に
は極めて有効であるが、20〜50μm程度の厚みでよ
い場合には、1回の一次加工、二次加工のプロセスで表
面層の形成を完了するのが好ましい。このようなプロセ
スに対して、上記方法では、一次加工で堆積したものが
二次加工で飛散するため、加工層が一様な厚みに堆積し
ない場合がある。
However, this method requires repeated processing operations several times, and is extremely effective particularly when forming a thick surface coating layer, but when a thickness of about 20 to 50 μm is sufficient, It is preferable to complete the formation of the surface layer by a single primary processing or secondary processing process. In contrast to such a process, in the above-mentioned method, what is deposited in the primary processing is scattered in the secondary processing, so that the processed layer may not be deposited in a uniform thickness.

【0010】本発明は、先の提案に係る表面処理技術を
改善して、50μm以下の如く薄い表面被覆層であって
も、平滑にして均一な被覆層を形成し得る放電加工によ
る表面処理技術を提供することを目的とするものであ
る。
The present invention is an improvement of the surface treatment technique according to the above proposal, and a surface treatment technique by electric discharge machining capable of forming a smooth coating layer even if the surface coating layer is as thin as 50 μm or less. It is intended to provide.

【0011】[0011]

【課題を解決するための手段】本発明者は、先の提案に
係る表面処理技術において一次加工で堆積したものが二
次加工で飛散する原因について検討した結果、二次加工
における放電発生直後の放電圧力が高すぎるために、飛
散力を大きくしていることが判明し、そして、放電圧力
を緩和し得る効果的な方法を見出し、ここに本発明を完
成したものである。
Means for Solving the Problems In the surface treatment technique according to the above proposal, the present inventor has investigated the cause of what is deposited in the primary processing and is scattered in the secondary processing. It was found that the discharge pressure was too high to increase the scattering force, and an effective method for relaxing the discharge pressure was found, and the present invention has been completed here.

【0012】すなわち、本発明は、導電性又は非導電性
材料を被表面処理材料の表面にパルス放電加工により堆
積させる表面処理に際して、放電によって有毒ガスを生
成しない気体を加工液と共に加工極間に供給することに
より、放電による爆発圧力によって起こる堆積層の飛散
を抑制して平滑な且つ均一の表面被覆層を得ることを特
徴とする放電加工による表面処理方法を要旨としてい
る。
That is, according to the present invention, during surface treatment in which a conductive or non-conductive material is deposited on the surface of a surface-treated material by pulse electric discharge machining, a gas that does not generate toxic gas due to electric discharge is introduced between the machining liquid and the machining electrode. The gist of the present invention is to provide a surface treatment method by electric discharge machining, which is characterized by suppressing the scattering of a deposited layer caused by an explosion pressure due to electric discharge to obtain a smooth and uniform surface coating layer.

【0013】他の本発明は、導電性又は非導電性材料を
被表面処理材料の表面にパルス放電加工により堆積させ
る表面処理に際して、放電電流の立上りを抑制し得る電
流を流して放電痕の電流密度を小さくすることにより、
放電による爆発圧力によって起こる堆積層の飛散を抑制
して平滑な且つ均一の表面被覆層を得ることを特徴とす
る放電加工による表面処理方法を要旨としている。
According to another aspect of the present invention, during surface treatment for depositing a conductive or non-conductive material on the surface of a surface-treated material by pulse electric discharge machining, a current capable of suppressing the rise of the discharge current is passed to cause a current of a discharge mark. By reducing the density,
The gist is a surface treatment method by electric discharge machining, which is characterized in that a smooth and uniform surface coating layer is obtained by suppressing scattering of a deposited layer caused by an explosion pressure due to electric discharge.

【0014】更に、他の本発明は、導電性又は非導電性
材料を被表面処理材料の表面にパルス放電加工により堆
積させる表面処理装置において、放電によって有毒ガス
を生成しない気体を加工液と共に加工極間に供給する手
段を有していることを特徴とする放電加工による表面処
理装置を要旨としている。
Still another aspect of the present invention is a surface treatment apparatus for depositing a conductive or non-conductive material on the surface of a surface-treated material by pulse electric discharge machining, and a gas which does not generate a toxic gas by electric discharge is processed together with a working liquid. The gist of the present invention is a surface treatment apparatus by electric discharge machining, which is characterized in that it has a means for supplying to the gap.

【0015】更に、他の本発明は、導電性又は非導電性
材料を被表面処理材料の表面にパルス放電加工により堆
積させる表面処理装置において、放電電流の立上りを抑
制し得る電流を流して放電爆発圧力を小さくする放電加
工回路を有することを特徴とする放電加工による表面処
理装置を要旨としている。
Still another aspect of the present invention is a surface treatment apparatus for depositing a conductive or non-conductive material on the surface of a surface-treated material by pulse electric discharge machining, in which a current capable of suppressing the rise of the discharge current is flowed to discharge. The gist is a surface treatment apparatus by electric discharge machining, which has an electric discharge machining circuit for reducing the explosion pressure.

【0016】[0016]

【作用】以下に本発明について更に詳細に説明する。The present invention will be described in more detail below.

【0017】前述の如く、本発明の骨子は、要するに、
パルス放電加工に際し、放電極間に気体を混入するこ
とによって、放電圧力を緩和して飛散圧力を減少せしめ
る、或いは、放電回路に流れる絶縁破壊直後の電流の
立ち上がりを抑えて、電流が徐々に増加するように制御
することによって、飛散力を減少せしめる、というもの
である。勿論、とを併用できる。
As described above, the gist of the present invention is, in short,
During pulse electric discharge machining, gas is mixed between the discharge electrodes to relax the discharge pressure and reduce the splattering pressure, or to suppress the rise of the current immediately after the dielectric breakdown in the discharge circuit and gradually increase the current. By controlling so that the scattering force is reduced, it is possible to reduce the scattering force. Of course, and can be used together.

【0018】(1)放電極間への気体の混入 図1は放電極間に気体を混入する装置を備えたパルス放
電加工装置の一例を示している。図中、1は一次加工後
の堆積層(例、60〜80μm)、2は被表面処理材料、
3は放電加工用電極(例、銅)、4は放電加工パルス電
源、5は加工液、6は気体(例、Arガス)投入ボンベ、
7は減圧バルブ、8は気体拡散用ノズル、9はサーボ機
構を表わしている。
(1) Mixing of gas between discharge electrodes FIG. 1 shows an example of a pulse electric discharge machine equipped with a device for mixing gas between discharge electrodes. In the figure, 1 is a deposited layer after primary processing (eg, 60 to 80 μm), 2 is a surface treated material,
3 is an electrode for electric discharge machining (eg, copper), 4 is a pulsed electric power source for electric discharge machining, 5 is a machining liquid, 6 is a gas (eg, Ar gas) charging cylinder,
Reference numeral 7 is a pressure reducing valve, 8 is a gas diffusion nozzle, and 9 is a servo mechanism.

【0019】適当な方法による一次加工によって形成し
た堆積層に対し、この放電加工装置を用い、アルゴンガ
スを加工液中に噴射して二次加工を行う。すなわち、ア
ルゴンガスが封入されたボンベ6より減圧バルブ7を通
してアルゴンガス拡散用ノズル8により、極間近くに供
給する。電極3は通常、サーボ機構により上下動しなが
ら(加工対向時は数秒〜10秒、各上下動時間:数秒)加
工をしているため、アルゴンガスは極間に拡散され、次
の放電は気泡を含んだ液中での加工となる。放電加工液
中に気体が混入され極間に供給されるが、これを効果的
ならしめるためには、電極を加工方向に近接及び離間さ
せて加工を行う場合に、極間が離れている時間内に加工
液が供給されるのが好ましい。
Using this electric discharge machining apparatus, argon gas is jetted into the machining liquid to perform the secondary machining on the deposited layer formed by the primary machining by an appropriate method. That is, the argon gas is supplied from the cylinder 6 in which the argon gas is sealed, through the pressure reducing valve 7, to the vicinity of the gap by the argon gas diffusion nozzle 8. Since the electrode 3 is normally processed by a servo mechanism while moving up and down (a few seconds to 10 seconds when facing the machining, each vertical movement time: a few seconds), the argon gas is diffused between the electrodes and the next discharge is bubbled. It will be processed in a liquid containing. Gas is mixed in the electric discharge machining fluid and supplied to the gap between the electrodes, but in order to make this effective, the time when the gap between the electrodes is long when the electrodes are made to approach and separate in the machining direction. It is preferable that the working fluid is supplied therein.

【0020】極間における気体混入加工液の作用は次の
とおりである。
The action of the gas-mixed working fluid between the electrodes is as follows.

【0021】極間が近接すれば放電加工が始まるが、混
入気体が存在しているところは、絶縁耐力が液中より大
きいので、放電は起こらず、液体だけが存在している個
所で放電が発生する。その場合に3つの現象が生じる。
The electric discharge machining starts when the gaps between the electrodes are close to each other. However, since the dielectric strength is larger in the place where the mixed gas exists, the electric discharge does not occur, and the electric discharge occurs in the place where only the liquid exists. Occur. In that case, three phenomena occur.

【0022】(イ)液体だけが存在している個所で起こっ
た放電は、周囲が気体で囲まれているため、気体のない
時に比べて緩和されて小さい圧力で行われる。そのた
め、加工速度は減少するが、被加工材料表面に堆積した
材料の飛散量は著しく小さくなる。 (ロ)極間の気体は移動するため、次に発生する放電点
は、別の箇所に発生し、結局、放電が局所に集中せず分
散するため、いわゆるアーク放電の発生がなくなる。す
なわち、平滑な加工面となる。 (ハ)この場合に、もしも、油性の放電加工液を用いて気
体を混入する場合、油の高温分解によって生じる活性の
高い炭素を生じる。そのため、混入する気体として酸
素、空気を使用すれば一酸化炭素(CO)を生じ、水素ガ
スを使用すれば炭水化物(CnHm)を生じる。したがっ
て、気体としては、Ar、He等の化学的に安定なガスを
使用するのが好ましい。勿論、窒素ガスや炭酸ガスも安
定に有効に使用できる。
(B) Since the surroundings are surrounded by the gas, the discharge that occurs in the place where only the liquid is present is relaxed and performed at a small pressure as compared with the case without the gas. Therefore, the processing speed is reduced, but the amount of scattered material deposited on the surface of the material to be processed is significantly reduced. (B) Since the gas between the electrodes moves, the next discharge point is generated at another location, and eventually the discharge is not concentrated locally but dispersed, so that so-called arc discharge does not occur. That is, the processed surface is smooth. (C) In this case, if a gas is mixed using an oil-based electric discharge machining liquid, highly active carbon generated by high-temperature decomposition of oil is generated. Therefore, if oxygen or air is used as a mixed gas, carbon monoxide (CO) is produced, and if hydrogen gas is used, a carbohydrate (CnHm) is produced. Therefore, it is preferable to use a chemically stable gas such as Ar or He as the gas. Of course, nitrogen gas and carbon dioxide gas can also be used stably and effectively.

【0023】(2)放電電力の立上りの抑制 放電電力の立上りを抑制する方法としては特に制限され
ないが、例えば、インダクタンスを放電回路に直列に挿
入する方法、及びトランジスタを複数個スイッチング素
子として使用する方法などが挙げられる。
(2) Suppression of Rise of Discharge Power The method of suppressing the rise of discharge power is not particularly limited, but for example, a method of inserting an inductance in series with a discharge circuit or a plurality of transistors used as switching elements. Method etc. are mentioned.

【0024】インダクタンスを放電回路に直列に挿入す
る方法を図2に示す。図3に示すように、インダクタン
スを挿入しない場合の電流波形はのように矩形状とな
るが、インダクタンスを挿入すればのように放電の発
生した時点の放電電流は抑えられて小さくなる。
FIG. 2 shows a method of inserting the inductance in series with the discharge circuit. As shown in FIG. 3, the current waveform when the inductance is not inserted has a rectangular shape like, but the discharge current at the time when the discharge occurs as in the case where the inductance is inserted is suppressed and becomes small.

【0025】放電電流の発生時点で電流が大きいと、図
4に示すように放電痕の電流密度が高くなり(すなわ
ち、放電痕の直径は、放電初期は小さく、放電時間の経
過と共に大きくなるから、立上りの早い電流では電流密
度が高くなる)、そのため、放電による爆発圧力が高く
なるので、表面の堆積層を吹き飛ばすことになる。した
がって、インダクタンス挿入による放電電流の発生時点
の放電電流が抑えられると、放電による爆発圧力が減少
するので、表面の堆積層を吹き飛ばすようなことが少な
くなる。
If the current is large at the time of generation of the discharge current, the current density of the discharge mark becomes high as shown in FIG. 4 (that is, the diameter of the discharge mark is small at the beginning of discharge and increases with the passage of discharge time). , The current density increases at a current with a fast rise), and therefore the explosion pressure due to discharge increases, which blows off the deposited layer on the surface. Therefore, if the discharge current at the time of generation of the discharge current due to the insertion of the inductance is suppressed, the explosion pressure due to the discharge is reduced, and the deposition layer on the surface is less likely to be blown off.

【0026】インダクタンスを直列に挿入する代わり
に、図5に示す如くトランジスタを複数個スイッチング
素子として使用する方法も可能である。スイッチングト
ランジスタを、放電時間の経過と共に順次導通して、図
6の(a)のような三角波、或いは(b)のような鋸歯波と
するスロープコントロールを行ってもよい。このような
スロープコントロールによっても、インダクタンスを放
電回路に直列に挿入する方法と同様の効果が得られ、放
電による爆発圧力が減少して、表面の堆積層を吹き飛ば
すようなことが少なくなる。
Instead of inserting the inductance in series, it is possible to use a plurality of transistors as switching elements as shown in FIG. Slope control may be performed in which the switching transistors are sequentially turned on with the elapse of the discharge time to form a triangular wave as shown in FIG. 6A or a sawtooth wave as shown in FIG. With such slope control, the same effect as the method of inserting the inductance in series with the discharge circuit can be obtained, the explosion pressure due to the discharge is reduced, and the deposition layer on the surface is less likely to be blown off.

【0027】以上のような条件で、パルス放電を放電加
工の手法により液中で加えるが、他の放電加工条件は特
に制限されない。例えば、以下の要領で行う。
Under the above conditions, pulse electric discharge is added in the liquid by the electric discharge machining method, but other electric discharge machining conditions are not particularly limited. For example, the procedure is as follows.

【0028】パルス放電加工に際しては、消耗しにくい
電極(銅)を使用するのが好ましい。なお、二次加工とし
ての放電析出法の場合の電極としては、堆積物に近い組
成の電極を使用するのが良く、導電性の粉体(例、W
C、TiC、TiB2、TiN、VC、或いはW、Ti、V
等の金属等の1種又は2種以上及び結合剤としてのC
o、Ni等の1種又は2種以上)を圧縮成形又は低温焼結
してなる電極の一次加工に対して、二次加工では、例え
ば、金属材料表面にWCを主体として堆積させた場合、
WC−Coを焼結した材料(例、バイトのチップ材料)を
電極に用いる。
In pulse electric discharge machining, it is preferable to use an electrode (copper) that is less likely to wear. It is preferable to use an electrode having a composition close to that of the deposit as an electrode in the case of the electric discharge deposition method as the secondary processing.
C, TiC, TiB 2 , TiN, VC or W, Ti, V
One or more kinds of metals such as C and C as a binder
In contrast to the primary processing of the electrode formed by compression molding or low-temperature sintering (one or more of O, Ni, etc.), in the secondary processing, for example, when WC is mainly deposited on the surface of the metal material,
A material obtained by sintering WC-Co (for example, a chip material of a bite) is used as an electrode.

【0029】放電は、1秒間に数百回から数万回程度で
発生させる。加工面は小さい微視的な放電痕の累積した
表面である。放電痕電流密度は、微小な面積であるが、
数万A/cm2と高く、高温高圧を数10μs〜1000μ
s程度の短時間で生ずる。放電点の表面温度は、その材
料の沸点程度となり、その点の圧力は数1000kgf/c
m2となり、溶解した部分は再溶融し、母材に拡散する。
放電時間が短時間のため、放電点が直ちに冷却され、母
材の平均温度は上昇することがない。
The discharge is generated several hundreds to tens of thousands times per second. The processed surface is a surface where small microscopic discharge marks are accumulated. The discharge trace current density is a very small area,
As high as tens of thousands of A / cm 2 , high temperature and high pressure is in the range of 10s to 1000μ
It occurs in a short time of about s. The surface temperature at the discharge point is about the boiling point of the material, and the pressure at that point is several thousand kgf / c.
It becomes m 2 , and the melted part is remelted and diffused into the base material.
Since the discharge time is short, the discharge point is immediately cooled and the average temperature of the base material does not rise.

【0030】パルス放電加工の好ましい条件は、電源電
圧:60〜100V、パルス放電電流値(Ip):1〜1
00A、パルス幅(τp):5〜2000μs、休止時間
(τr):5〜2000μsである。一般的に、パルス放電
電流値Ipが小さい時、例えば、Ip=3Aなどではτp
=16μs、Ipが大きい時、例えばIp=50Aなどで
はτp=2000τsのように、Ipの小さい時はτpも短
かく、Ipの大きい時はτpを長くとる。
Preferable conditions for pulse electric discharge machining are power supply voltage: 60 to 100 V, pulse discharge current value (Ip): 1 to 1
00A, pulse width (τp): 5 to 2000 μs, rest time
(τr): 5 to 2000 μs. Generally, when the pulse discharge current value Ip is small, for example, Ip = 3A, τp
= 16 μs and Ip is large, for example, τp = 2000τs when Ip = 50 A, τp is short when Ip is small and τp is long when Ip is large.

【0031】なお、本発明によるパルス放電加工は、そ
れ自身で被表面処理材料の表面を被覆してもよいが、予
め、一次加工として、非導電性又は導電性材料を被処理
材料の表面に被覆した後、二次加工として行うのが望ま
しい。
In the pulse electric discharge machining according to the present invention, the surface of the surface treated material may be coated by itself, but as a primary machining, a non-conductive or conductive material is previously applied to the surface of the treated material. It is desirable to carry out as a secondary processing after coating.

【0032】パルス放電加工を二次加工として行う場
合、一次加工法としては適当な方法が可能であり、例え
ば、溶射、電着、放電析出法、スラリー塗布などが挙げ
られる。なお、放電析出法とは、本発明者らが先に提案
した表面処理法であり(「1991年度精密工学会春季
大会学術講演会講演論文集」(1991年3月26日)
p.463)、析出すべき導電性材料を圧粉体として成形
し、放電加工の電極として用いて加工することにより、
相手側金属に圧粉体材料を析出させる方法である。もっ
とも、これらの堆積物は、母材中に拡散しないため、付
着強度が弱い。これらの方法のいずれも可能であるが、
後工程として行うパルス放電加工との関係からすれば、
放電析出法が好ましい。
When the pulse electric discharge machining is performed as the secondary machining, an appropriate method can be used as the primary machining method, and examples thereof include thermal spraying, electrodeposition, discharge deposition method, slurry coating and the like. The electrical discharge deposition method is a surface treatment method previously proposed by the present inventors ("Proceedings of the 1991 Spring Meeting of the Precision Engineering Society of Japan") (March 26, 1991)
p.463), by molding a conductive material to be deposited as a green compact and using it as an electrode for electric discharge machining,
This is a method of precipitating a green compact material on the opposite metal. However, since these deposits do not diffuse into the base material, the adhesion strength is weak. Either of these methods are possible,
From the relationship with the pulse electric discharge machining performed as a post process,
The discharge deposition method is preferred.

【0033】また、被覆材料としては、様々な金属材料
又は非金属材料が可能であり、例えば、金属又は合金、
非金属元素、セラミックス、炭化物、窒化物、硼化物な
どである。具体的には、硬質材料として、WC、Ti
C、TaC、ZrC、SiCなどの炭化物、TiB2、ZrB
2などの硼化物、TiN、ZrNなどの窒化物など(ファイ
ンセラミックス)を単体で若しくは焼結助剤を加えた状
態で被覆できる。また、W、Moなどの金属材料やAl、
Ti、Ni、Cr、Coなどの耐食性材料も利用できる。更
に、ダイヤモンド、Al23、Si34の如く、導電性は
なくとも、鉄粉、コバルト粉、ニツケル粉、クロム粉、
銅粉などの導電性材料と混合して被覆しても良い。要す
るに、付与させる表面特性の関係で材料を選択すれば良
い。
As the coating material, various metal materials or non-metal materials can be used, such as metal or alloy,
Non-metal elements, ceramics, carbides, nitrides, borides and the like. Specifically, as hard materials, WC, Ti
Carbides such as C, TaC, ZrC, and SiC, TiB 2 , ZrB
A boride such as 2 or a nitride such as TiN or ZrN (fine ceramics) can be coated alone or with a sintering aid added. In addition, metal materials such as W and Mo and Al,
Corrosion resistant materials such as Ti, Ni, Cr and Co can also be used. Furthermore, even if it is not conductive like diamond, Al 2 O 3 , Si 3 N 4 , iron powder, cobalt powder, nickel powder, chrome powder,
You may mix and coat with electroconductive materials, such as copper powder. In short, the material may be selected depending on the surface characteristics to be imparted.

【0034】本発明の表面処理方法によれば、低廉な炭
素鋼などの鉄鋼材料等の金属材料の表面に、耐熱性、耐
食性、耐摩耗性、硬度など所望の特性を有する緻密な層
を形成することができる。ファインセラミックスのよう
に鋼材の中に拡散しにくい材料であっても、再溶融によ
って母材に対する拡散と密着性を強固にすることができ
る。また、Al、Ti、Ni、Cr、Coのように鉄鋼材料
に固溶し易い材料でも、パルス放電処理すれば、なお一
層強固な表面処理が可能となる。すなわち、放電析出の
速度を速くするために大電流を用いて高速放電析出を行
う場合、Al、Ti、Ni、Cr、Coのように鉄鋼材料に
固溶し易い材料であっても、母材への拡散が不十分であ
り、また析出状態も凹凸が激しくなるが、パルス放電処
理によれば再溶融による拡散が促進される。また、電着
や電気めっき法により大電流密度でめっき速度を上げる
と、荒く密着力の小さいめっき層しか得られないが、パ
ルス放電加工を行うと、密着力の大きい表面層を形成す
ることができる。ダイヤモンド、Al23、Si34など
の非導電性の硬質材料に鉄粉、コバルト粉、ニツケル
粉、クロム粉、銅粉等の導電性金属を混入してコーティ
ングしたものに、パルス放電処理を行うと、導電性金属
が再溶融して非導電性硬質材料が強固に母材表面に固着
される。
According to the surface treatment method of the present invention, a dense layer having desired properties such as heat resistance, corrosion resistance, wear resistance, and hardness is formed on the surface of a metal material such as an inexpensive steel material such as carbon steel. can do. Even if a material such as fine ceramics is less likely to diffuse into the steel material, it is possible to strengthen the diffusion and adhesion to the base material by remelting. Further, even with a material such as Al, Ti, Ni, Cr, and Co which is likely to form a solid solution with a steel material, the pulse discharge treatment enables even stronger surface treatment. That is, when high-rate discharge deposition is performed using a large current in order to increase the rate of discharge deposition, even if a material such as Al, Ti, Ni, Cr, and Co that easily dissolves in the steel material, Is insufficiently diffused, and the deposition state becomes more uneven, but the pulse discharge treatment promotes diffusion due to remelting. In addition, if the plating rate is increased at a high current density by electrodeposition or electroplating, only a rough plating layer with low adhesion can be obtained, but if pulse electric discharge machining is performed, a surface layer with high adhesion can be formed. it can. Pulse discharge on non-conductive hard material such as diamond, Al 2 O 3 and Si 3 N 4 coated with conductive metal such as iron powder, cobalt powder, nickel powder, chrome powder and copper powder When the treatment is performed, the conductive metal is remelted and the non-conductive hard material is firmly fixed to the surface of the base material.

【0035】また、傾斜性を持つ材料を製作することも
できる。傾斜性材料とは、例えば、母材を金属材料と
し、母材側から次第にファインセラミックスの含有割合
が多くなり、材料表面をファインセラミックスの含有割
合を著しく高めたような材料である。このような傾斜性
材料は、単に金属材料とファインセラミックスとを接合
若しくはコーティングした材料に比べ、温度上昇があっ
ても膨張係数の著しい差異による接合面の剪断応力の発
生や曲げ応力の発生が少ないため、高温度で使用中の破
断等が生じにくい。これは、温度上昇による熱膨張が発
生しても、応力としては緩和されるためである。
It is also possible to manufacture a material having an inclination. The gradient material is, for example, a material in which the base material is a metal material and the content ratio of the fine ceramics is gradually increased from the base material side, and the content ratio of the fine ceramics is remarkably increased on the surface of the material. Such a graded material is less likely to generate shear stress or bending stress on the joint surface due to a significant difference in expansion coefficient even if the temperature rises, as compared with a material obtained by simply joining or coating a metal material and fine ceramics. Therefore, breakage during use at high temperatures is unlikely to occur. This is because even if thermal expansion occurs due to temperature rise, the stress is relieved.

【0036】次に本発明の実施例を示す。Next, examples of the present invention will be shown.

【0037】[0037]

【実施例1】[Example 1]

【0038】本例は、気体を混入するパルス放電加工を
二次加工法として行った例である。一次加工法並びに二
次加工法は以下の条件で行った。なお、母材は炭素鋼
(S55C)であり、図1の装置を使用した。
This example is an example in which pulse electric discharge machining in which gas is mixed is performed as a secondary machining method. The primary processing method and the secondary processing method were performed under the following conditions. The base material is carbon steel
(S55C), and the apparatus of FIG. 1 was used.

【0039】一次加工(放電析出)条件: 電極:圧粉体電極(WC:Co=8:2)、パルス放電電
流値(Ip):25A(電極マイナス)、パルス幅(τp):1
6μs、休止時間(τr):512μs、加工時間:15
分。
Primary processing (electric discharge deposition) conditions : Electrode: green compact electrode (WC: Co = 8: 2), pulse discharge current value (Ip): 25 A (electrode minus), pulse width (τp): 1
6 μs, rest time (τr): 512 μs, processing time: 15
Minutes.

【0040】二次加工(パルス放電加工)条件: 電極:銅電極(16mmφ)、パルス放電電流値(Ip):1
5A(電極マイナス)、パルス幅(τp):1024μs、休
止時間(τr):1024μs、加工時間:15分、気体の
種類:アルゴンガス、気体噴射圧力:0.1kg/cm2
Secondary machining (pulse discharge machining) conditions : Electrode: copper electrode (16 mmφ), pulse discharge current value (Ip): 1
5 A (minus electrode), pulse width (τp): 1024 μs, rest time (τr): 1024 μs, processing time: 15 minutes, gas type: argon gas, gas injection pressure: 0.1 kg / cm 2 .

【0041】その結果、二次加工を一度行うだけで、加
工後の表面硬化層の断面厚さが約50μmとなり、マイ
クロビッカース硬度も1800程度と充分な硬度を示し
た。一次加工で60〜80μm程度の厚みであったもの
が50μm程度の均一な表面硬化層となっていること
は、二次加工による飛散がアルゴンガスの混入によって
減少されていると考えられる。同一箇所の加工断面の電
子顕微鏡写真を図7〜9に示す。図7は倍率50倍の場
合、図8は倍率200倍の場合、図9は倍率300倍の
場合を示す。表面硬化層が厚くても平滑で均一であるこ
とがわかる。
As a result, the cross-sectional thickness of the surface-hardened layer after processing was about 50 μm and the micro Vickers hardness was about 1800, which was a sufficient hardness, only by performing the secondary processing once. The fact that the thickness of about 60 to 80 μm was formed in the primary processing to form a uniform surface-hardened layer of about 50 μm is considered that the scattering due to the secondary processing is reduced by the mixing of the argon gas. Electron micrographs of the processed cross section at the same location are shown in FIGS. 7 shows a case of a magnification of 50 times, FIG. 8 shows a case of a magnification of 200 times, and FIG. 9 shows a case of a magnification of 300 times. It can be seen that even if the surface-hardened layer is thick, it is smooth and uniform.

【0042】[0042]

【実施例2】Example 2

【0043】本例は、放電電力の立上りを抑えるパルス
放電加工を二次加工法として行った例である。一次加工
法並びに二次加工法は以下の条件で行った。なお、母材
は炭素鋼(S55C)であり、図2に示す回路を使用し
た。
This example is an example in which pulse electric discharge machining which suppresses the rise of electric discharge power is performed as a secondary machining method. The primary processing method and the secondary processing method were performed under the following conditions. The base material was carbon steel (S55C), and the circuit shown in FIG. 2 was used.

【0044】一次加工(放電析出)条件: 電極:圧粉体電極(WC:Co=8:2)、パルス放電電
流値(Ip):25A(電極マイナス)、パルス幅(τp):1
6μs、休止時間(τr):512μs、加工時間:15
分。
Primary processing (electric discharge deposition) conditions : Electrode: green compact electrode (WC: Co = 8: 2), pulse discharge current value (Ip): 25 A (electrode minus), pulse width (τp): 1
6 μs, rest time (τr): 512 μs, processing time: 15
Minutes.

【0045】二次加工(パルス放電加工)条件: 電極:銅電極(16mmφ)、パルス放電電流値(Ip):1
0A(電極プラス)、パルス幅(τp):1024μs、休止
時間(τr):1024μs、加工時間:4.5分、放電回
路の構成:図2(コイル直径36mm、22ターン、イン
ダクタンスL≒12μH)。
Secondary machining (pulse discharge machining) conditions : Electrode: copper electrode (16 mmφ), pulse discharge current value (Ip): 1
0A (plus electrode), pulse width (τp): 1024μs, rest time (τr): 1024μs, machining time: 4.5 minutes, discharge circuit configuration: Fig. 2 (coil diameter 36mm, 22 turns, inductance L ≈ 12μH) .

【0046】加工断面の顕微鏡写真を図10に示す。1
回の加工(二次加工)で厚さ30μm程度の緻密な加工層
(WC−Co)が得られていることがわかる。図11は倍
率を1100倍にて観察した表面層を示す写真であり、
加工層中に硬質粒子が一様に分散していることがわか
る。図12は加工層のマイクロビッカース硬度(荷重1
0g)の分布状態を示す図で、表面から約25μmがmHv
1710とWC−Co焼結体として充分な硬度を示して
いる。図13は加工表面のX線回折結果を示し、WCが
強く析出していることがわかる。挿入インダクタンスの
大きさは4〜200μH程度で良好な結果が得られる。
A micrograph of the processed cross section is shown in FIG. 1
Dense processing layer with a thickness of about 30 μm after one processing (secondary processing)
It can be seen that (WC-Co) is obtained. FIG. 11 is a photograph showing a surface layer observed at a magnification of 1100 times,
It can be seen that the hard particles are uniformly dispersed in the processed layer. Figure 12 shows the micro Vickers hardness of the processed layer (load 1
0g) distribution of about 25μm from the surface is mHv
1710 and WC-Co sintered body show sufficient hardness. FIG. 13 shows the X-ray diffraction result of the processed surface, and it can be seen that WC is strongly precipitated. Good results are obtained when the insertion inductance is about 4 to 200 μH.

【0047】なお、多数のスイッチング素子を使用して
電流波形制御を行う場合も、上記実施例2(インダクタ
ンス挿入)とほぼ同じ結果が得られることを確認した。
しかも、スイッチング素子による方法は、電流の立上り
傾斜の度合を任意に容易に変えられるので(インダクタ
ンス挿入の場合は異なるインダクタンスを結線し直す必
要がある)、工業的に有利である。
It has been confirmed that the same results as in Example 2 (inductance insertion) can be obtained even when the current waveform control is performed using a large number of switching elements.
In addition, the method using the switching element is industrially advantageous because the degree of the rising slope of the current can be easily changed arbitrarily (in the case of inserting the inductance, it is necessary to reconnect different inductances).

【0048】[0048]

【発明の効果】以上詳述したように、本発明によれば、
放電圧力を緩和する条件でパルス放電加工を行うので、
被覆層の飛散力が減少でき、したがって、50μm以下
の如く薄い表面被覆層であっても、平滑にして均一な被
覆層を形成することが可能となる。特に適当な一次加工
後に二次加工として行う場合に適している。
As described in detail above, according to the present invention,
Since pulse electric discharge machining is performed under conditions that relax the electric discharge pressure,
The scattering force of the coating layer can be reduced, so that even a thin surface coating layer having a thickness of 50 μm or less can be smoothed to form a uniform coating layer. It is particularly suitable for the case where secondary processing is performed after appropriate primary processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】気体混入によるパルス放電加工装置の一例を示
す図である。
FIG. 1 is a diagram showing an example of a pulse electric discharge machining apparatus using gas mixture.

【図2】インダクタンス挿入によるパルス放電加工装置
の一例を示す図である。
FIG. 2 is a diagram showing an example of a pulse electric discharge machine by inserting an inductance.

【図3】図2の回路で得られる電流波形を示す図であ
る。
FIG. 3 is a diagram showing a current waveform obtained by the circuit of FIG.

【図4】1発の放電痕の面積の増大と放電痕電流密度の
変化を示す図である。
FIG. 4 is a diagram showing an increase in area of one discharge mark and a change in discharge mark current density.

【図5】スイッチング素子挿入によるパルス放電加工制
御回路の一例を示す図である。
FIG. 5 is a diagram showing an example of a pulse electric discharge machining control circuit by inserting a switching element.

【図6】(a)、(b)は図5の回路で得られる電流波形を
示す図である。
6 (a) and 6 (b) are diagrams showing current waveforms obtained by the circuit of FIG.

【図7】実施例1で得られた加工層の加工断面(金属組
織)の電子顕微鏡写真(倍率50)である。
7 is an electron micrograph (magnification: 50) of a processed cross section (metal structure) of the processed layer obtained in Example 1. FIG.

【図8】実施例1で得られた加工層の加工断面(金属組
織)の電子顕微鏡写真(倍率200)である。
8 is an electron micrograph (magnification: 200) of a processed cross section (metal structure) of the processed layer obtained in Example 1. FIG.

【図9】実施例1で得られた加工層の加工断面(金属組
織)の電子顕微鏡写真(倍率300)である。
9 is an electron micrograph (magnification: 300) of a processed cross section (metal structure) of the processed layer obtained in Example 1. FIG.

【図10】実施例2で得られた加工層の加工断面(金属
組織)の写真である。
10 is a photograph of a processed cross section (metal structure) of a processed layer obtained in Example 2. FIG.

【図11】実施例2で得られた加工層の加工断面(金属
組織)の写真(×1100)である。
11 is a photograph (× 1100) of a processed cross section (metal structure) of the processed layer obtained in Example 2. FIG.

【図12】実施例2で得られた加工層の加工断面の硬度
分布を示す図である。
12 is a diagram showing a hardness distribution of a processed cross section of a processed layer obtained in Example 2. FIG.

【図13】実施例2で得られた加工層の加工表面のX線
回折図である。
13 is an X-ray diffraction diagram of the processed surface of the processed layer obtained in Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 一次加工後の堆積層 2 被表面処理材料 3 放電加工用電極 4 放電加工パルス電源 5 加工液 6 気体投入ボンベ 7 減圧バルブ 8 気体拡散用ノズル 9 サーボ機構 1 Deposited layer after primary processing 2 Surface treated material 3 Electrode for electric discharge machining 4 Electric discharge machining pulse power 5 Machining liquid 6 Gas injection cylinder 7 Pressure reducing valve 8 Gas diffusion nozzle 9 Servo mechanism

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 導電性又は非導電性材料を被表面処理材
料の表面にパルス放電加工により堆積させる表面処理に
際して、放電によって有毒ガスを生成しない気体を加工
液と共に加工極間に供給することにより、放電による爆
発圧力によって起こる堆積層の飛散を抑制して平滑な且
つ均一の表面被覆層を得ることを特徴とする放電加工に
よる表面処理方法。
1. A surface treatment for depositing a conductive or non-conductive material on the surface of a material to be surface-treated by pulse electric discharge machining, by supplying a gas that does not generate a toxic gas by electric discharge together with a machining liquid between machining electrodes. A surface treatment method by electric discharge machining, characterized in that a smooth and uniform surface coating layer is obtained by suppressing scattering of a deposited layer caused by explosion pressure due to electric discharge.
【請求項2】 放電によって有毒ガスを生成しない気体
として、加工液が石油などを含む場合にはアルゴン、ヘ
リウム、炭酸ガス又は窒素ガスを用い、加工液が水を主
成分とする場合には空気を用いる請求項1に記載の方
法。
2. Argon, helium, carbon dioxide or nitrogen gas is used as a gas that does not generate toxic gas by electric discharge when the working fluid contains petroleum, and air when the working fluid contains water as a main component. The method according to claim 1, wherein
【請求項3】 導電性又は非導電性材料を被表面処理材
料の表面にパルス放電加工により堆積させる表面処理に
際して、放電電流の立上りを抑制し得る電流を流して放
電痕の電流密度を小さくすることにより、放電による爆
発圧力によって起こる堆積層の飛散を抑制して平滑な且
つ均一の表面被覆層を得ることを特徴とする放電加工に
よる表面処理方法。
3. In the surface treatment of depositing a conductive or non-conductive material on the surface of a material to be surface-treated by pulse electric discharge machining, a current capable of suppressing the rise of discharge current is passed to reduce the current density of discharge marks. Thus, the surface treatment method by electric discharge machining, characterized in that a smooth and uniform surface coating layer is obtained by suppressing the scattering of the deposited layer caused by the explosion pressure due to the electric discharge.
【請求項4】 一次加工として、非導電性又は導電性材
料を被処理材料の表面に被覆した後、二次加工として、
請求項1又は3に記載の条件でパルス放電加工を行うこ
とを特徴とする表面処理方法。
4. As the primary processing, after coating the surface of the material to be treated with a non-conductive or conductive material, as the secondary processing,
A surface treatment method comprising performing pulse electric discharge machining under the conditions according to claim 1.
【請求項5】 一次加工として、請求項1又は3に記載
の条件で放電加工を行う請求項4に記載の方法。
5. The method according to claim 4, wherein the electric discharge machining is performed under the conditions described in claim 1 or 3 as the primary machining.
【請求項6】 一次加工として、放電析出、溶射又はス
ラリー塗布により表面被覆を行う請求項3に記載の方
法。
6. The method according to claim 3, wherein the surface coating is performed by electrical discharge deposition, thermal spraying or slurry coating as the primary processing.
【請求項7】 導電性又は非導電性材料を被表面処理材
料の表面にパルス放電加工により堆積させる表面処理装
置において、放電によって有毒ガスを生成しない気体を
加工液と共に加工極間に供給する手段を有していること
を特徴とする放電加工による表面処理装置。
7. A surface treatment apparatus for depositing a conductive or non-conductive material on the surface of a material to be surface treated by pulse electric discharge machining, and means for supplying a gas which does not generate a toxic gas due to electric discharge together with a machining liquid between machining electrodes. A surface treatment apparatus by electrical discharge machining, comprising:
【請求項8】 導電性又は非導電性材料を被表面処理材
料の表面にパルス放電加工により堆積させる表面処理装
置において、放電電流の立上りを抑制し得る電流を流し
て放電爆発圧力を小さくする放電加工回路を有すること
を特徴とする放電加工による表面処理装置。
8. A surface treatment apparatus for depositing a conductive or non-conductive material on the surface of a material to be surface treated by pulse electric discharge machining, in which a current capable of suppressing the rise of the discharge current is flowed to reduce the discharge explosion pressure. A surface treatment apparatus by electric discharge machining, which has a machining circuit.
【請求項9】 放電加工回路が、直列にインダクタンス
が挿入されている回路である請求項8に記載の装置。
9. The device according to claim 8, wherein the electric discharge machining circuit is a circuit in which an inductance is inserted in series.
【請求項10】 放電加工回路が、トランジスタ等のス
イッチング素子の複数個が接続されている回路である請
求項8に記載の装置。
10. The apparatus according to claim 8, wherein the electric discharge machining circuit is a circuit to which a plurality of switching elements such as transistors are connected.
JP05089340A 1993-03-24 1993-03-24 Surface treatment method and apparatus by electric discharge machining Expired - Lifetime JP3098654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05089340A JP3098654B2 (en) 1993-03-24 1993-03-24 Surface treatment method and apparatus by electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05089340A JP3098654B2 (en) 1993-03-24 1993-03-24 Surface treatment method and apparatus by electric discharge machining

Publications (2)

Publication Number Publication Date
JPH06280044A true JPH06280044A (en) 1994-10-04
JP3098654B2 JP3098654B2 (en) 2000-10-16

Family

ID=13967972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05089340A Expired - Lifetime JP3098654B2 (en) 1993-03-24 1993-03-24 Surface treatment method and apparatus by electric discharge machining

Country Status (1)

Country Link
JP (1) JP3098654B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068670A1 (en) * 2004-01-14 2005-07-28 Ishikawajima-Harima Heavy Industries Co., Ltd. Engine part, high-temperature part, surface treatment method, gas-turbine engine, galling preventive structure, and method for producing galling preventive structure
JP2009280842A (en) * 2008-05-20 2009-12-03 Mitsubishi Electric Corp Method of manufacturing electrode for electrical discharge surface treatment, and electrode for electrical discharge surface treatment
JP2010100940A (en) * 2003-06-11 2010-05-06 Ihi Corp Method for repairing machine component, method for manufacturing restored machine component, method for manufacturing machine component and gas-turbine engine
US7713361B2 (en) 2003-06-11 2010-05-11 Ishikawajima-Harima Heavy Industries Co., Ltd. Metal product producing method, metal product, metal component connecting method, and connection structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100529182C (en) 2002-07-30 2009-08-19 三菱电机株式会社 Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100940A (en) * 2003-06-11 2010-05-06 Ihi Corp Method for repairing machine component, method for manufacturing restored machine component, method for manufacturing machine component and gas-turbine engine
US7713361B2 (en) 2003-06-11 2010-05-11 Ishikawajima-Harima Heavy Industries Co., Ltd. Metal product producing method, metal product, metal component connecting method, and connection structure
US7723636B2 (en) 2003-06-11 2010-05-25 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for repairing machine part, method for forming restored machine part, method for manufacturing machine part, gas turbine engine, electric discharge machine, method for repairing turbine component, and method for forming restored turbine component
WO2005068670A1 (en) * 2004-01-14 2005-07-28 Ishikawajima-Harima Heavy Industries Co., Ltd. Engine part, high-temperature part, surface treatment method, gas-turbine engine, galling preventive structure, and method for producing galling preventive structure
JP2009280842A (en) * 2008-05-20 2009-12-03 Mitsubishi Electric Corp Method of manufacturing electrode for electrical discharge surface treatment, and electrode for electrical discharge surface treatment
US8460603B2 (en) 2008-05-20 2013-06-11 Mitsubishi Electric Corporation Method of manufacturing electrical discharge surface treatment-purpose electrode and electrical discharge surface treatment-purpose electrode

Also Published As

Publication number Publication date
JP3098654B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
JP3093846B2 (en) Surface treatment method for metal materials
US8203095B2 (en) Method of using a thermal plasma to produce a functionally graded composite surface layer on metals
US8377339B2 (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
JP3271844B2 (en) Surface treatment method for metallic materials by submerged discharge
Tsunekawa et al. Surface modification of aluminum by electrical discharge alloying
KR930011674B1 (en) Coated cemented carbides & processes for the production of same
JP5121933B2 (en) Discharge surface treatment method
JPH06280044A (en) Surface treatment method and device by electric discharge machining
KR100385687B1 (en) Method for discharge surface treatment, and discharge surface treatment device
JP2628601B2 (en) Diamond coated cemented carbide and method of diamond coating of cemented carbide
JPS60258481A (en) Manufacture of surface coated member containing dispersed particles
US20060280639A1 (en) Sintered part and the method for production thereof
JP2001138141A (en) Method for surface coating treatment using submerged discharge and consumable electrode used therefor
JP4523547B2 (en) Discharge surface treatment method and discharge surface treatment apparatus
JPH10337617A (en) Discharge surface treatment method and equipment therefor
JP4504691B2 (en) Turbine parts and gas turbines
EP0536355B1 (en) Process for applying a coating to a substrate
Penyashki et al. Characteristics, composition and structure of coatings of WC-TiB 2-B 4 C-Ni-Cr-B-Si-C electrodes formed on titanium alloys by contactless electrospark deposition
Boas et al. Structural characterization of laser-processed WC/Co layers
JP2769337B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
JP2004060013A (en) Electrode for discharge surface-treatment and discharge surface-treatment method
Manuela-Cristina et al. STUDY OF TRIPLE-LAYER DEPOSITION OF TiC/WC/Ti HARD-PEARLITIC FERRITE CAST IRON OBTAINED BY ELECTRO-SPARK DEPOSITION

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080811

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090811

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100811

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110811

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130811