JP2769337B2 - Manufacturing method of aluminum alloy material with excellent wear resistance - Google Patents

Manufacturing method of aluminum alloy material with excellent wear resistance

Info

Publication number
JP2769337B2
JP2769337B2 JP63304517A JP30451788A JP2769337B2 JP 2769337 B2 JP2769337 B2 JP 2769337B2 JP 63304517 A JP63304517 A JP 63304517A JP 30451788 A JP30451788 A JP 30451788A JP 2769337 B2 JP2769337 B2 JP 2769337B2
Authority
JP
Japan
Prior art keywords
base material
aluminum alloy
wear resistance
hard particles
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63304517A
Other languages
Japanese (ja)
Other versions
JPH02149680A (en
Inventor
福久 松田
一博 中田
保 上野
市三 佃
茂利 成願
Original Assignee
昭和アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和アルミニウム株式会社 filed Critical 昭和アルミニウム株式会社
Priority to JP63304517A priority Critical patent/JP2769337B2/en
Publication of JPH02149680A publication Critical patent/JPH02149680A/en
Application granted granted Critical
Publication of JP2769337B2 publication Critical patent/JP2769337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、自動車、事務機、一般機械等において、
耐摩耗性の要求される部品材料として使用される耐摩耗
性に優れたアルミニウム合金材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION INDUSTRIAL APPLICATIONS The present invention relates to automobiles, office machines, general machines, etc.
The present invention relates to a method for producing an aluminum alloy material having excellent wear resistance used as a component material requiring wear resistance.

従来の技術 周知のように、アルミニウムあるいはアルミニウム合
金は汎用されている鉄系材料等と比較して格段に軽量で
あるのに加え、熱伝導特性に優れ、また耐食性も優れる
ところから、最近では自動車等の各種機械部品として広
く使用されるようになっている。しかしながら、一般に
アルミニウムあるいはアルミニウム合金は鉄系材料と比
較して耐摩耗性が劣り、このことが自動車等における軽
量化等を目的として鉄系部材をAl合金部材に代える際の
大きな障害となっていた。
2. Description of the Related Art As is well known, aluminum and aluminum alloys are not only significantly lighter than iron-based materials and the like, but also have excellent heat conduction characteristics and excellent corrosion resistance. It is widely used as various mechanical parts such as. However, in general, aluminum or an aluminum alloy is inferior in wear resistance as compared with an iron-based material, and this has been a major obstacle when replacing an iron-based member with an Al alloy member for the purpose of weight reduction in automobiles and the like. .

そこで従来から、耐摩耗性が要求される部位に適用さ
れるアルミニウム合金材の耐摩耗性向上策として、メッ
キや陽極酸化処理、あるいは溶射等の表面処理を施して
耐摩耗性の高い表面処理層を形成する試みがなされてい
るが、いずれも耐摩耗性の要求に対しいまだ充分な満足
を与え得るものではなかった。しかも、いずれの場合も
表面処理層の基材に対する密着性が充分でないところか
ら、高面圧下で使用した場合に充分な耐久性を確保でき
ないという欠点があった。
Therefore, conventionally, as a measure to improve the wear resistance of aluminum alloy materials applied to parts where wear resistance is required, surface treatment layers such as plating, anodizing treatment, or thermal spraying have been applied to provide high wear resistance. Attempts have been made to form these, but none of them has yet been able to provide sufficient satisfaction with the requirements for wear resistance. In addition, in any case, the adhesion of the surface treatment layer to the substrate is not sufficient, so that there is a drawback that sufficient durability cannot be secured when used under a high surface pressure.

この発明は、このような技術的背景のもとでなされた
ものであって、優れた耐摩耗性を有するとともに、高面
圧下で使用した場合にも充分な耐久性を有するアルミニ
ウム合金材料の製作提供を目的とするものである。
The present invention has been made under such a technical background, and has been developed to produce an aluminum alloy material having excellent wear resistance and sufficient durability even when used under a high surface pressure. It is intended to be provided.

課題を解決するための手段 上記目的において、この発明は、アルミニウム合金基
材の表面に、Al系金属間化合物をAlマトリクスに晶出せ
しめた硬質合金化層、あるいはAlマトリックスと硬質粒
子とを合金化した硬質合金化層を形成することにより、
材料の耐摩耗性を向上させることを基本的着眼点とし
て、さらに良好な合金化層を形成するために鋭意研究の
結果なされたものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a hard alloyed layer obtained by crystallizing an Al-based intermetallic compound in an Al matrix on the surface of an aluminum alloy substrate, or an alloy comprising an Al matrix and hard particles. By forming a hardened alloyed layer,
It has been earnestly studied to form a better alloyed layer with a basic focus on improving the wear resistance of the material.

即ちこの発明の1つは、B、Geのうちの1種または2
種を合計で1〜30wt%の範囲に含有するアルミニウム合
金基材を用い、該基材の表面を、基材外部から供給した
1種または2種以上の金属とともに局部的に溶融し、も
ってAlマトリックスにAl系金属間化合物の晶出した硬質
合金化層を前記基材の表面に形成することを特徴とする
耐摩耗性に優れたアルミニウム合金材の製造方法を要旨
とするものである。また、他の1つはB、Geのうちの1
種または2種を合計で1〜30wt%の範囲に含有するアル
ミニウム合金基材を用い、該基材の表面を、基材外部か
ら供給した1種または2種以上の硬質粒子とともに局部
的に溶融し、もってAlマトリックスと硬質粒子とが合金
化した硬質合金化層を前記基材の表面に形成することを
特徴とする耐摩耗性に優れたアルミニウム合金材の製造
方法を要旨とするものである。
That is, one of the present invention relates to one or two of B and Ge.
An aluminum alloy substrate containing a total of 1 to 30 wt% of a seed is used, and the surface of the base material is locally melted together with one or more kinds of metals supplied from the outside of the base material. A gist of the present invention is a method for producing an aluminum alloy material having excellent wear resistance, characterized by forming a hard alloying layer in which an Al-based intermetallic compound is crystallized on a matrix. The other one is one of B and Ge
Using an aluminum alloy substrate containing one or two types in a total range of 1 to 30% by weight, and locally melting the surface of the base material together with one or more types of hard particles supplied from the outside of the substrate The gist is a method for producing an aluminum alloy material having excellent wear resistance, characterized by forming a hard alloyed layer in which an Al matrix and hard particles are alloyed on the surface of the base material. .

アルミニウム合金基材の表面の溶融はレーザビーム、
電子ビーム、TIGアーク等の照射による高密度エネルギ
ー源を用いた溶融手段によれば良い。このような手段を
用いることにより、基材表面層のみを溶融しえて基材へ
の熱影響を少なくでき、基材の一部のみを局部的に合金
化することができる。一般的にはレーザビームを用いる
場合が多く、具体的にはYAGレーザ(波長1.06μm、パ
ルス発振)とかCO2レーザ(波長10.6μm、連続発振)
を主に用いる。また、溶融は耐摩耗性の要求される部位
について行えば良いが、その部位が広範囲にわたるとき
はレーザビーム等のオシレーション幅の調整や順次的照
射により対処すれば良い。
Laser melting of the surface of the aluminum alloy base material,
Melting means using a high-density energy source by irradiation with an electron beam, a TIG arc or the like may be used. By using such a means, only the surface layer of the base material can be melted to reduce the thermal influence on the base material, and only a part of the base material can be locally alloyed. Generally, a laser beam is often used. Specifically, a YAG laser (wavelength 1.06 μm, pulse oscillation) or a CO 2 laser (wavelength 10.6 μm, continuous oscillation)
Is mainly used. In addition, melting may be performed on a portion requiring abrasion resistance, but when the portion covers a wide range, adjustment may be made by adjusting the oscillation width of a laser beam or the like or by sequential irradiation.

基材表面の溶融は基材外部からの金属や硬質粒子の供
給を伴いつつ行う。金属は溶融によってAlとの間で金属
間化合物を形成するものであれば何でもよい。一例とし
てはNi、Mn、Fe、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta等の
各元素を挙げうる。また、必ずしも金属単体である必要
はなく、金属間化合物の形で供給し、溶融によってAlと
反応してAl系の金属間化合物を形成するものでも良い。
一方、硬質粒子としては、TiC、WC、ZrC、NbC等の炭化
物やTiN、ZrN、CrN等の窒化物、Al2O3等の酸化物その他
のセラミックスを挙げうる。これら金属単体あるいは硬
質粒子は1種のみを用いても良く、あるいは金属どう
し、硬質粒子どうしを2種以上組合せて用いても良い。
さらに金属と硬質粒子とを組合せても良い。
The melting of the surface of the substrate is performed while supplying metal and hard particles from the outside of the substrate. Any metal can be used as long as it forms an intermetallic compound with Al by melting. As an example, each element such as Ni, Mn, Fe, Ti, V, Cr, Zr, Nb, Mo, Hf, and Ta can be cited. Further, it is not always necessary to use the metal alone, and it may be supplied in the form of an intermetallic compound and react with Al by melting to form an Al-based intermetallic compound.
On the other hand, examples of the hard particles include carbides such as TiC, WC, ZrC and NbC, nitrides such as TiN, ZrN and CrN, oxides such as Al 2 O 3 and other ceramics. These metals alone or hard particles may be used alone or in combination of two or more kinds of metals or hard particles.
Further, a combination of metal and hard particles may be used.

而して、上記の金属あるいは硬質粒子とAlとの反応に
際して、基材中のB、Geの1種または2種が、金属ある
いは硬質粒子の基材に対する濡れ性を向上せしめ、基材
中のAlとの反応を促進させる。即ち、基材にB、Geを含
有しない場合には、溶融時に金属の表面張力が大きく、
基材と反応しにくいものとなる。また硬質粒子の場合に
も基材との濡れ性が良くないものとなる。このように、
B、Geは濡れ性向上効果を付与する点で相互に均等物で
あり、少なくともその1種を基材に含有すれば足りる。
しかしそれらの合計量が1wt%未満では上記効果に乏し
く、逆に30wt%を超えると基材の圧延、押出等の加工性
が悪くなるという欠点を派生する。従って、基材中の
B、Geの含有量は合計で1〜30wt%に設定しなければな
らない。なお、B、Ge以外の残部組成については特に限
定するものではなく、用途に応じて必要とされる機械的
性質、加工特性を保有させるために各種の元素を添加含
有せしめても良く、あるいは純アルミニウムをベースと
しても良い。また基材の形状も、適用される部品の形状
に応じて任意に設計すれば良い。
Thus, in the reaction between the metal or hard particles and Al, one or two of B and Ge in the base material improve the wettability of the metal or hard particles to the base material, Promotes the reaction with Al. That is, when the base material does not contain B and Ge, the surface tension of the metal at the time of melting is large,
It is difficult to react with the base material. Hard particles also have poor wettability with the substrate. in this way,
B and Ge are mutually equivalent in terms of imparting a wettability improving effect, and it is sufficient that at least one of them is contained in the base material.
However, if the total amount is less than 1% by weight, the above effect is poor, and if it exceeds 30% by weight, the drawback is that the workability of rolling and extrusion of the base material is deteriorated. Therefore, the contents of B and Ge in the base material must be set to 1 to 30 wt% in total. The composition of the remainder other than B and Ge is not particularly limited, and various elements may be added and contained in order to retain the mechanical properties and processing characteristics required according to the application, or may be pure or pure. It may be based on aluminum. Also, the shape of the substrate may be arbitrarily designed according to the shape of the component to be applied.

金属や硬質粒子の供給態様の1つとしては、レーザビ
ーム等の照射前に予め所期する部位にコーティング層を
形成しておく場合を挙げうる。コーティング層の形成は
湿式メッキ、CVD、PVD、溶射法等により、あるいは粉末
をエチルアルコールなど各種バインダーを用いて塗布す
ることにより行いうる。また、他の供給態様として、粉
末をレーザビーム等の照射中に溶融部に直接投入する場
合を挙げうる。いずれの方法を用いても良いが、直接投
入方式の場合、供給速度の調整等が面倒であるため、簡
便性の点でバインダーを用いたコーティング方式が優れ
ている。
As one of the supply modes of the metal and the hard particles, there may be a case where a coating layer is previously formed on a predetermined site before irradiation with a laser beam or the like. The coating layer can be formed by wet plating, CVD, PVD, thermal spraying, or the like, or by applying a powder using various binders such as ethyl alcohol. Further, as another supply mode, a case where the powder is directly injected into the melting portion during irradiation with a laser beam or the like can be cited. Either method may be used, but in the case of the direct injection method, since the adjustment of the supply speed is troublesome, the coating method using a binder is excellent in terms of simplicity.

上記のように、レーザビーム等の照射により基材表面
を金属と共に溶融した後においては、溶融部分は短時に
凝固しAlマトリックスに金属間化合物、例えばTiAl3、Z
rAl3、NiAl、NiAl3、Ni2Al3、FeAl3、Fe4Al13、MnAl6
HfAl3、Nb:Al3、CrAl7などが均一緻密にあるいは塊状に
晶出した合金化層となる。一方、基材表面を硬質粒子と
共に溶融した場合にはAlマトリックスに該粒子が均一に
分散しあるいは塊状化した合金化層となる。而して、上
記の金属間化合物は一般的に硬さが硬いものであり、ま
た硬質粒子はそれ自体優れた硬度を有しているため、合
金化層が全体として高い硬度を示し、優れた耐摩耗性を
具有する。この合金化層の厚さはレーザビーム等の照射
条件、例えば出力、照射速度、焦点位置等を変化させる
ことで数十μmから数mm程度にまで容易に制御できる。
なお、金属間化合物や硬質粒子はこれが硬質であるほど
合金化層の硬さは硬いものとなる。
As described above, after the base material surface is melted together with the metal by irradiating a laser beam or the like, the melted portion solidifies in a short time and an intermetallic compound such as TiAl 3 , Z
rAl 3 , NiAl, NiAl 3 , Ni 2 Al 3 , FeAl 3 , Fe 4 Al 13 , MnAl 6 ,
HfAl 3 , Nb: Al 3 , CrAl 7 and the like form an alloyed layer crystallized uniformly or densely. On the other hand, when the surface of the substrate is melted together with the hard particles, the particles are uniformly dispersed in the Al matrix or form an alloyed layer in which the particles are agglomerated. Thus, the above-mentioned intermetallic compound generally has a high hardness, and the hard particles themselves have excellent hardness, so that the alloyed layer exhibits high hardness as a whole, Has wear resistance. The thickness of the alloyed layer can be easily controlled from several tens of μm to several mm by changing irradiation conditions such as a laser beam, for example, output, irradiation speed, and focus position.
The harder the intermetallic compound and hard particles, the harder the alloying layer.

表面に硬質合金化層を形成した基材は、その後必要に
応じて最終製品形状に機械加工し、耐摩耗性部品として
実用に供する。
The base material having the hard alloyed layer formed on the surface is then machined into a final product shape, if necessary, and put into practical use as a wear-resistant part.

発明の効果 以上説明したように、この発明は、B、Geのうちの1
種または2種を合計で1〜30wt%の範囲に含有するアル
ミニウム合金基材の表面を、基材外部から供給した金属
や硬質粒子とともに局部的に溶融することにより、Alマ
トリックスにAl系金属間化合物が晶出しあるいは硬質粒
子が合金化した極めて硬度の高い合金化層を形成するも
のであるから、本発明によって製造したアルミニウム合
金材は格段に耐摩耗性に優れたものとなり、従って自動
車等に要請される耐摩耗部品として好適なものとなしう
る。また、合金化層は従来のようなメッキ等による表面
処理層と異なり、基材と一体的に結合しているから、高
面圧下で使用した場合にも該層の剥離等を起こす危険は
なく、充分な耐久性を確保しうるものとなる。
Effect of the Invention As described above, the present invention provides one of B and Ge.
By locally melting the surface of an aluminum alloy substrate containing one or two types in a total range of 1 to 30 wt% together with a metal or hard particles supplied from the outside of the substrate, an Al matrix is formed into an Al matrix. Since the compound forms an extremely hard alloyed layer in which the compound is crystallized or hard particles are alloyed, the aluminum alloy material produced according to the present invention has remarkably excellent wear resistance, and is therefore suitable for automobiles and the like. It can be made suitable as a required wear-resistant part. Also, unlike the conventional surface treatment layer by plating or the like, since the alloying layer is integrally bonded to the base material, there is no danger of peeling of the layer even when used under a high surface pressure. And sufficient durability can be ensured.

実施例 下記第1表に示すような組成からなる厚さ7.5mm×幅4
0mm×長さ100mmの各試験片を基材(1)(第1図におい
て)として用いた。そしてこの試験片の中央部長手方向
に、深さ0.5mm、幅6mmの浅溝(2)を掘り、該溝に、第
1表に示す組合せで金属、硬質粒子の粉末(3)をエチ
ルアルコールをバインダーとして埋込み状態に塗布し
た。塗布厚さは約0.5mmであった。
Example 7.5 mm thick x 4 width composed of the composition shown in Table 1 below
Each test piece of 0 mm × 100 mm length was used as a substrate (1) (in FIG. 1). Then, a shallow groove (2) having a depth of 0.5 mm and a width of 6 mm was dug in the longitudinal direction of the center portion of the test piece, and the metal and hard particle powder (3) in the combination shown in Table 1 was mixed with ethyl alcohol in the groove. Was applied as a binder in an embedded state. The coating thickness was about 0.5 mm.

次に10kw級CO2レーザ加工機を用いて、前記試験片の
粉末塗布部分にレーザビーム(4)を照射し、粉末とそ
の直下の基材Alとを共に溶融した。照射条件は、出力5k
w、試片移動速度100mm/min、焦点位置+30、ビームオシ
レーション5Hz、5mmとした。
Next, using a 10 kw class CO 2 laser beam machine, a laser beam (4) was applied to the powder-coated portion of the test piece to melt both the powder and the base material Al immediately below the powder. Irradiation conditions, output 5k
w, specimen moving speed 100 mm / min, focal position +30, beam oscillation 5 Hz, 5 mm.

レーザビームの照射による溶融後、凝固した試験片の
組織状態を調べたところ、試料No18の試験片については
溝部分のほぼ全体にわたって表面が滑らかで欠陥のない
合金化層(5)が形成されていた。合金化層の厚さを第
1表に示す。かつこれらの合金化層は金属間化合物や硬
質粒子が比較的緻密に晶出あるいは分散した部分と、塊
状となった部分とを有し、合金化層全体の硬さは第1表
のとおりであった。しかも、合金化層内及び合金化層と
基材Al界面では割れ及び気孔の発生は全く認められなか
った。
After melting by irradiation with the laser beam, the microstructure of the solidified test piece was examined. As for the test piece of Sample No. 18, an alloyed layer (5) having a smooth surface and almost no defect was formed over almost the entire groove portion. Was. Table 1 shows the thickness of the alloyed layer. In addition, these alloyed layers have portions where intermetallic compounds and hard particles are relatively densely crystallized or dispersed, and portions that are agglomerated, and the hardness of the entire alloyed layer is as shown in Table 1. there were. Moreover, no cracks or pores were found in the alloyed layer and at the interface between the alloyed layer and the substrate Al.

これに対し、試料No9では、表面に亀甲状の割れが認
められ、一部が剥離しており、しかも合金化層直下に基
材Alのみの溶融域が存在し、Alとの濡れ性が悪いことが
認められた。また、試料No10では表面に不連続の孔が形
成されるとともに、合金下層直下でやはり基材Alのみの
溶融域が存在し、Alとの濡れ性が悪いものであった。ま
た、試料No11では溶融Niが球状化し、基材Alと濡れなか
った。
On the other hand, in sample No. 9, cracks in the shape of a tortoiseshell were observed on the surface, a part of the sample was peeled off, and there was a melting zone of only the base material Al immediately below the alloyed layer, and the wettability with Al was poor. It was recognized that. Further, in sample No. 10, discontinuous holes were formed on the surface, and there was also a melting region of only the base material Al immediately below the lower layer of the alloy, and the wettability with Al was poor. Further, in sample No. 11, the molten Ni became spherical and did not wet the base material Al.

一方、それぞれの基材単体の硬度を調べたところ、第
1表のとおりであった。
On the other hand, when the hardness of each base material alone was examined, it was as shown in Table 1.

以上の試験結果からわかるように、本発明によれば、
極めて硬度が高く従って当然に耐摩耗性にも優れた合金
化層を基材表面に有するアルミニウム材料を製造しうる
ことを確認しえた。
As can be seen from the above test results, according to the present invention,
It has been confirmed that an aluminum material having an alloyed layer on the surface of a base material having extremely high hardness and therefore also excellent in wear resistance can be produced.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例における合金化の工程を模式
的に示す斜視図である。 (1)…基材、(2)…金属(硬質粒子)粉末、(4)
…レーザビーム、(5)…合金化層。
FIG. 1 is a perspective view schematically showing an alloying step in an embodiment of the present invention. (1) ... substrate, (2) ... metal (hard particle) powder, (4)
... Laser beam, (5) ... alloyed layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 1/02 503 C22C 1/02 503J (72)発明者 成願 茂利 大阪府堺市海山町6丁224番地 昭和ア ルミニウム株式会社内 (56)参考文献 特開 平2−101177(JP,A) 特開 昭63−72488(JP,A) 特開 昭61−166982(JP,A) 特開 昭61−170578(JP,A) 特開 昭63−76856(JP,A) 特開 昭61−117204(JP,A) 特開 昭64−87785(JP,A) 特開 昭61−26742(JP,A) 特開 昭63−79981(JP,A) 特開 昭63−247379(JP,A) 特開 昭63−307285(JP,A) 特開 昭60−70136(JP,A) 特開 昭62−13578(JP,A) 特開 昭61−186415(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 24/00 - 30/00 C23C 4/00 - 6/00 C22C 1/00 - 1/10 B23K 26/00 B23K 9/04 B23K 10/02──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C22C 1/02 503 C22C 1/02 503J (72) Inventor Shigeru Shigenori 6,224, Kaiyamacho, Sakai-shi, Osaka Pref. Showa Aluminum Co., Ltd. In-company (56) References JP-A-2-101177 (JP, A) JP-A-63-72488 (JP, A) JP-A-61-166982 (JP, A) JP-A-61-170578 (JP, A) JP-A-63-76856 (JP, A) JP-A-61-117204 (JP, A) JP-A-64-87785 (JP, A) JP-A-61-26742 (JP, A) JP-A-63-76842 79981 (JP, A) JP-A-63-247379 (JP, A) JP-A-63-307285 (JP, A) JP-A-60-70136 (JP, A) JP-A-62-13578 (JP, A) JP-A-61-186415 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 24/00-30/00 C23C 4/00-6/00 C22C 1/00-1/10 B23K 26/00 B23K 9/04 B23K 10/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】B、Geのうちの1種または2種を合計で1
〜30wt%の範囲に含有するアルミニウム合金基材を用
い、該基材の表面を、基材外部から供給した1種または
2種以上の金属とともに局部的に溶融し、もってAlマト
リックスにAl系金属間化合物の晶出した硬質合金化層を
前記基材の表面に形成することを特徴とする耐摩耗性に
優れたアルミニウム合金材の製造方法。
(1) A total of one or two of B and Ge is 1
Using an aluminum alloy base material containing up to 30 wt%, the surface of the base material is locally melted together with one or more metals supplied from the outside of the base material, thereby forming an Al-based metal into an Al matrix. A method for producing an aluminum alloy material having excellent wear resistance, comprising forming a hard alloyed layer in which an intermetallic compound is crystallized on the surface of the base material.
【請求項2】B、Geのうちの1種または2種を合計で1
〜30wt%の範囲に含有するアルミニウム合金基材を用
い、該基材の表面を、基材外部から供給した1種または
2種以上の硬質粒子とともに局部的に溶融し、もってAl
マトリックスと硬質粒子とが合金化した硬質合金化層を
前記基材の表面に形成することを特徴とする耐摩耗性に
優れたアルミニウム合金材の製造方法。
2. One or two of B and Ge in total of 1
Using an aluminum alloy base material containing up to 30% by weight, the surface of the base material is locally melted together with one or more hard particles supplied from the outside of the base material, and
A method for producing an aluminum alloy material having excellent wear resistance, comprising forming a hard alloyed layer in which a matrix and hard particles are alloyed on the surface of the base material.
JP63304517A 1988-11-30 1988-11-30 Manufacturing method of aluminum alloy material with excellent wear resistance Expired - Fee Related JP2769337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304517A JP2769337B2 (en) 1988-11-30 1988-11-30 Manufacturing method of aluminum alloy material with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304517A JP2769337B2 (en) 1988-11-30 1988-11-30 Manufacturing method of aluminum alloy material with excellent wear resistance

Publications (2)

Publication Number Publication Date
JPH02149680A JPH02149680A (en) 1990-06-08
JP2769337B2 true JP2769337B2 (en) 1998-06-25

Family

ID=17933980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304517A Expired - Fee Related JP2769337B2 (en) 1988-11-30 1988-11-30 Manufacturing method of aluminum alloy material with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP2769337B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5294026B2 (en) * 2009-05-15 2013-09-18 国立大学法人 鹿児島大学 Aluminum or aluminum alloy material and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166982A (en) * 1985-01-16 1986-07-28 Toyota Motor Corp Wear resistant al alloy member
JPS61170578A (en) * 1985-01-23 1986-08-01 Toyota Motor Corp Heat resistant al alloy member
JPS6372488A (en) * 1986-09-16 1988-04-02 Mazda Motor Corp Surface processing method for sliding member
JP2560804B2 (en) * 1988-10-05 1996-12-04 トヨタ自動車株式会社 Method for manufacturing wear resistant Al alloy member

Also Published As

Publication number Publication date
JPH02149680A (en) 1990-06-08

Similar Documents

Publication Publication Date Title
US4949836A (en) Screw with wear resistant surface
CA2254700C (en) Laser clad pot roll sleeves for galvanizing baths
JPH0525655A (en) Method for hardening surface of aluminum base metal and surface hardened aluminum base member
Courant et al. Structure and hardness of titanium surfaces carburized by pulsed laser melting with graphite addition
JP2018135585A (en) Metal member and method for manufacturing clad layer
Sahoo et al. Microstructure and wear characteristic of hard and wear resistance TiC coating deposited on aluminium by tungsten inert gas (TIG) cladding process
US20030217791A1 (en) Method for producing a component and/or a coating comprised of a vibration-damping alloy or intermetallic compound, and component produced using this method
JP2769339B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
JP2769337B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
EP0853541A1 (en) Return flow shut-off device for an injection unit in an injecting moulding machine
JP2769338B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
US7235144B2 (en) Method for the formation of a high-strength and wear-resistant composite layer
JP2769335B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
US5143557A (en) Surface coating made from an aluminum-based alloy
JP2769336B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
JP2942299B2 (en) Additive for surface hardening of aluminum
JPH0480990B2 (en)
JPS61231151A (en) Surface hardening treatment for titanium or titanium alloy
JP2677412B2 (en) Filler for surface hardening of aluminum materials
JP2954258B2 (en) Method of manufacturing filler metal for surface hardening of aluminum material
JP2005008942A (en) Surface treatment method
JP2677413B2 (en) Filler for surface hardening of aluminum materials
JPH0480991B2 (en)
JP5524479B2 (en) Surface treatment method for metal parts
JP2797201B2 (en) Titanium or titanium alloy structural members

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees