JPH06275275A - Nonaqueous battery - Google Patents

Nonaqueous battery

Info

Publication number
JPH06275275A
JPH06275275A JP5084134A JP8413493A JPH06275275A JP H06275275 A JPH06275275 A JP H06275275A JP 5084134 A JP5084134 A JP 5084134A JP 8413493 A JP8413493 A JP 8413493A JP H06275275 A JPH06275275 A JP H06275275A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
boron
active material
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5084134A
Other languages
Japanese (ja)
Inventor
Mayumi Uehara
真弓 上原
Toshiyuki Noma
俊之 能間
Hiroshi Kurokawa
宏史 黒河
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5084134A priority Critical patent/JPH06275275A/en
Publication of JPH06275275A publication Critical patent/JPH06275275A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To suppress the abnormal heating due to an internal short circuit and improve reliability by using a boron containing metal composite oxide having a specific composition and a high reaction start temperature with an electrolyte for a positive electrode active material. CONSTITUTION:A negative electrode is made of a prescribed material in a nonaqueous battery, and a boron containing metal composite oxide expressed by the composition formula LixByNizCowOa for a positive electrode active material., where 0 <x1.3, y>0, 0<=w<z, y+z+w=1, 1.8<=a<=2.2, and (y) is set to 0.01-0.3. The positive electrode 1 and the negative electrode 2 are arranged face to face via a separator 3 impregnated with an electrolyte, and they are stored in a case to manufacture a battery BA1. When the positive electrode active material contains a specific quantity of boron, the reaction start temperature with the electrolyte can be increased, the abnormal heating is suppressed when an internal short circuit occurs, and safety can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水系電池に係わり、詳
しくは信頼性(安全性)の向上を目的とした正極活物質
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous battery, and more particularly to improvement of a positive electrode active material for the purpose of improving reliability (safety).

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム電池等の非水系電池が、ニッケル・カドミウム
電池等の水系電池と異なり水の分解電圧を考慮する必要
がないため高電圧設計が可能であるなどの理由から、脚
光を浴びつつある。
2. Description of the Related Art In recent years,
Unlike non-aqueous batteries such as nickel-cadmium batteries, it is not necessary to consider the decomposition voltage of water, and non-aqueous batteries such as lithium batteries are in the limelight because they can be designed at high voltage.

【0003】而して、従来、非水系電池の正極活物質の
一つとして、リチウムに対して4V以上の高電位を示す
LiCoO2 が提案されている。因みに、このLiCo
2は、一般にリチウム化合物とコバルト化合物との混
合物を焼成することにより得られる。
Thus, conventionally, LiCoO 2 has been proposed as one of the positive electrode active materials for non-aqueous batteries, which exhibits a high potential of 4 V or more with respect to lithium. By the way, this LiCo
O 2 is generally obtained by firing a mixture of a lithium compound and a cobalt compound.

【0004】ところで、LiCoO2 には、放電容量が
LiNiO2 に比し小さいとともに、高価なコバルト化
合物を原材料として使用するため製造コストが高くつく
という問題があるが、これらの問題は原材料として比較
的安価なニッケル化合物を過半量併用することにより解
消される。この場合の正極活物質は、LiCoO2 中の
コバルト原子の過半数がニッケル原子で置換された構造
の金属複合酸化物となり、組成式LiNipCo1-pO
2 (1/2<p<1)、より正確には組成式LixNi
pCo1-pO2 (0<x<1.3(但しxは充放電に伴
い変動する値);1/2<p≦1)で表される。
By the way, LiCoO 2 has a problem that the discharge capacity is smaller than that of LiNiO 2 and the manufacturing cost is high because an expensive cobalt compound is used as a raw material. It can be solved by using an inexpensive nickel compound together in a majority amount. In this case, the positive electrode active material is a metal composite oxide having a structure in which a majority of cobalt atoms in LiCoO 2 are replaced with nickel atoms, and the composition formula LiNipCo 1- pO
2 (1/2 <p <1), more accurately the composition formula LixNi
pCo 1− pO 2 (0 <x <1.3 (where x is a value that varies with charging / discharging); 1/2 <p ≦ 1).

【0005】しかしながら、この金属複合酸化物は、短
絡等により電池温度が少し上昇すると電解液と反応(発
熱反応)するため、電池温度が異常に上昇する虞れがあ
ることが分かった。
However, it has been found that the metal composite oxide reacts with the electrolytic solution (exothermic reaction) when the battery temperature slightly rises due to a short circuit or the like, so that the battery temperature may rise abnormally.

【0006】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、正極活物質
と電解液との反応開始温度が高いため、内部短絡などに
より電池温度がある程度上昇した場合でも正極活物質と
電解液とが反応しにくいため異常発熱しにくい、信頼性
(安全性)の高い非水系電池を提供するにある。
The present invention has been made to solve this problem, and its purpose is to raise the reaction temperature of the positive electrode active material and the electrolytic solution at a high temperature, so that the battery temperature is increased to some extent due to an internal short circuit. An object of the present invention is to provide a highly reliable (safety) non-aqueous battery in which abnormal heat generation is unlikely to occur because the positive electrode active material and the electrolytic solution do not easily react even when the temperature rises.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電池(以下、「本発明電池」と称
する。)は、負極にリチウムイオンを吸蔵放出可能な材
料又は金属リチウムが使用されてなる非水系電池におい
て、正極活物質として、組成式LixByNizCow
Oa(但し、0<x<1.3、y>0、0≦w<z、y
+z+w=1、1.8≦a≦2.2である。)で表され
るホウ素含有金属複合酸化物が使用されてなる。
A non-aqueous battery according to the present invention for achieving the above object (hereinafter referred to as "the battery of the present invention") is a material or metallic lithium capable of inserting and extracting lithium ions in a negative electrode. In the non-aqueous battery, the composition formula LixByNizCow is used as the positive electrode active material.
Oa (however, 0 <x <1.3, y> 0, 0 ≦ w <z, y
+ Z + w = 1, 1.8 ≦ a ≦ 2.2. ) The boron-containing metal composite oxide represented by the formula (1) is used.

【0008】本発明が改良せんとする電池(対象電池)
は、負極に金属リチウム、又は、リチウム合金、コーク
ス、黒鉛などのリチウムイオンを吸蔵放出可能な材料が
使用されてなる非水系電池である。そして、本発明で
は、この対象電池の正極活物質として、上記組成式で表
されるホウ素含有金属複合酸化物が使用される。このホ
ウ素含有金属複合酸化物は、先に述べた金属複合酸化物
LixNipCo1-pO 2 中のニッケル又はコバルトの
一部がホウ素で置換された構造を有するものであり、こ
のホウ素の導入により、理由は定かでないが、電解液と
の反応開始温度が高くなったものである。
Battery to be improved by the present invention (target battery)
Is metallic lithium, lithium alloy, or coke on the negative electrode.
Materials that can store and release lithium ions such as graphite and graphite
It is a non-aqueous battery used. And in the present invention
Is the positive electrode active material of this target battery and is expressed by the above composition formula.
The boron-containing metal composite oxide is used. This ho
The metal complex oxide containing arsenic is the metal complex oxide described above.
LixNipCo1-pO 2Of nickel or cobalt
Part of which has a structure in which boron is substituted,
Although the reason is not clear due to the introduction of boron,
The reaction initiation temperature of is higher.

【0009】好適なホウ素含有金属複合酸化物は、ホウ
素の含有量を示す上記組成式中のyが0.01〜0.3
のものである。ホウ素含有量が少なくてyが0.01よ
り小さいと、電解液との反応開始温度がさほど上昇せ
ず、またホウ素含有量が多くてyが0.3より大きい
と、活物質として機能しないホウ素の占める比率が過大
となり、放電容量が低下するので、ともに好ましくな
い。
A preferred boron-containing metal composite oxide is such that y in the above composition formula showing the content of boron is 0.01 to 0.3.
belongs to. When the boron content is low and y is less than 0.01, the reaction initiation temperature with the electrolytic solution does not rise so much, and when the boron content is high and y is more than 0.3, boron does not function as an active material. Is too large and the discharge capacity is reduced, which is not preferable.

【0010】本発明におけるホウ素含有金属複合酸化物
は、例えばリチウムの水酸化物、酸化物、炭酸塩又は硝
酸塩と、ニッケルの水酸化物、酸化物、炭酸塩又は硝酸
塩と、コバルトの水酸化物、酸化物、炭酸塩又は硝酸塩
と、三酸化二ホウ素等のホウ素化合物とを所定の割合で
混合し、焼成することにより得られる。
The boron-containing metal composite oxide in the present invention is, for example, lithium hydroxide, oxide, carbonate or nitrate, nickel hydroxide, oxide, carbonate or nitrate, and cobalt hydroxide. , An oxide, a carbonate or a nitrate, and a boron compound such as diboron trioxide are mixed at a predetermined ratio, and the mixture is fired.

【0011】本発明電池は、上述した如く、負極にリチ
ウムイオンを吸蔵放出可能な材料又は金属リチウムが使
用されてなる非水系電池の正極活物質として、電解液と
の反応開始温度の高いホウ素含有金属複合酸化物を使用
した点に最大の特徴を有する。それゆえ、本発明電池を
構成する電解液等の他の部材については特に制限され
ず、非水系電池用として従来使用され、或いは提案され
ている種々の材料を制限無く使用することが可能であ
る。
As described above, the battery of the present invention contains boron having a high reaction initiation temperature with an electrolytic solution as a positive electrode active material of a non-aqueous battery in which a material capable of inserting and extracting lithium ions or metallic lithium is used for the negative electrode. The greatest feature is that a metal composite oxide is used. Therefore, other members such as the electrolytic solution constituting the battery of the present invention are not particularly limited, and various materials conventionally used for non-aqueous batteries or proposed can be used without limitation. .

【0012】たとえば、電解液としては、プロピレンカ
ーボネート、エチレンカーボネート、ビニレンカーボネ
ートなどの有機溶媒や、これらとジメチルカーボネー
ト、ジエチルカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、エトキシメトキシエタ
ンなどの低沸点溶媒との混合溶媒に、LiPF6 、Li
ClO4 、LiCF3 SO3 などの電解液溶質を0.7
〜1.5M(モル/リットル)、就中1Mの割合で溶か
した溶液が例示される。
For example, the electrolytic solution may be an organic solvent such as propylene carbonate, ethylene carbonate or vinylene carbonate, or dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane or ethoxymethoxyethane. In a mixed solvent with a low boiling point solvent such as LiPF 6 , Li
Electrolyte solutes such as ClO 4 and LiCF 3 SO 3 are added to 0.7
An example is a solution dissolved at a ratio of up to 1.5 M (mol / liter), especially 1 M.

【0013】[0013]

【作用】本発明電池においては、電解液との反応開始温
度が高いホウ素含有金属複合酸化物が正極活物質として
使用されているので、内部短絡等により電池温度が或る
程度上昇しても当該正極活物質と電解液との反応(発熱
反応)が起こりにくい。
In the battery of the present invention, since the boron-containing metal composite oxide having a high reaction initiation temperature with the electrolytic solution is used as the positive electrode active material, even if the battery temperature rises to some extent due to an internal short circuit, The reaction (exothermic reaction) between the positive electrode active material and the electrolytic solution is unlikely to occur.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0015】(実施例1)扁平型の非水系電池(本発明
電池)を作製した。
Example 1 A flat non-aqueous battery (the battery of the present invention) was produced.

【0016】〔正極の作製〕水酸化リチウム(LiO
H)と三酸化二ホウ素(B2 3 )と水酸化ニッケル
(Ni(OH)2 )と水酸化コバルト(Co(O
H)2 )とをLi:B:Ni:Coの原子比1.0:
0.01:0.5:0.49の割合で乳鉢中で混合し、
800°Cで20時間焼成して組成式LiB0.01Ni
0.5 Co0.492 で表される正極活物質としてのホウ素
含有金属複合酸化物粉末を得た。
[Preparation of Positive Electrode] Lithium hydroxide (LiO
H), diboron trioxide (B 2 O 3 ), nickel hydroxide (Ni (OH) 2 ) and cobalt hydroxide (Co (O
H) 2 ) and Li: B: Ni: Co atomic ratio 1.0:
Mix in a mortar at a ratio of 0.01: 0.5: 0.49,
Composition formula LiB 0.01 Ni after firing at 800 ° C for 20 hours
A boron-containing metal composite oxide powder as a positive electrode active material represented by 0.5 Co 0.49 O 2 was obtained.

【0017】次いで、このホウ素含有金属複合酸化物粉
末と、導電剤としてのアセチレンブラックと、結着剤と
してのフッ素樹脂粉末とを、重量比率90:6:4で混
合して正極合剤を得た。この正極合剤を成形圧2トン/
cm2 で加圧成形した後、250°Cで加熱処理して、
直径20mmの円板状の正極を作製した。なお、正極集
電体として、ステンレス鋼板(SUS304)を使用し
た。
Next, the boron-containing metal composite oxide powder, acetylene black as a conductive agent, and fluororesin powder as a binder are mixed in a weight ratio of 90: 6: 4 to obtain a positive electrode mixture. It was Molding pressure of this positive electrode mixture is 2 tons /
After pressure molding at cm 2 , heat treatment at 250 ° C,
A disk-shaped positive electrode having a diameter of 20 mm was produced. A stainless steel plate (SUS304) was used as the positive electrode current collector.

【0018】〔負極の作製〕リチウム圧延板を打ち抜い
て、金属リチウムからなる直径20mmの円板状の負極
を作製した。なお、負極集電体として、ステンレス鋼板
(SUS304)を使用した。
[Preparation of Negative Electrode] A rolled lithium plate was punched out to prepare a disc-shaped negative electrode made of metallic lithium and having a diameter of 20 mm. A stainless steel plate (SUS304) was used as the negative electrode current collector.

【0019】〔電解液の調製〕プロピレンカーボネート
(PC)と1,2−ジメトキシエタン(DME)との等
体積混合溶媒に、LiClO4 (過塩素酸リチウム)を
1モル/リットルの割合で溶かして電解液を調製した。
[Preparation of Electrolyte Solution] LiClO 4 (lithium perchlorate) was dissolved in an equal volume mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) at a ratio of 1 mol / liter. An electrolytic solution was prepared.

【0020】〔電池の作製〕以上の正負両極及び電解液
を用いて扁平型の本発明電池BA1(電池寸法:直径2
4mm、厚み:3.0mm)を作製した。セパレータと
しては、ポリプロピレン製の微多孔膜(ポリプラスチッ
クス社製、商品名「セルガード」)を使用し、これに先
に述べた電解液を含浸させた。
[Production of Battery] Using the positive and negative electrodes and the electrolytic solution described above, the flat battery BA1 of the present invention (battery size: diameter 2
4 mm, thickness: 3.0 mm) was produced. As the separator, a polypropylene microporous film (manufactured by Polyplastics Co., trade name “Celguard”) was used and impregnated with the electrolytic solution described above.

【0021】図1は作製した本発明電池BA1を模式的
に示す断面図であり、同図に示す本発明電池BA1は、
正極1、負極2、これら両電極1,2を互いに離間する
セパレータ3、正極缶4、負極缶5、正極集電体6、負
極集電体7及びポリプロピレン製の絶縁パッキング8な
どからなる。
FIG. 1 is a sectional view schematically showing the manufactured battery BA1 of the present invention. The battery BA1 of the present invention shown in FIG.
It comprises a positive electrode 1, a negative electrode 2, a separator 3 separating these electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7 and an insulating packing 8 made of polypropylene.

【0022】正極1及び負極2は、電解液を含浸したセ
パレータ3を介して対向して正負両極缶4、5が形成す
る電池ケース内に収容されており、正極1は正極集電体
6を介して正極缶4に、また負極2は負極集電体7を介
して負極缶5に接続され、電池内部で生じた化学エネル
ギーを正極缶4及び負極缶5の両端子から電気エネルギ
ーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative bipolar cans 4 and 5 which face each other with a separator 3 impregnated with an electrolytic solution interposed therebetween, and the positive electrode 1 includes a positive electrode current collector 6. To the positive electrode can 4 and the negative electrode 2 to the negative electrode can 5 via the negative electrode current collector 7 so that the chemical energy generated inside the battery can be output as electrical energy from both terminals of the positive electrode can 4 and the negative electrode can 5 to the outside. You can take it out.

【0023】(実施例2)水酸化リチウムと三酸化二ホ
ウ素と水酸化ニッケルと水酸化コバルトとのLi:B:
Ni:Coの原子比を1.0:0.1:0.5:0.4
の割合に変えて作製した組成式LiB0.1 Ni0.5 Co
0.4 2 で表されるホウ素含有金属複合酸化物粉末を正
極活物質として使用したこと以外は実施例1と同様にし
て、本発明電池BA2を作製した。
Example 2 Li: B of lithium hydroxide, diboron trioxide, nickel hydroxide and cobalt hydroxide:
The atomic ratio of Ni: Co is 1.0: 0.1: 0.5: 0.4.
Of the composition formula LiB 0.1 Ni 0.5 Co
Battery BA2 of the present invention was produced in the same manner as in Example 1 except that the boron-containing metal composite oxide powder represented by 0.4 O 2 was used as the positive electrode active material.

【0024】(実施例3)水酸化リチウムと三酸化二ホ
ウ素と水酸化ニッケルと水酸化コバルトとのLi:B:
Ni:Coの原子比を1.0:0.2:0.5:0.3
の割合に変えて作製した組成式LiB0.2 Ni0.5 Co
0.3 2 で表されるホウ素含有金属複合酸化物粉末を正
極活物質として使用したこと以外は実施例1と同様にし
て、本発明電池BA3を作製した。
Example 3 Li: B of lithium hydroxide, diboron trioxide, nickel hydroxide and cobalt hydroxide:
The atomic ratio of Ni: Co is 1.0: 0.2: 0.5: 0.3.
Composition formula LiB 0.2 Ni 0.5 Co
Battery BA3 of the present invention was produced in the same manner as in Example 1 except that the boron-containing metal composite oxide powder represented by 0.3 O 2 was used as the positive electrode active material.

【0025】(実施例4)水酸化リチウムと三酸化二ホ
ウ素と水酸化ニッケルと水酸化コバルトとのLi:B:
Ni:Coの原子比を1.0:0.3:0.5:0.2
の割合に変えて作製した組成式LiB0.3 Ni0.5 Co
0.2 2 で表されるホウ素含有金属複合酸化物粉末を正
極活物質として使用したこと以外は実施例1と同様にし
て、本発明電池BA4を作製した。
Example 4 Li: B of lithium hydroxide, diboron trioxide, nickel hydroxide and cobalt hydroxide:
The atomic ratio of Ni: Co is 1.0: 0.3: 0.5: 0.2.
Composition formula LiB 0.3 Ni 0.5 Co
A battery BA4 of the present invention was produced in the same manner as in Example 1 except that the boron-containing metal composite oxide powder represented by 0.2 O 2 was used as the positive electrode active material.

【0026】(実施例5)水酸化リチウムと三酸化二ホ
ウ素と水酸化ニッケルと水酸化コバルトとのLi:B:
Ni:Coの原子比を1.0:0.35:0.5:0.
15の割合に変えて作製した組成式LiB0.35Ni0.5
Co0.152 で表されるホウ素含有金属複合酸化物粉末
を正極活物質として使用したこと以外は実施例1と同様
にして、本発明電池BA5を作製した。
Example 5 Li: B of lithium hydroxide, diboron trioxide, nickel hydroxide and cobalt hydroxide:
The atomic ratio of Ni: Co is 1.0: 0.35: 0.5: 0.
The composition formula LiB 0.35 Ni 0.5 prepared by changing the ratio to 15
A battery BA5 of the present invention was produced in the same manner as in Example 1 except that the boron-containing metal composite oxide powder represented by Co 0.15 O 2 was used as the positive electrode active material.

【0027】(比較例)水酸化リチウムと水酸化ニッケ
ルと水酸化コバルトとをモル比1.0:0.5:0.5
の割合で乳鉢中で混合し、800°Cで20時間焼成し
て組成式LiNi0.5 Co0.5 2 で表される正極活物
質としてのホウ素を含有しない金属複合酸化物粉末を得
た。この金属複合酸化物粉末を正極活物質として使用し
たこと以外は実施例1と同様にして、比較電池BC1を
作製した。
(Comparative Example) Lithium hydroxide, nickel hydroxide and cobalt hydroxide were used in a molar ratio of 1.0: 0.5: 0.5.
Were mixed in a mortar at a ratio of 100 ° C. and baked at 800 ° C. for 20 hours to obtain a boron-free metal composite oxide powder as a positive electrode active material represented by a composition formula LiNi 0.5 Co 0.5 O 2 . A comparative battery BC1 was produced in the same manner as in Example 1 except that this metal composite oxide powder was used as the positive electrode active material.

【0028】〔ホウ素含有量と反応開始温度との関係〕
上記実施例1〜5及び比較例で作製した各金属複合酸化
物粉末について、充電後の正極を電解液に浸漬し、徐々
に温度を上げていって、発熱反応が開始する温度を熱分
析により測定した。結果を図2に示す。
[Relationship between Boron Content and Reaction Start Temperature]
For each of the metal composite oxide powders produced in Examples 1 to 5 and Comparative Example, the positive electrode after charging was immersed in an electrolytic solution, the temperature was gradually raised, and the temperature at which the exothermic reaction started was determined by thermal analysis. It was measured. The results are shown in Figure 2.

【0029】図2は、ホウ素含有量と反応開始温度との
関係を、縦軸に反応開始温度(°C)を、横軸にホウ素
含有量(y in 組成式LiBy Ni0.5 Co(0.5-y)
2 )をとって示したグラフであり、同図よりホウ素含有
量が増加するにつれて反応開始温度が高くなること、及
び、反応開始温度を210°C以上にするためには、y
が0.01以上のホウ素含有金属複合酸化物を使用すれ
ばよいことが分かる。
FIG. 2 shows the relationship between the boron content and the reaction start temperature, the vertical axis represents the reaction start temperature (° C), and the horizontal axis represents the boron content (y in composition formula LiB y Ni 0.5 Co ( 0.5- y) O
2 ) is a graph showing that the reaction initiation temperature becomes higher as the boron content increases and the reaction initiation temperature is set to 210 ° C. or higher as shown in FIG.
It is understood that a boron-containing metal composite oxide having a ratio of 0.01 or more should be used.

【0030】〔ホウ素含有量と放電容量との関係〕室温
(25°C)下、3mAで充電終止電圧4.2Vまで充
電した後、3mAで放電終止電圧2.75Vまで放電し
て、ホウ素含有量と放電容量との関係を調べた。結果を
図3に示す。
[Relationship between Boron Content and Discharge Capacity] At room temperature (25 ° C.), the battery was charged at 3 mA to a charge end voltage of 4.2 V, then discharged at 3 mA to a discharge end voltage of 2.75 V, and contained boron. The relationship between quantity and discharge capacity was investigated. The results are shown in Fig. 3.

【0031】図3は、ホウ素含有量と放電容量との関係
を、縦軸に正極活物質単位重量当たりの放電容量(mA
h/g)を、横軸にホウ素含有量(y in 組成式LiB
y Ni0.5 Co(0.5-y) 2 )をとって示したグラフで
あり、同図よりホウ素含有量が増加するにつれて放電容
量が減少すること、及び、放電容量を165mAh/g
にするためにはyが0.3以下のホウ素含有金属複合酸
化物を使用すればよいことが分かる。
FIG. 3 shows the relationship between the boron content and the discharge capacity, the vertical axis being the discharge capacity per unit weight of the positive electrode active material (mA).
h / g), the horizontal axis represents the boron content (y in composition formula LiB
y Ni 0.5 Co (0.5-y) O 2 ), showing that the discharge capacity decreases as the boron content increases, and the discharge capacity is 165 mAh / g.
In order to achieve this, it is understood that a boron-containing metal composite oxide having y of 0.3 or less may be used.

【0032】これら図2及び図3に示す結果から、反応
開始温度が210°C以上であって、且つ、放電容量が
165mAh/g以上のホウ素含有金属複合酸化物は、
組成式LiBy Ni0.5 Co(0.5-y) 2 中のyが0.
01〜0.3の範囲内にあるものであることが分かる。
From the results shown in FIGS. 2 and 3, the boron-containing metal composite oxide having a reaction initiation temperature of 210 ° C. or higher and a discharge capacity of 165 mAh / g or higher was
In the composition formula LiB y Ni 0.5 Co (0.5-y) O 2 , y is 0.
It can be seen that it is within the range of 01 to 0.3.

【0033】叙上の実施例では、本発明を扁平型の非水
系電池に適用する場合を例に挙げて説明したが、電池の
形状は特に限定されず、円筒型、角型など種々の形状の
非水系電池に適用し得るものである。
In the above embodiments, the case where the present invention is applied to the flat type non-aqueous battery has been described as an example, but the shape of the battery is not particularly limited, and various shapes such as a cylindrical shape and a square shape are used. It is applicable to the non-aqueous battery of.

【0034】また、ホウ素含有金属複合酸化物の原料と
してリチウム、ニッケル、コバルトの各水酸化物を使用
する場合を一例として説明したが、先に示した他の材料
を使用してなるホウ素含有金属複合酸化物を使用した場
合においても上述した本発明電池BA1〜BA5と同様
の信頼性の高い非水系電池が得られる。
The case where each of the hydroxides of lithium, nickel, and cobalt is used as the raw material of the boron-containing metal composite oxide has been described as an example. Even when the complex oxide is used, a highly reliable non-aqueous battery similar to the batteries BA1 to BA5 of the present invention described above can be obtained.

【0035】[0035]

【発明の効果】本発明電池は、正極活物質として電解液
との反応開始温度の高い特定組成のホウ素含有金属複合
酸化物が使用されているので、内部短絡などが起こった
場合でも異常発熱しにくく信頼性(安全性)が高いな
ど、本発明は優れた特有の効果を奏する。
The battery of the present invention uses a boron-containing metal composite oxide of a specific composition having a high reaction initiation temperature with an electrolytic solution as a positive electrode active material, so that abnormal heat generation occurs even when an internal short circuit occurs. The present invention has excellent unique effects such as difficulty and high reliability (safety).

【図面の簡単な説明】[Brief description of drawings]

【図1】扁平型の非水系電池(本発明電池)の断面図で
ある。
FIG. 1 is a cross-sectional view of a flat non-aqueous battery (the battery of the present invention).

【図2】ホウ素含有量と反応開始温度との関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between the boron content and the reaction initiation temperature.

【図3】ホウ素含有量と放電容量との関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between boron content and discharge capacity.

【符号の説明】[Explanation of symbols]

BA1 非水系電池(本発明電池) 1 正極 2 負極 3 セパレータ BA1 non-aqueous battery (battery of the present invention) 1 positive electrode 2 negative electrode 3 separator

フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内Front page continuation (72) Inventor Koji Nishio 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-18 Keihan Hondori, Moriguchi, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】負極にリチウムイオンを吸蔵放出可能な材
料又は金属リチウムが使用されてなる非水系電池におい
て、正極活物質として、組成式LixByNizCow
Oa(但し、0<x<1.3、y>0、0≦w<z、y
+z+w=1、1.8≦a≦2.2である。)で表され
るホウ素含有金属複合酸化物が使用されていることを特
徴とする非水系電池。
1. In a non-aqueous battery in which a material capable of inserting and extracting lithium ions or metallic lithium is used for a negative electrode, a composition formula LixByNizCow is used as a positive electrode active material.
Oa (however, 0 <x <1.3, y> 0, 0 ≦ w <z, y
+ Z + w = 1, 1.8 ≦ a ≦ 2.2. ) A non-aqueous battery comprising a boron-containing metal composite oxide represented by
【請求項2】前記組成式中のyが0.01〜0.3であ
る請求項1記載の非水系電池。
2. The non-aqueous battery according to claim 1, wherein y in the composition formula is 0.01 to 0.3.
JP5084134A 1993-03-17 1993-03-17 Nonaqueous battery Pending JPH06275275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5084134A JPH06275275A (en) 1993-03-17 1993-03-17 Nonaqueous battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5084134A JPH06275275A (en) 1993-03-17 1993-03-17 Nonaqueous battery

Publications (1)

Publication Number Publication Date
JPH06275275A true JPH06275275A (en) 1994-09-30

Family

ID=13822034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5084134A Pending JPH06275275A (en) 1993-03-17 1993-03-17 Nonaqueous battery

Country Status (1)

Country Link
JP (1) JPH06275275A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125392A (en) * 1979-09-10 1989-05-17 Ciba Geigy Ag Ammonium methyl methanephosphonate and its production
JPH08213052A (en) * 1994-08-04 1996-08-20 Seiko Instr Inc Nonaqueous electrolyte secondary battery
US5989744A (en) * 1996-07-31 1999-11-23 Sony Corporation Non-aqueous electrolyte secondary cell
EP1055389A2 (en) * 1999-05-26 2000-11-29 Miele &amp; Cie. GmbH &amp; Co. Programmable dishwasher with device for drying the dishes
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
EP0918041A4 (en) * 1996-08-12 2006-05-17 Toda Kogyo Corp Lithium/nickel/cobalt composite oxide, process for preparing the same, and cathode active material for rechargeable battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125392A (en) * 1979-09-10 1989-05-17 Ciba Geigy Ag Ammonium methyl methanephosphonate and its production
JPH08213052A (en) * 1994-08-04 1996-08-20 Seiko Instr Inc Nonaqueous electrolyte secondary battery
US5989744A (en) * 1996-07-31 1999-11-23 Sony Corporation Non-aqueous electrolyte secondary cell
EP0918041A4 (en) * 1996-08-12 2006-05-17 Toda Kogyo Corp Lithium/nickel/cobalt composite oxide, process for preparing the same, and cathode active material for rechargeable battery
EP2058281A3 (en) * 1996-08-12 2009-12-23 Toda Kogyo Corporation Lithium/nickel/cobalt composite oxide, process for preparing the same, and cathode active material for rechargeable battery
EP1055389A2 (en) * 1999-05-26 2000-11-29 Miele &amp; Cie. GmbH &amp; Co. Programmable dishwasher with device for drying the dishes
EP1055389A3 (en) * 1999-05-26 2002-05-08 Miele &amp; Cie. GmbH &amp; Co. Programmable dishwasher with device for drying the dishes
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries

Similar Documents

Publication Publication Date Title
JP3238954B2 (en) Non-aqueous secondary battery
US8187752B2 (en) High energy lithium ion secondary batteries
US5514490A (en) Secondary lithium battery using a new layered anode material
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP2002289261A (en) Non-aqueous electrolyte secondary battery
JPH10312826A (en) Nonaqueous electrolyte battery and charging method therefor
JPH06243871A (en) Nonaqueous secondary battery
JP3188026B2 (en) Non-aqueous battery
JP3717544B2 (en) Lithium secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JPH06275275A (en) Nonaqueous battery
JP3054511B2 (en) Non-aqueous secondary battery
JP5076301B2 (en) Secondary battery
JP3182296B2 (en) Non-aqueous electrolyte secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH07142056A (en) Nonaqueous type battery
JPH06243869A (en) Nonaqueous secondary battery
JP3188108B2 (en) Non-aqueous electrolyte secondary battery
JP3670895B2 (en) Lithium secondary battery
JPH06111820A (en) Nonaqueous battery
JPH05290851A (en) Nonaqueous electrolyte battery
KR100450212B1 (en) METHOD FOR PREPARING LiMn2O4 POWDER FOR LITHIUM ION BATTERIES IN UNIFORM PHASE TO PROVIDE HIGH INITIAL BATTERY CAPACITY
JP3017847B2 (en) Non-aqueous solvent secondary battery
JPH05290890A (en) Nonaqueous electrolyte secondary battery
JPH04181660A (en) Nonaqueous secondary battery