JPH06273324A - Absorptiometer and absorptiometry - Google Patents

Absorptiometer and absorptiometry

Info

Publication number
JPH06273324A
JPH06273324A JP5056644A JP5664493A JPH06273324A JP H06273324 A JPH06273324 A JP H06273324A JP 5056644 A JP5056644 A JP 5056644A JP 5664493 A JP5664493 A JP 5664493A JP H06273324 A JPH06273324 A JP H06273324A
Authority
JP
Japan
Prior art keywords
light
light source
measurement
sample
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5056644A
Other languages
Japanese (ja)
Inventor
Ushio Hase
潮 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5056644A priority Critical patent/JPH06273324A/en
Publication of JPH06273324A publication Critical patent/JPH06273324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a small, portable, and inexpensive absorptiometer in which colored matters adsorbed by an adsorbent can be measured accurately with high sensitivity while allowing analysis and evaluation at a samplingsite, and an analysis method using the absorptiometer. CONSTITUTION:A monochromatic semiconductor laser is employed as a measuring light source 1 whereas a white light tungsten lamp is employed as a correction light source 2. A sample is irradiated alternately with light from the light sources 1, 2 and absorbances are measured for the measuring light and the correcting light. Difference of absorbance is employed as a measurement and the density of the sample is determined based on a working curve prepared previously from a sample having a known density. Since the measuring light source 1 employs a semiconductor laser having a high output per wavelength and the correction light source 2 emits non-monochromatic white light, sufficient quantity of light transmitted through a substance to be measured adsorbed by an adsorbent due to scattering of the adsorbent itself can be detected resulting in the enhancement of accuracy and sensitivity in the measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶液試料中の微量不純
物成分の分析方法とこれに使用する吸光光度計に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing trace impurity components in a solution sample and an absorptiometer used for the method.

【0002】[0002]

【従来の技術】各種研究、産業分野において、試料中の
超微量成分分析の高感度化が望まれている。分析装置の
感度が分析目的とする成分の試料中濃度に対して十分で
ない場合、当該成分の濃縮により感度の向上を図ること
ができる。その濃縮法の1つとして、イオン交換樹脂な
どの粒状物質に当該成分を吸着させて濃縮する方法があ
る。当該成分を粒状物質に吸着濃縮させたまま発色させ
る、あるいは当該成分を発色させ、発色した成分を粒状
物質に吸着濃縮させた後、粒状物質層を溶液相より分離
し、粒状物質相の吸光度を直接測定することにより当該
成分の定量を行う方法が報告されている(タランタ(T
alanta)第32巻第5号345〜352頁195
8参照)。この方法では濃縮倍率が高く、非常に高感度
な分析が行える。さらに発色した粒状物質量が同じ場
合、光路長が長く、光路断面積が小さくなるように測定
セルに充填することにより感度の改善を図る事ができ
る。
2. Description of the Related Art In various researches and industrial fields, there is a demand for higher sensitivity in the analysis of ultra-trace amounts of components in samples. When the sensitivity of the analyzer is not sufficient for the concentration of the component to be analyzed in the sample, the sensitivity can be improved by concentrating the component. As one of the concentration methods, there is a method of adsorbing the component to a granular substance such as an ion exchange resin and concentrating it. After the component is adsorbed and concentrated on the particulate substance to develop color, or the component is colored and the colored component is adsorbed and concentrated on the granular substance, the granular substance layer is separated from the solution phase, and the absorbance of the granular substance phase is determined. A method for quantifying the component by direct measurement has been reported (Taranta (T
alanta) Vol. 32, No. 5, 345-352, 195
8). This method has a high concentration factor and can perform very sensitive analysis. Further, when the amount of the colored particulate matter is the same, the sensitivity can be improved by filling the measuring cell so that the optical path length is long and the optical path cross-sectional area is small.

【0003】[0003]

【発明が解決しようとする課題】しかしなが、光路長を
長く、光路断面積を小さくすると、粒状物質自体の散乱
により検出器に到達する光量が少なくなり、測定精度が
低下し、図4に示すような市販の吸光光度計では吸光度
測定が困難になることさえある。粒状物質に吸着した成
分の吸光度測定においては粒状物質の充填状態により散
乱の度合いが変化するので、充填状態を補正するために
発色成分の最大吸収波長とは別に発色成分による方法が
取られる。図4の従来の吸光光度計は、白色光源2、レ
ンズ4、モノクロメータ53、ビームスプリッター1
2、ミラー13スリット16,17試料ホルダー21、
参照ホルダー22、光検出器26,27から成り、白色
光源2から発せられた白色光を、モノクロメータ53で
分光し波長を走査することで、上述の2つの波長での吸
光度測定を行なう構成になっている。モノクロメータ5
3を内蔵しているために装置が大型になりポータブル化
しにくく、かつ分光された測定光は波長当たりの強度が
弱く散乱による減光の大きい試料の測定では検出光量が
不足するという欠点を有していた。
However, when the optical path length is made long and the optical path cross-sectional area is made small, the amount of light reaching the detector is reduced due to scattering of the particulate matter itself, and the measurement accuracy is lowered. It may even be difficult to measure the absorbance with a commercially available absorptiometer as shown. In measuring the absorbance of a component adsorbed on a granular substance, the degree of scattering changes depending on the filling state of the granular substance, so a method using a coloring component is used separately from the maximum absorption wavelength of the coloring component to correct the filling state. The conventional absorptiometer of FIG. 4 includes a white light source 2, a lens 4, a monochromator 53, and a beam splitter 1.
2, mirror 13, slits 16, 17 sample holder 21,
The reference holder 22 and the photodetectors 26 and 27 are provided, and the white light emitted from the white light source 2 is dispersed by the monochromator 53 and the wavelength is scanned, whereby the absorbance is measured at the above-mentioned two wavelengths. Has become. Monochromator 5
Since 3 is built in, the device becomes large and it is difficult to make it portable, and there is a drawback that the amount of detected light is insufficient in the measurement of a sample that has weak intensity per wavelength and large extinction due to scattering. Was there.

【0004】本発明の目的はこのような従来技術の欠点
を解消し、散乱による減光の大きい試料でも十分な検出
光量で精度よく測定でき、かつ試料採取場合での測定が
可能な小型でポータブルな吸光光度計とそれを用いた分
析方法を提供することにある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art and to make it possible to accurately measure even a sample having a large amount of light extinction due to scattering with a sufficient amount of light to be detected, and to carry out a measurement when sampling is small and portable. Another object is to provide a simple absorptiometer and an analytical method using the same.

【0005】[0005]

【課題を解決するための手段】本発明の吸光光度計は、
少なくとも1つの白色光を発する光源と、少なくとも1
つの単色光を発する光源と、各光源からの光を交互に試
料に透過させる手段と、試料を透過した光を検出する光
検出器とを少くとも備えたことを特徴する。単色光源と
しては半導体レーザーあるいは発光ダイオードを用い
る。
The absorptiometer of the present invention comprises:
At least one white light source, and at least one
It is characterized in that at least a light source for emitting one monochromatic light, a means for alternately transmitting the light from each light source to the sample, and a photodetector for detecting the light transmitted through the sample are provided. A semiconductor laser or a light emitting diode is used as the monochromatic light source.

【0006】本発明の分析方法は、有色の被測定物質を
吸着剤の吸光度測定において、当該物質の吸収極大波長
付近の単色光を発する光源から発する光を測定光とし
て、白色光源から発する白色光を補正光として、当該測
定光と当該補正光を当該吸着剤に交互に照射し各光源で
の吸光度を測定し、2つの光源での吸光度差を測定値と
して使用し、予め求めてある検量線に基づいて当該吸着
剤に付着した有色物質の濃度を定量することを特徴とす
る。
According to the analysis method of the present invention, in measuring the absorbance of a colored substance to be measured by an adsorbent, white light emitted from a white light source is used as the measurement light, which is light emitted from a monochromatic light having a wavelength near the absorption maximum wavelength of the substance. As the correction light, the measurement light and the correction light are alternately irradiated to the adsorbent to measure the absorbance at each light source, and the difference in absorbance between the two light sources is used as a measurement value to obtain a calibration curve obtained in advance. The concentration of the colored substance attached to the adsorbent is quantified based on

【0007】[0007]

【作用】半導体レーザーなどの波長当たりの出力が大き
い単色光を測定光に、分光しない白色光を補正光に使用
することで、吸着剤自体の散乱による減光が大きく、高
いバックグラウンド吸収に上乗せされた吸光度を測定す
ることになる吸着剤に吸着した有色物質の吸光度測定に
おいて、検出光量の大幅な増加が図れ、測定精度を改善
することができるとともに、光路長を長くすることがで
き感度の改善が図れる。また、分光器を内蔵させないこ
とにより装置の小型化ポータブル化が図れる。
[Function] By using monochromatic light with a large output per wavelength such as a semiconductor laser as the measurement light and non-split white light as the correction light, the extinction due to scattering of the adsorbent itself is large, and it is added to the high background absorption. In the absorbance measurement of the colored substance adsorbed on the adsorbent, which is to measure the absorbance, the detection light amount can be greatly increased, the measurement accuracy can be improved, and the optical path length can be increased to increase the sensitivity. Can be improved. Further, by not incorporating the spectroscope, the device can be made compact and portable.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0009】図1は本発明の一実施例の概略構成図であ
る。図1に示す吸光光度計は、単色光を発する測定光源
1、白色光を発する補正光源2、レンズ4、シャッター
6,7、ハーフミラー11、ビームスプリッター12、
ミラー13、スリット16,17、試料ホルダー21、
参照ホルダー22、光検出器26,27から成ってい
る。単色光を発する測定光源1の波長特性は図2の曲線
Aであり、白色光を発する補正光源2の波長特性は図2
の曲線Bである。被測定物質は発色試薬と共に吸着剤に
吸着させる。被測定物質及び発色試薬を吸着した吸着剤
を測定セルに充填し、試料ホルダー21に装填する。参
照ホルダー22には何も入れない。測定光源1から発せ
られた測定光は補正光の光路上に設置されたハーフミラ
ー11において反射され、ビームスプリッター12にお
いて試料側と参照側に分離される。補正光源2から発せ
られた補正光はレンズ4で収束され、ハーフミラー11
を透過しビームスプリッター12において試料側と参照
側に分離される。分離された光の一方は、スリット1
6、試料ホルダー21を経て光検出器26に達し、他方
はスリット17参照ホルダー22を経て光検出器27に
達する。シャッター6および7は交互に開閉され、シャ
ッター6,7の開閉に同期して光検出器26および27
で透過量が検出される。すなわち、シャッター6の開放
に同期して補正光の透過量が検出され、シャッター7の
開放に同期して測定光の透過量が検出される。透過量
は、光検出器26,27に接続した公知の信号処理回路
(図示省略)にて透過率(試料側透過量/参照側透過
量)に変換され、さらに測定光と補正光における吸光度
(−log透過率)に変換され、最終的に吸着剤の測定
光と補正光での吸光度の差が測定値として出力される。
この測定値と、予め既知濃度の試料を上記と同じ方法で
測定して作成した検量線とを基に未知試料の濃度を定量
する。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention. The absorptiometer shown in FIG. 1 includes a measurement light source 1 that emits monochromatic light, a correction light source 2 that emits white light, a lens 4, shutters 6 and 7, a half mirror 11, a beam splitter 12,
Mirror 13, slits 16 and 17, sample holder 21,
It comprises a reference holder 22 and photodetectors 26, 27. The wavelength characteristic of the measurement light source 1 which emits monochromatic light is the curve A in FIG. 2, and the wavelength characteristic of the correction light source 2 which emits white light is shown in FIG.
Curve B of The substance to be measured is adsorbed on the adsorbent together with the coloring reagent. The measurement cell is filled with an adsorbent that adsorbs the substance to be measured and the color-developing reagent, and is loaded in the sample holder 21. Nothing is put in the reference holder 22. The measurement light emitted from the measurement light source 1 is reflected by the half mirror 11 installed on the optical path of the correction light, and is separated into the sample side and the reference side by the beam splitter 12. The correction light emitted from the correction light source 2 is converged by the lens 4, and the half mirror 11
And is separated into the sample side and the reference side by the beam splitter 12. One of the separated lights is the slit 1
6, reaches the photodetector 26 via the sample holder 21, and the other reaches the photodetector 27 via the slit 17 reference holder 22. The shutters 6 and 7 are alternately opened and closed, and the photodetectors 26 and 27 are synchronized with the opening and closing of the shutters 6 and 7.
The transmission amount is detected at. That is, the transmission amount of the correction light is detected in synchronization with the opening of the shutter 6, and the transmission amount of the measurement light is detected in synchronization with the opening of the shutter 7. The transmission amount is converted into a transmission factor (transmission amount on the sample side / transmission amount on the reference side) by a known signal processing circuit (not shown) connected to the photodetectors 26 and 27, and the absorbance in the measurement light and the correction light ( -Log transmittance), and finally the difference in absorbance between the measurement light of the adsorbent and the correction light is output as a measurement value.
The concentration of the unknown sample is quantified based on this measured value and a calibration curve prepared by previously measuring a sample of known concentration by the same method as described above.

【0010】具体的に上述の実施例について説明する。
水試料中のケイ酸態ケイ素の定量分析において、試料液
にモリブデン酸アンモニウム−硫酸溶液を添加し、モリ
ブデン黄をを発色させ、その後、還元剤としてアスコル
ビン酸を、吸着剤としてセファデックスゲルを添加す
る。モリブデン黄は還元されモリブデン青となりセファ
デックスゲルに吸着される。このゲルを反応平衡溶液と
ともに吸光度測定セルに充填する。800nmの単色光
を発する半導体レーザーを測定光源1に、タングステン
ランプを補正光源2に用いた本発明の吸光光度計の試料
ホルダー21に測定セルを装填し測定光での吸光度と補
正光での吸光度を測定し2つの光源での吸光度差を測定
値に用いる。図3は標準溶液を同じ方法で分析して得ら
れた検量線である。この検量線と測定した吸光度差から
未知試料の濃度を定量する。
The above embodiment will be specifically described.
In the quantitative analysis of silicic acid silicon in a water sample, ammonium molybdate-sulfuric acid solution was added to the sample solution to develop molybdenum yellow, and then ascorbic acid was added as a reducing agent and Sephadex gel was added as an adsorbent. To do. Molybdenum yellow is reduced and becomes molybdenum blue, which is adsorbed on Sephadex gel. This gel is filled in the absorbance measurement cell together with the reaction equilibrium solution. A measurement cell is loaded in the sample holder 21 of the absorptiometer of the present invention in which a semiconductor laser emitting a monochromatic light of 800 nm is used as the measurement light source 1 and a tungsten lamp is used as the correction light source 2, and the absorbance of the measurement light and the absorbance of the correction light are loaded. Is measured and the difference in absorbance between the two light sources is used as the measured value. FIG. 3 is a calibration curve obtained by analyzing the standard solution by the same method. The concentration of the unknown sample is quantified from this calibration curve and the measured absorbance difference.

【0011】[0011]

【発明の効果】以上説明したように本発明の吸光光度計
とこれを用いた分析方法を用いると測定のために光を分
光することがないので、光源からの全光量を試料に照射
でき、検出光量の大幅な試料採取現場において高感度に
精度よく定量分析が行なえる。また、分光用のモノクロ
メータを使用しないので装置の小型化が実現できる。
As described above, when the absorptiometer of the present invention and the analysis method using the same are used, light is not dispersed for measurement, so that the total amount of light from the light source can be applied to the sample, Quantitative analysis can be performed with high sensitivity and accuracy at a sampling site where the amount of detected light is large. Further, since the monochromator for spectroscopy is not used, the device can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸光光度計の一実施例の概略構成図で
ある。
FIG. 1 is a schematic configuration diagram of an embodiment of an absorptiometer of the present invention.

【図2】本発明の吸光光度計に用いる光源の相対エネル
ギーの波長依存性である。
FIG. 2 is a wavelength dependence of relative energy of a light source used in the absorptiometer of the present invention.

【図3】本発明の分析方法の一実施例において得られた
検量線である。
FIG. 3 is a calibration curve obtained in an example of the analysis method of the present invention.

【図4】従来の吸光光度計の概略構成図である。FIG. 4 is a schematic configuration diagram of a conventional absorptiometer.

【符号の説明】[Explanation of symbols]

1 測定光源 2 補正光源 4 レンズ 6,7 シャッター 11 ハーフミラー 12 ビームスプリッター 13 ミラー 21 試料ホルダー 22 参照ホルダー 26,27 光検出器 53 モノクロメータ 16,17 スリット 1 Measurement Light Source 2 Correction Light Source 4 Lens 6,7 Shutter 11 Half Mirror 12 Beam Splitter 13 Mirror 21 Sample Holder 22 Reference Holder 26,27 Photodetector 53 Monochromator 16,17 Slit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1つの白色光を発する光源
と、少なくとも1つの単色光を発する光源と、各光源か
らの光を交互に試料に透過させる手段と、試料を透過し
た光を検出する光検出器とを少くとも備えたことを特徴
とする吸光光度計。
1. A light source that emits at least one white light, a light source that emits at least one monochromatic light, a means for alternately transmitting the light from each light source to a sample, and a light detector for detecting the light transmitted through the sample. An absorptiometer equipped with at least a container.
【請求項2】 上記単色光源が半導体レーザーあるいは
発光ダイオードであることを特徴とする請求項1記載の
吸光光度計。
2. The absorptiometer according to claim 1, wherein the monochromatic light source is a semiconductor laser or a light emitting diode.
【請求項3】 有色の被測定物質を吸着した吸着剤の吸
光度測定において、当該物質の吸収極大波長付近の単色
光を発する光源から光を測定光として、白色光源から発
する白色光を補正光として、当該測定光と当該補正光を
当該吸着剤に交互に照射し各光源での吸光度を測定し、
2つの光源での吸光度差を測定値として使用し、予め求
めてある検量線に基づいて当該吸着剤に付着した有色の
被測定物質の濃度を定量することを特徴とする分析方
法。
3. In the absorbance measurement of an adsorbent that adsorbs a colored substance to be measured, light from a light source that emits monochromatic light near the absorption maximum wavelength of the substance is used as measurement light, and white light emitted from a white light source is used as correction light. , The measurement light and the correction light are alternately irradiated to the adsorbent to measure the absorbance at each light source,
An analytical method characterized in that the difference in absorbance between two light sources is used as a measurement value, and the concentration of a colored substance to be measured adhering to the adsorbent is quantified based on a calibration curve obtained in advance.
JP5056644A 1993-03-17 1993-03-17 Absorptiometer and absorptiometry Pending JPH06273324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5056644A JPH06273324A (en) 1993-03-17 1993-03-17 Absorptiometer and absorptiometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5056644A JPH06273324A (en) 1993-03-17 1993-03-17 Absorptiometer and absorptiometry

Publications (1)

Publication Number Publication Date
JPH06273324A true JPH06273324A (en) 1994-09-30

Family

ID=13033057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5056644A Pending JPH06273324A (en) 1993-03-17 1993-03-17 Absorptiometer and absorptiometry

Country Status (1)

Country Link
JP (1) JPH06273324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014602A (en) * 2007-07-06 2009-01-22 Toshiba Corp Automatic analysis apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842824Y1 (en) * 1968-12-11 1973-12-11
JPS52120431A (en) * 1976-04-03 1977-10-08 Kawai Electric Heater Cartridge heater terminal and method of producing same
JPH0230085A (en) * 1988-03-11 1990-01-31 Murata Mfg Co Ltd Cylindrical heater
JPH0511281Y2 (en) * 1986-12-02 1993-03-19

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842824Y1 (en) * 1968-12-11 1973-12-11
JPS52120431A (en) * 1976-04-03 1977-10-08 Kawai Electric Heater Cartridge heater terminal and method of producing same
JPH0511281Y2 (en) * 1986-12-02 1993-03-19
JPH0230085A (en) * 1988-03-11 1990-01-31 Murata Mfg Co Ltd Cylindrical heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014602A (en) * 2007-07-06 2009-01-22 Toshiba Corp Automatic analysis apparatus

Similar Documents

Publication Publication Date Title
US6320662B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
JP4532905B2 (en) Analytical method and apparatus therefor
JP2879141B2 (en) Concentration measuring device and method
EP2016390B1 (en) A method and a system for quantitative hemoglobin determination
US8189196B2 (en) Self referencing LED detection system for spectroscopy applications
JPH07146295A (en) Immunoanalysis method and device by raman spectral measurement
RU2223479C2 (en) Method and device for analysis of isotope-carrying molecules by absorption spectrum
US7336362B2 (en) Arsenic meter
CA1286222C (en) Method and apparatus for the determination of the antibody content ofblood
EP0771417B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
JPH0666808A (en) Chromogen measurement method
JPH09113450A (en) Adjusting method for detection gas concentration region in gas-concentration detection method
JPH1082740A (en) Infrared gas analyzer
JPH0131583B2 (en)
US5155545A (en) Method and apparatus for the spectroscopic concentration measurement of components in a gas mixture
JPS6394136A (en) Method and instrument for fluorometric analysis
JP4797233B2 (en) Compact sample concentration measuring device
CN104568799A (en) Monochromatic light composited light scanning type luminosity absorption detection system
JPH06273324A (en) Absorptiometer and absorptiometry
Fujiwara et al. Thermal lensing colorimetry of nitrite ion with single-laser system
JP2004085252A (en) Gas analyzer
EP0081947A1 (en) Method and apparatus for normalizing radiometric measurements
Santoso et al. Evaluating of a Super Bright LED as a Spectrophotometer Light Source at The Clinical Laboratory
JPH02129534A (en) Photochromic reaction measuring device
Das et al. Smartphone-Based Photometric Detection of Nitrite Level in Water

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960305