JPH0626872A - Light-interference angular velocity meter having self-diagnosis function - Google Patents

Light-interference angular velocity meter having self-diagnosis function

Info

Publication number
JPH0626872A
JPH0626872A JP11255193A JP11255193A JPH0626872A JP H0626872 A JPH0626872 A JP H0626872A JP 11255193 A JP11255193 A JP 11255193A JP 11255193 A JP11255193 A JP 11255193A JP H0626872 A JPH0626872 A JP H0626872A
Authority
JP
Japan
Prior art keywords
output
self
light
angular velocity
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11255193A
Other languages
Japanese (ja)
Other versions
JP2649310B2 (en
Inventor
Kenichi Okada
健一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP5112551A priority Critical patent/JP2649310B2/en
Publication of JPH0626872A publication Critical patent/JPH0626872A/en
Application granted granted Critical
Publication of JP2649310B2 publication Critical patent/JP2649310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To provide a self-diagnosis function. CONSTITUTION:Light is cast into both edges of an optical fiber coil 15. The light beams, which are propagated as the clockwise light and the counterclockwise light, are outputted and made to interfere. The interference light is converted into the electric signal with a photodetector 17. Both clockwise and counterclockwise lights in the optical fiber 15 undergo phase modulation in a phase modulator 16. The phase-modulation frequency component undergoes synchronous detection in a synchronous detecting circuit 18, and Ko sin DELTAPHI(phase difference DELTAPHI of both lights proportional to input angular velocity) is outputted. Thus, the angular velocity is detected. The output of the photodetector 17 undergoes synchronous detection with the even number order component of the phase modulation frequency. Thus, Kcos.cos DELTAPHIs is outputted from a circuit 25. The circuit gain is adjsuted so as to obtain K=K1=Kcos. The square of Ksin DELTAPHIs and the square of Kcos DELTAPHIs are added in an adder. The output K<2> is made to be the self-diagnosis signal. When the signal is located outside of the specified range, abnormality is judged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、故障等によって機能
・性能が損なわれた時に常時自ら故障を判断する自己診
断機能を有する光干渉角速度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical interference angular velocity meter having a self-diagnosis function of always judging a failure by itself when the function and performance are impaired due to a failure or the like.

【0002】[0002]

【従来の技術】従来の光干渉角速度計(以下FOGと称
す)を図4を参照して説明する。光源11は光源駆動回
路23からの駆動信号に従って光Iを出射する。光源1
1からの光Iは、光カプラ12,偏光子13,光カプラ
14を経て光学路としての光ファイバコイル15の両端
から投入する。光ファイバコイル15を伝搬する右回り
光、左回り光は、光ファイバコイル15の片端と光カプ
ラ14との間に配置した位相変調器16により位相変調
される。位相変調を受けた両光は、光カプラ14で結合
され干渉し再び偏光子13を経て光カプラ12により受
光器17へ分岐される。
2. Description of the Related Art A conventional optical interference angular velocity meter (hereinafter referred to as FOG) will be described with reference to FIG. The light source 11 emits the light I according to the drive signal from the light source drive circuit 23. Light source 1
The light I from 1 passes through the optical coupler 12, the polarizer 13, and the optical coupler 14 and is input from both ends of the optical fiber coil 15 as an optical path. The clockwise light and the counterclockwise light propagating through the optical fiber coil 15 are phase-modulated by a phase modulator 16 arranged between one end of the optical fiber coil 15 and the optical coupler 14. The two lights subjected to the phase modulation are combined by the optical coupler 14, interfere with each other, pass through the polarizer 13 again, and are branched to the light receiver 17 by the optical coupler 12.

【0003】このときの受光器17の出力Vpは、位相
変調信号をP(t) =Asin ωmt とすると、次式で表せ
る。 Vp=(I/2)・Kop・Kpd{1+cosΔΦ(Σεn・(-1)n・J2n(X)・ cos2nωmt’)−sinΔΦ(2Σ(-1)n・J2n+1(X)・cos(2n+1)ωmt’ )} (1) ここで Σはn=0から無限大 t' =t−τ/2 εn =1;n=0,2;n≧1 Kop:光源11からの出射光Iが光ファイバコイル15
を経て受光器17に至るまでの光学的損失 Kpd:光電変換係数や増幅器利得等で決まる定数 I:光源11からの出射光 Io :受光器17に到達する最大光量(Io =Kop
I) Jn :第一種ベッセル関数 X:2Asin πfmτ ΔΦ:光ファイバコイル15における左右両回り光間の
位相差 ωm :位相変調の角周波数(ωm =2πfm) τ:光ファイバコイル15中における光の伝搬時間 受光器17の出力は、同期検波回路18に入力され、そ
こで位相変調周波数と同じ成分すなわち(1)式におけ
る一次成分がクロック回路19からの参照信号を受けて
取り出される。同期検波回路18の出力は、さらにロー
パスフィルタ(LPF)19によって交流成分がろ波さ
れ適切な利得に設定された後、FOG出力として端子2
0に取り出される。
The output V p of the light receiver 17 at this time can be expressed by the following equation, where P (t) = A sin ω m t is the phase modulation signal. V p = (I / 2) ・ K op・ K pd {1 + cos ΔΦ (Σε n・ (-1) n・ J 2n (X) ・ cos 2nω m t ')-sin ΔΦ (2Σ (-1) n・ J 2n + 1 (X) · cos (2n + 1) ω mt ′)} (1) where Σ is from n = 0 to infinity t = t−τ / 2 ε n = 1; n = 0,2; n ≧ 1 K op : The emitted light I from the light source 11 is the optical fiber coil 15
Optical loss after reaching to the light receiver 17 K pd : Constant determined by photoelectric conversion coefficient and amplifier gain I: Light emitted from the light source 11 I o : Maximum light amount reaching the light receiver 17 (I o = K op
I) J n : first-order Bessel function X: 2Asin πfmτ ΔΦ: phase difference between left and right light in the optical fiber coil 15 ω m : angular frequency of phase modulation (ω m = 2πfm) τ: in the optical fiber coil 15 The propagation time of the light in the output of the photodetector 17 is input to the synchronous detection circuit 18, where the same component as the phase modulation frequency, that is, the primary component in the equation (1), is extracted by receiving the reference signal from the clock circuit 19. The output of the synchronous detection circuit 18 is further filtered by an AC component by a low pass filter (LPF) 19 to be set to an appropriate gain, and then output as a FOG output to the terminal 2
It is taken out to 0.

【0004】FOGの出力VO は次式で表される。 VO =I・Kop・Kpd・J1(x)・KA1・sinΔΦ =K1・sinΔΦ (2) KA1:利得 ここで両光間の位相差ΔΦは、光ファイバコイル15に
回転角速度Ωを印加したときに生じるサニャック(sagn
ac) 位相差ΔΦs を示し、次式で表される。
The output V O of the FOG is expressed by the following equation. V O = I · K op · K pd · J 1 (x) · KA 1 · sin ΔΦ = K 1 · sin ΔΦ (2) KA 1: gain Here, the phase difference ΔΦ between the two lights is the rotational angular velocity Ω in the optical fiber coil 15. Sagnac (sagn generated when applied
ac) Indicates the phase difference ΔΦ s and is represented by the following equation.

【0005】 ΔΦs =4πRL・Ω/Cλ (3) ここで C:光速 λ:真空中における光の波長 R:光ファイバコイル15の半径 L:光ファイバコイル15の光ファイバの長さ よってローパスフィルタ19の出力VO を計測すれば、
入力された回転角速度Ωを知ることができる。
ΔΦ s = 4πRL · Ω / Cλ (3) where C: speed of light λ: wavelength of light in vacuum R: radius of optical fiber coil 15 L: length of optical fiber of optical fiber coil 15 If the output V O of 19 is measured,
The input rotational angular velocity Ω can be known.

【0006】なお、クロック回路21から駆動回路22
を通じて変調信号が位相変調器16に印加される。
The clock circuit 21 to the drive circuit 22
The modulation signal is applied to the phase modulator 16 through.

【0007】[0007]

【発明が解決しようとする課題】以上述べたようにFO
Gの各部の機能、性能が正常に作動しているとFOGの
出力V1 を計測すれば入力された回転角速度を知ること
が出来る。ところが従来技術の場合、FOGが異常を起
こし、規定の性能を出せなくなったり、またどこかが故
障して出力が出なくなったり、また異常な電圧が出力さ
れたままになったりするようなことがあってもFOG出
力だけからは、正常なのか異常なのか判断できず、FO
Gを使用しているシステムを危険に陥れる可能性があっ
た。この発明の目的は、常時FOGが正常か異常かを判
断できる光干渉角速度計を提供することにある。
As described above, the FO
If the function and performance of each part of G are operating normally, the input rotational angular velocity can be known by measuring the output V 1 of the FOG. However, in the case of the conventional technology, the FOG may be abnormal, failing to provide the specified performance, or being out of order due to some failure, or having an abnormal voltage output. Even if there is, it cannot be judged from the FOG output whether it is normal or abnormal.
There was a possibility that the system using G could be put in danger. An object of the present invention is to provide an optical interference angular velocity meter that can always determine whether the FOG is normal or abnormal.

【0008】[0008]

【課題を解決するための手段】請求項1の発明によれば
受光器の出力からcosΔΦs 成分を出力する第2出力
手段が設けられ、その第2出力手段の出力が自己診断信
号に利用される。入力角速度が印加された状態でも正し
い自己診断を可能とするためには、以下のようになされ
る。つまり請求項2の発明は請求項1の発明に受光器の
出力からsinΔΦs 成分を出力する第1出力手段から
の出力を2乗する第1乗算手段と、第2出力手段からの
出力を2乗する第2乗算手段と、第1乗算手段の出力と
第2乗算出力を加算する加算手段とが設けられ、その加
算手段の出力を前記自己診断信号として出力する。その
自己診断信号が規定以内かどうか判断する事によりFO
Gが正常か異常かを自己判断できる。
According to the invention of claim 1, second output means for outputting the cos ΔΦ s component from the output of the light receiver is provided, and the output of the second output means is used for the self-diagnosis signal. It In order to enable correct self-diagnosis even when the input angular velocity is applied, the following is done. In other words, the invention of claim 2 is the same as the invention of claim 1, in which the output from the first photodetector outputs the sin ΔΦ s component from the first output means to the power of 2 and the output from the second output means to 2 Second multiplication means for multiplying and addition means for adding the output of the first multiplication means and the second multiplication output are provided, and the output of the addition means is output as the self-diagnosis signal. FO is judged by judging whether the self-diagnosis signal is within the regulation.
It is possible to judge whether G is normal or abnormal.

【0009】請求項3の発明は請求項2の発明の加算手
段の出力を平方根手段で平方根がとられて前記自己診断
信号とされる。請求項4の発明は請求項1の発明の第1
出力手段の出力が乗算手段で2乗され、その出力と第2
出力手段の出力とが所定の比率で加算手段で加算される
前記自己診断信号とされる。
According to a third aspect of the present invention, the output of the adding means of the second aspect is squared by the square root means to obtain the self-diagnosis signal. The invention of claim 4 is the first of the invention of claim 1.
The output of the output means is squared by the multiplying means, and the output and the second
The self-diagnosis signal is added to the output of the output means at a predetermined ratio by the addition means.

【0010】請求項5の発明は請求項1の発明の第1出
力手段の出力の絶対値が絶対値手段により求められ、そ
の絶対値と第2出力手段の出力とが所定の比率で加算手
段で加算されて前記自己診断信号とされる。請求項6の
発明は前記各発明の自己診断信号が規定範囲以内か以外
かの判断が自己判断手段でなされる。
According to the invention of claim 5, the absolute value of the output of the first output means of the invention of claim 1 is obtained by the absolute value means, and the absolute value and the output of the second output means are added at a predetermined ratio. Is added to obtain the self-diagnosis signal. In the invention of claim 6, the self-determination means determines whether or not the self-diagnosis signal of each invention is within a specified range.

【0011】[0011]

【実施例】図1にこの発明による光干渉角速度計の実施
例を示し、図4と対応する部分に同一符号を付けてあ
る。受光器17からの出力の内、cosΔΦs 成分をc
osΔΦs 成分出力回路25によって取り出すと、その
出力Vcos は次式で表される。
1 shows an embodiment of an optical interference angular velocity meter according to the present invention, in which parts corresponding to those in FIG. 4 are designated by the same reference numerals. Of the output from the light receiver 17, the cos ΔΦ s component is c
When taken out by the osΔΦ s component output circuit 25, its output Vcos is expressed by the following equation.

【0012】 Vcos =Kcos ・cosΔΦs (4) ここでVcos は、位相変調周波数の偶数次成分を同期検
波し取り出したり、またバンドパスフィルタで抽出した
偶数次成分を整流回路を利用して取り出したりして得る
ことが出来る。また例えば第一種ベッセル関数の変数X
の値が4.20の位置で位相変調を動作させて、その時
の位相変調周波数の2倍波成分と4倍波成分とを取り出
し、それぞれを1:2.06の比率で加算し、その出力
をVcosとするなど、2つ以上のcos成分を所定の比
率で加算した信号を用いても良い。
Vcos = KcoscosΔΦ s (4) Here, Vcos is obtained by synchronously detecting and extracting even-order components of the phase modulation frequency, or by taking out even-order components extracted by a bandpass filter using a rectifier circuit. You can get it. Also, for example, the variable X of the Bessel function of the first type
The phase modulation is operated at the position of 4.20, the 2nd harmonic component and the 4th harmonic component of the phase modulation frequency at that time are extracted, and each is added at a ratio of 1: 2.06, and the output is obtained. Vcos may be used, and a signal obtained by adding two or more cos components at a predetermined ratio may be used.

【0013】ここで回転角速度ΩがFOGに入力されて
ない状態では、ΔΦs =0であり、(2)式で表した光
干渉角速度計の出力はゼロとなる。従ってこの出力から
は、FOGの性能が正常か異常かを判断することが出来
ない。一方(4)式で示したVcos の出力は、cosΔ
Φs =1となり、最大値を示す。従ってFOGに入力が
印加されてない状態でも、この出力Vcos を自己診断出
力信号としてこれが規定の値以内かどうか点検すれば、
FOGが正常かどうか判断することが出来る。
Here, when the rotational angular velocity Ω is not input to the FOG, ΔΦ s = 0 and the output of the optical interference angular velocity meter expressed by the equation (2) becomes zero. Therefore, it cannot be judged from this output whether the FOG performance is normal or abnormal. On the other hand, the output of Vcos shown in equation (4) is cos Δ
Φ s = 1 and shows the maximum value. Therefore, even if no input is applied to the FOG, if this output Vcos is used as a self-diagnosis output signal and it is checked whether it is within the specified value,
It is possible to judge whether the FOG is normal.

【0014】尚(2)式における比例係数K1 と(4)
式における比例係数Kcos とは比例関係にあり、従って
Vcos をモニタすれば、FOG出力V0 の正常か異常か
の判断が出来る。ただしそれぞれの信号に含まれるベッ
セル係数が一定に制御されていることが条件となる。例
えば受光器17の出力から位相変調周波数の2倍波成分
と、4倍波成分とを取出し、両成分のレベルが等しくな
るように制御する。
The proportional coefficient K 1 in the equation (2) and (4)
There is a proportional relationship with the proportional coefficient Kcos in the equation, and therefore, by monitoring Vcos, it can be determined whether the FOG output V 0 is normal or abnormal. However, the condition is that the Bessel coefficient included in each signal is controlled to be constant. For example, the second harmonic component and the fourth harmonic component of the phase modulation frequency are extracted from the output of the light receiver 17 and controlled so that the levels of both components are equal.

【0015】Vcos を自己診断信号とする方法は、入力
角速度Ωが印加されると出力が変化するため、精度の良
い自己診断は出来ないが、FOGが機能しているかどう
かの簡便な方法として利用できる。精度の良い自己診断
を可能とするには図2Aに示すように出力V0 と出力V
cos とをそれぞれ乗算器27、28で自乗し、その両自
乗出力を加算器29で加算する。加算器29の出力V01
は、次式で表される。
The method of using Vcos as a self-diagnosis signal does not allow accurate self-diagnosis because the output changes when the input angular velocity Ω is applied, but it is used as a simple method for determining whether the FOG is functioning. it can. To enable accurate self-diagnosis, output V 0 and output V 0
The cos and the square are respectively multiplied by the multipliers 27 and 28, and the squared outputs thereof are added by the adder 29. Output V 01 of adder 29
Is expressed by the following equation.

【0016】V01=V0 2+Vcos2 ここで初期設定においてK=K1 =Kcos となるように
回路利得などが調整されているとすると、 V01=K2 ・(cos2 ΔΦs +sin2 ΔΦs ) =K2 (5) となり、V01は入力角速度に影響されない。従って入力
角速度が印加されている状態でもFOGの性能が規定値
以内であるかどうか自己診断することが出来る。また図
2Aに点線で示すように、加算器29の出力側に平方根
回路31を分岐接続し、出力V01の平方根を自己診断出
力としても同様の効果がある。この場合の平方根回路3
1の出力V01′はKとなる。
V 01 = V 0 2 + Vcos 2 If the circuit gain and the like are adjusted so that K = K 1 = Kcos in the initial setting, V 01 = K 2 · (cos 2 ΔΦ s + sin 2 ΔΦ s ) = K 2 (5), and V 01 is not affected by the input angular velocity. Therefore, even when the input angular velocity is applied, it is possible to self-diagnose whether the performance of the FOG is within the specified value. Further, as shown by a dotted line in FIG. 2A, the same effect can be obtained by branching and connecting the square root circuit 31 to the output side of the adder 29 and using the square root of the output V 01 as the self-diagnosis output. Square root circuit 3 in this case
The output V 01 ′ of 1 becomes K.

【0017】図2Bに示すように、出力V0 を乗算器2
7で自乗し、その出力を増幅器34でKa 倍した信号
と、出力Vcos とを加算器29で加算する。加算器29
の出力V02は次式で表される。 V02=Vcos +Ka ・V0 2 (6) ここで初期設定においてK=K1 2=Kcos と成るように
回路利得などが調整されているとすると V02=K・(cosΔΦs +Ka ・sin2 ΔΦs )(7) となる。これは、(7)式からも明らかなように位相差
ΔΦs の発生によるcosΔΦs 成分の減少分を、si
2 ΔΦs 成分で補正するようにしたもので、Ka を調
整し補正量を加減することにより入力角速度による自己
診断信号の性能劣化を補正できる。図3Aは位相差ΔΦ
s と自己診断信号との関係を示すグラフで位相差ΔΦs
=0の状態を基準としてそこからの偏差を百分率で表し
ている。この図によれば、位相差ΔΦs が45°以内の
範囲においてKa の値がほぼ0.57のとき最も誤差の
最大値が小さい。
As shown in FIG. 2B, the output V 0 is multiplied by the multiplier 2
A signal obtained by squaring 7 and multiplying the output by Ka in the amplifier 34 and the output Vcos are added by the adder 29. Adder 29
Output V 02 is expressed by the following equation. V 02 = Vcos + Ka · V 0 2 (6) If the circuit gain and the like are adjusted so that K = K 1 2 = Kcos in the initial setting, then V 02 = K · (cos ΔΦ s + Ka · sin 2) ΔΦ s ) (7). As is clear from the equation (7), this is because the decrease amount of the cos ΔΦ s component due to the occurrence of the phase difference ΔΦ s is si
The correction is made with the n 2 ΔΦ s component, and the performance deterioration of the self-diagnosis signal due to the input angular velocity can be corrected by adjusting Ka and adjusting the correction amount. Figure 3A shows the phase difference ΔΦ
In the graph showing the relationship between s and the self-diagnosis signal, the phase difference ΔΦ s
The deviation from that is expressed as a percentage based on the condition of = 0. According to this figure, the maximum error is smallest when the value of Ka is approximately 0.57 in the range where the phase difference ΔΦ s is within 45 °.

【0018】図2Cに示すように、出力V0 を増幅器3
7でKb 倍の絶対値にした信号と出力Vcos と加算器2
9で加算する。加算器29の出力V03は次式で表され
る。 V03=Vcos +Kb ・|V0 | (8) ここで初期設定においてK=K1 =Kcos となるように
回路利得などが調整されているとすると V01=K・(cosΔΦs +Kb ・|sinΔΦs |)(9) となる。これは、(9)式からも明らかなように位相差
ΔΦs の発生によるcosΔΦs 成分の減少分を、si
nΔΦs 成分で補正するようにしたもので、Kb を調整
し補正量を加減することにより入力角速度による自己診
断信号の性能劣化を補正できる。図3Bは位相差ΔΦs
と自己診断信号との関係を示すグラフで位相差ΔΦs
0の状態を基準としてそこからの偏差を百分率で表して
いる。この図によれば、位相差ΔΦs が25°以内の範
囲においてKb の値がほぼ0.19のとき最も誤差の最
大値が小さい。この方式は、図2Bに示した方式に比べ
自己診断信号の精度が劣るが、簡便であり低精度のFO
G用などに利用できる。
As shown in FIG. 2C, the output V 0 is fed to the amplifier 3
Signal with absolute value of Kb times 7 and output Vcos and adder 2
Add 9 The output V 03 of the adder 29 is expressed by the following equation. V 03 = V cos + Kb · | V 0 | (8) If the circuit gain and the like are adjusted so that K = K 1 = K cos in the initial setting, then V 01 = K · (cos ΔΦ s + Kb · | sin ΔΦ s |) (9). As is clear from the equation (9), this is because the decrease in the cos ΔΦ s component due to the occurrence of the phase difference ΔΦ s is
The correction is made with the nΔΦ s component, and the deterioration of the performance of the self-diagnosis signal due to the input angular velocity can be corrected by adjusting Kb and adjusting the correction amount. FIG. 3B shows the phase difference ΔΦ s
And the self-diagnosis signal, the phase difference ΔΦ s =
The deviation from the 0 state is expressed as a percentage. According to this figure, the maximum error is smallest when the value of Kb is approximately 0.19 in the range where the phase difference ΔΦ s is within 25 °. This method is inferior to the method shown in FIG. 2B in the accuracy of the self-diagnosis signal, but is simple and has low accuracy.
It can be used for G etc.

【0019】前記各種の自己診断信号が規定値以内であ
るかどうかを判断する機能は、自己診断信号の理想値に
対して正及び負のレベルを設定し、そのレベル以内であ
れば例えば論理値“0”を送出し、そのレベル以外であ
れば論理値“1”を発生するようなウインドコンパレー
タ等で容易に達成できる。この機能は、FOGを使用す
る親装置に設けてもよいが、FOG内部に設けても良
い。以上の説明の中の演算はハードウェア的にも構成で
き、又sinΔΦs成分やcosΔΦs 成分をA/D変
換しコンピュータやDSP等によってソフト的に構成す
ることも可能である。
The function of judging whether or not the various self-diagnosis signals are within prescribed values sets positive and negative levels with respect to the ideal value of the self-diagnosis signal. This can be easily achieved by a window comparator or the like which sends out "0" and generates a logical value "1" except for the level. This function may be provided in the parent device that uses the FOG or may be provided inside the FOG. The calculation in the above description can be configured by hardware, or can be configured by software such as a computer or DSP by A / D converting the sin ΔΦ s component or the cos ΔΦ s component.

【0020】[0020]

【発明の効果】以上説明したようにこの発明によれば、
FOGに自己診断機能を付加することにより、FOGの
作動中常時FOGが所定の性能を達成できなくなった
り、又故障等によって性能機能が損なわれたときに自ら
異常、故障を判断したり、また自己診断のための信号レ
ベルを送出することにより、そのFOGを使用している
親装置を危険な状態から回避することが出来る。
As described above, according to the present invention,
By adding the self-diagnosis function to the FOG, the FOG cannot always achieve the specified performance during the operation of the FOG, or when the performance function is impaired due to a failure, etc. By sending out the signal level for diagnosis, the parent device using the FOG can be avoided from a dangerous state.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the invention of claim 1;

【図2】Aは請求項2及び3の発明の実施例の要部を示
すブロック図。Bは請求項4の発明の実施例の要部を示
すブロック図、Cは請求項5の発明の実施例の要部を示
すブロック図である。
FIG. 2A is a block diagram showing a main part of an embodiment of the invention of claims 2 and 3; B is a block diagram showing an essential part of the embodiment of the invention of claim 4, and C is a block diagram showing an essential part of the embodiment of the invention of claim 5.

【図3】Aは請求項4の発明の実施例における位相差Δ
Φs に対する自己診断信号の誤差を示すグラフ、Bは請
求項5の発明の実施例における位相差ΔΦs に対する自
己診断信号の誤差を示すグラフである。
FIG. 3A is a phase difference Δ in the embodiment of the invention of claim 4;
6 is a graph showing the error of the self-diagnosis signal with respect to Φ s , and B is a graph showing the error of the self-diagnosis signal with respect to the phase difference ΔΦ s in the embodiment of the invention of claim 5.

【図4】従来の光干渉角速度計を示すブロック図。FIG. 4 is a block diagram showing a conventional optical interference angular velocity meter.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一周する光学路と、その光学
路に対して右回り光及び左回り光を通す分岐手段と、そ
の光学路を伝搬してきた右回り光及び左回り光を干渉さ
せる干渉手段と、前記分岐手段と前記光学路の一端との
間にこれらと縦続的に配置されて右回り光及び左回り光
に位相変調を与える位相変調手段と、前記干渉光の光強
度を電気信号として検出する受光器と、その受光器から
の出力の内、sinΔΦs (ΔΦs :前記右回り光及び
左回り光の位相差)成分を出力する第1出力手段とを有
する光干渉角速度計において、前記受光器からの出力の
内、cosΔΦs 成分を出力する第2出力手段を設けた
ことを特徴とする自己診断機能を有する光干渉角速度
計。
1. An optical path that makes at least one round, branching means for passing clockwise light and counterclockwise light to the optical path, and interference means for interfering the clockwise light and counterclockwise light propagating through the optical path. A phase modulating means that is disposed between the branching means and one end of the optical path in cascade to apply a phase modulation to the clockwise light and the counterclockwise light; and the light intensity of the interference light as an electric signal. In an optical interference gyro having a photodetector for detection and a first output means for outputting a sin ΔΦ s (ΔΦ s : phase difference between the clockwise light and the counterclockwise light) component of the output from the photodetector, An optical interference angular velocity meter having a self-diagnosis function, characterized in that a second output means for outputting a cos ΔΦ s component of the output from the light receiver is provided.
【請求項2】 前記第1出力手段からの出力を2乗する
第1乗算手段と、前記第2出力手段からの出力を2乗す
る第2乗算手段と、前記第1乗算手段の出力と前記第2
乗算出力を加算して前記自己診断信号として出力する加
算手段を設けたことを特徴とする請求項1記載の自己診
断機能を有する光干渉角速度計。
2. A first multiplication means for squaring an output from the first output means, a second multiplication means for squaring an output from the second output means, an output of the first multiplication means and the Second
2. An optical interference angular velocity meter having a self-diagnosis function according to claim 1, further comprising addition means for adding multiplication outputs and outputting as the self-diagnosis signal.
【請求項3】 前記加算手段からの出力の平方根を前記
自己診断信号として出力する平方根手段を設けたことを
特徴とする請求項2記載の自己診断機能を有する光干渉
角速度計。
3. An optical interference angular velocity meter having a self-diagnosis function according to claim 2, further comprising a square root means for outputting the square root of the output from said adding means as said self-diagnosis signal.
【請求項4】 前記第1出力手段からの出力を2乗する
乗算手段と、その乗算手段からの出力と前記第2出力手
段からの出力とを所定の比率で加算して前記自己診断信
号として出力加算手段を設けたことを特徴とする請求項
1記載の自己診断機能を有する光干渉角速度計。
4. The multiplication means for squaring the output from the first output means, and the output from the multiplication means and the output from the second output means are added at a predetermined ratio to obtain the self-diagnosis signal. An optical interference angular velocity meter having a self-diagnosis function according to claim 1, further comprising output adding means.
【請求項5】 前記第1出力手段からの出力の絶対値を
得る絶対値手段と、前記絶対値手段の出力と前記第2出
力手段からの出力とを所定の比率で加算して前記自己診
断信号として出力する加算手段を設けたことを特徴とす
る請求項1記載の自己診断機能を有する光干渉角速度
計。
5. The self-diagnosis by adding an absolute value means for obtaining an absolute value of the output from the first output means and an output of the absolute value means and an output from the second output means at a predetermined ratio. The optical interference angular velocity meter having a self-diagnosis function according to claim 1, further comprising an adding means for outputting as a signal.
【請求項6】 前記自己診断信号が規定の範囲以内かま
たは範囲以外かを判断できる自己判断手段を有すること
を特徴とする請求項1乃至5の何れかに記載の自己診断
機能を有する光干渉角速度計。
6. An optical interference device having a self-diagnosis function according to claim 1, further comprising a self-determination means capable of determining whether the self-diagnosis signal is within a prescribed range or out of a prescribed range. Angular velocimeter.
JP5112551A 1992-05-15 1993-05-14 Optical interference gyro with self-diagnosis function Expired - Fee Related JP2649310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5112551A JP2649310B2 (en) 1992-05-15 1993-05-14 Optical interference gyro with self-diagnosis function

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12345092 1992-05-15
JP4-123450 1992-05-15
JP5112551A JP2649310B2 (en) 1992-05-15 1993-05-14 Optical interference gyro with self-diagnosis function

Publications (2)

Publication Number Publication Date
JPH0626872A true JPH0626872A (en) 1994-02-04
JP2649310B2 JP2649310B2 (en) 1997-09-03

Family

ID=26451684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5112551A Expired - Fee Related JP2649310B2 (en) 1992-05-15 1993-05-14 Optical interference gyro with self-diagnosis function

Country Status (1)

Country Link
JP (1) JP2649310B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545892A (en) * 1994-09-01 1996-08-13 Litton Systems, Inc. Gyro sensor coil with low-friction hub interface
JP2008521374A (en) * 2004-11-18 2008-06-19 ドン・エナジー・セールス・アンド・ディストリビューション・アクティーゼルスカブ Compensation for a simple fiber optic Faraday effect sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128225A (en) * 1986-11-19 1988-05-31 Hitachi Ltd Modulation type optical fiber gyroscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128225A (en) * 1986-11-19 1988-05-31 Hitachi Ltd Modulation type optical fiber gyroscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545892A (en) * 1994-09-01 1996-08-13 Litton Systems, Inc. Gyro sensor coil with low-friction hub interface
JP2008521374A (en) * 2004-11-18 2008-06-19 ドン・エナジー・セールス・アンド・ディストリビューション・アクティーゼルスカブ Compensation for a simple fiber optic Faraday effect sensor
JP4869245B2 (en) * 2004-11-18 2012-02-08 パワーセンス・アクティーゼルスカブ Compensation for a simple fiber optic Faraday effect sensor

Also Published As

Publication number Publication date
JP2649310B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
US8085407B2 (en) Resonator optical gyroscope having input beam modulation optimized for high sensitivity and low bias
CN110319827B (en) light source relative intensity noise self-adaptive suppression device for fiber optic gyroscope
WO2006095620A1 (en) Photo-sensor and photo-current/voltage sensor
JPH0680405B2 (en) Light fiber gyro
JP4052676B2 (en) Backscattering error reduction device for interference optical fiber gyroscope
JPH02300623A (en) Signal processor for optical fiber gyro
EP0568105B1 (en) Optical interferometric angular rate meter with a self diagnostic capability
US5412472A (en) Optical-interference type angular velocity or rate sensor having an output of improved linearity
JP2649310B2 (en) Optical interference gyro with self-diagnosis function
JPH11287659A (en) Optical fiber gyro having failure self-diagnostic function
JPH11108669A (en) Optical fiber gyro
EP0569993B1 (en) Optical-interference-type angular rate sensor
JP2722013B2 (en) Single-stage demodulator using reference signal phase fluctuation method
JP2578045B2 (en) Optical interference angular velocity meter
JP2514529B2 (en) Optical interference gyro
JP2514528B2 (en) Optical interference gyro with self-diagnosis function
JP2514532B2 (en) Optical interference gyro
JP2739191B2 (en) Optical interference angular velocity meter
JP2548072B2 (en) Optical interference gyro
JPH04270913A (en) Optical interference angular velocity meter
JP2557658B2 (en) Optical interference gyro
JPS5988665A (en) Light applied magnetic field sensor
JPH05340760A (en) Optical fiber gyro
JP2739193B2 (en) Timing generation circuit for optical interference gyro
JPS61235719A (en) Fiber interferometer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970311

LAPS Cancellation because of no payment of annual fees