JPH06264213A - Titanium-based thin-film-coated metallic member - Google Patents

Titanium-based thin-film-coated metallic member

Info

Publication number
JPH06264213A
JPH06264213A JP5199293A JP5199293A JPH06264213A JP H06264213 A JPH06264213 A JP H06264213A JP 5199293 A JP5199293 A JP 5199293A JP 5199293 A JP5199293 A JP 5199293A JP H06264213 A JPH06264213 A JP H06264213A
Authority
JP
Japan
Prior art keywords
layer
thickness
titanium
film
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5199293A
Other languages
Japanese (ja)
Inventor
Yoshiharu Konno
義治 今野
Tomoshige Tsutao
友重 蔦尾
Shingo Obara
慎吾 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5199293A priority Critical patent/JPH06264213A/en
Publication of JPH06264213A publication Critical patent/JPH06264213A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop a Ti-based thin-film-coated metallic member excellent in adhesion, sliding properties and hardness by forming a TiC layer or a TiCN layer on the surface of a metallic member through a metallic Ti substrate and a TiN intermediate layer. CONSTITUTION:On the surface of a metallic member such as carbon steel, stainless steel or the like, a metallic Ti layer having 0.1 to 1mum thickness is formed as a substrate by an ion plating method, and on its surface, a TiN layer having 1 to 3mum thickness is formed as an intermediate layer by an ion plating method. Finally, a surface layer constituted of a TiC layer or a TiCN layer having 0.1 to 5mum thickness is formed by an ion plating method. The Ti series thin film coated metallic member excellent in adhesion, sliding properties and hardness can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば工具や金型等の
金属部材表面に密着性と摺動性の良好な皮膜を形成し、
耐磨耗性の向上を図ったチタン系薄膜被覆金属部材に関
するものである。
BACKGROUND OF THE INVENTION The present invention forms a film having good adhesion and slidability on the surface of a metal member such as a tool or die,
The present invention relates to a titanium-based thin film-coated metal member having improved wear resistance.

【0002】[0002]

【従来の技術】従来から、工具や金型等の金属部材表面
に、耐磨耗性向上の目的で、イオンプレーティング法を
用いてチタン化合物薄膜を被覆することが行なわれてい
る。窒化チタン(以下TiNと記す)は、密着力は良好
であるが、摺動性や硬度が低い。一方、炭窒化チタン
(以下TiCNと記す)や炭化チタン(以下TiCと記
す)は、摺動性や硬度は高いが密着力が劣る。
2. Description of the Related Art Conventionally, the surface of a metal member such as a tool or a mold has been coated with a titanium compound thin film by an ion plating method for the purpose of improving wear resistance. Titanium nitride (hereinafter referred to as TiN) has good adhesion, but has low slidability and hardness. On the other hand, titanium carbonitride (hereinafter referred to as TiCN) and titanium carbide (hereinafter referred to as TiC) have high slidability and hardness, but have poor adhesion.

【0003】そこで、上記両者の欠点を克服するため
に、金属部材表面に下地層としてTi層を被覆し、表面
層としてTiCまたはTiCN層を被覆したり(特開昭
62−290861号)、下地層としてTiNを被覆
し、表面層としてTiCまたはTiCNを被覆すること
(特開昭56−29670号)が提案されている。
Therefore, in order to overcome the above-mentioned drawbacks, the surface of the metal member is coated with a Ti layer as an underlayer and the surface layer is coated with a TiC or TiCN layer (JP-A-62-290861). It has been proposed to coat TiN as a ground layer and TiC or TiCN as a surface layer (JP-A-56-29670).

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの被覆
方法ではいずれも、金属部材表面と薄膜の密着性が10
〜30N(ニュートン)程度と低く、工具や金型等の過
酷な使用条件では、耐磨耗性という点で不十分である。
However, in any of these coating methods, the adhesion between the surface of the metal member and the thin film is 10%.
It is as low as about 30 N (Newton), and is insufficient in terms of abrasion resistance under severe usage conditions such as tools and molds.

【0005】本発明の目的は、上記の点に鑑み、密着性
が高くしかも摺動性や硬度に優れたチタン系薄膜被覆金
属部材を提供することにある。
In view of the above points, an object of the present invention is to provide a titanium-based thin film-coated metal member having high adhesion and excellent slidability and hardness.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成すべく工夫されたもので、金属部材表面にTiCN層
またはTiC層を被覆するためには、その下地層として
Ti層を、また中間層としてTiN層をそれぞれ被覆す
ることが効果的であるという知見を得て完成されたもの
である。
The present invention has been devised in order to achieve the above object. To cover the surface of a metal member with a TiCN layer or a TiC layer, a Ti layer is used as an underlayer, and This has been completed with the knowledge that it is effective to coat each of the TiN layers as an intermediate layer.

【0007】すなわち、本発明によるチタン系薄膜被覆
金属部材は、金属部材表面に下地層として0.1〜1μ
m厚の金属チタン層を被覆し、その上に中間層として1
〜3μm厚の窒化チタン層を被覆し、さらにその上に表
面層として0.1〜5μm厚の炭窒化チタン層もしくは
炭化チタン層を被覆してなるものである。
That is, in the titanium-based thin film-coated metal member according to the present invention, 0.1 to 1 μm is provided as an underlayer on the surface of the metal member.
m titanium metal layer is coated on top of which as an intermediate layer 1
A titanium nitride layer having a thickness of ˜3 μm is coated, and a titanium carbonitride layer or a titanium carbide layer having a thickness of 0.1-5 μm is further coated thereon as a surface layer.

【0008】金属部材の材質としては、特に限定される
ものではなく、例えば炭素鋼、ステンレス鋼、クロムモ
リブデン鋼、ニッケルクロムモリデブン鋼、熱間ダイス
鋼、時効硬化型合金鋼、銅合金、アルミニウム合金、亜
鉛合金等が挙げられる。
The material of the metal member is not particularly limited, and examples thereof include carbon steel, stainless steel, chrome molybdenum steel, nickel chrome molybdenum steel, hot die steel, age hardening alloy steel, copper alloy, and aluminum. An alloy, a zinc alloy, etc. are mentioned.

【0009】金属部材と薄膜の密着力を向上させるに
は、下地層としてTi層を、中間層としてTiN層をそ
れぞれ形成することが好適であり、その密着力は40〜
60Nである。層厚については、下地層のTi層厚が
0.1μm以下または中間層のTiN層厚が1μm以下
であれば、十分な密着力が得られず、逆に、下地層のT
i層厚が1μm以上であると十分な硬度が得られず、中
間層のTiN層厚が3μm以上であると、残留応力によ
り密着力が低下する。
In order to improve the adhesion between the metal member and the thin film, it is preferable to form a Ti layer as the underlayer and a TiN layer as the intermediate layer, and the adhesion is 40 to 40.
It is 60N. Regarding the layer thickness, if the Ti layer thickness of the underlayer is 0.1 μm or less or the TiN layer thickness of the intermediate layer is 1 μm or less, sufficient adhesion cannot be obtained.
If the i-layer thickness is 1 μm or more, sufficient hardness cannot be obtained, and if the TiN layer thickness of the intermediate layer is 3 μm or more, the residual stress reduces the adhesion.

【0010】TiCまたはTiCNは、TiNに比べ表
面硬度が高くしかも摩擦係数が低い、すなわち摺動性に
優れている。そのため、さらに表面層としてTiC層ま
たはTiCN層を被覆することにより、密着力、表面硬
度、摺動性に優れた金属部材を作製することができる。
表面層の層厚は、0.1μm以下では十分な表面硬度が
得られず、5μm以上になると残留応力により基材が変
形したり剥離が生じる。表面層の層厚はより好ましくは
0.5〜3μmである。
TiC or TiCN has a higher surface hardness and a lower friction coefficient than TiN, that is, it is excellent in slidability. Therefore, by further coating the TiC layer or the TiCN layer as the surface layer, a metal member having excellent adhesion, surface hardness and slidability can be manufactured.
When the thickness of the surface layer is 0.1 μm or less, sufficient surface hardness cannot be obtained, and when it is 5 μm or more, the base material is deformed or peeled off due to residual stress. The layer thickness of the surface layer is more preferably 0.5 to 3 μm.

【0011】セラミックス皮膜(下地層、中間層および
表面層)の形成は、好ましくはイオンプレーティング法
によって行われる。
The formation of the ceramic film (underlayer, intermediate layer and surface layer) is preferably carried out by an ion plating method.

【0012】イオンプレーティング法は、真空中で薄膜
を構成する金属を蒸発させ、さらにその蒸発粒子をイオ
ン化し、負電圧に印加された部材上に蒸着皮膜を形成
し、また、必要に応じて、イオン化した金属を反応性ガ
ス(例えば、形成したい皮膜が窒化物の場合は窒素ガ
ス、炭化物の場合はメタンガス、アセチレンガス等の炭
化水素ガス、炭窒化物の場合は窒素ガスと炭化水素ガス
の混合ガス)と、負電圧に印加された部材上で反応さ
せ、皮膜を形成するものである。イオンプレーティング
法としては、特に限定されるものではなく、従来から公
知の方法が使用できる。例えば、アーク放電法、直流放
電法、中空陰極放電法(以下HCD法という)、高周波
励起法(以下RF法という)等の方式がある。アーク放
電法、HCD法およびRF法は、複雑な表面形状のもの
にセラミックス皮膜を形成できる点で、好ましい。な
お、これら各方式の相違点は、金属の蒸発方法および蒸
発粒子のイオン化方法が異なっている点にある。
In the ion plating method, the metal forming the thin film is evaporated in a vacuum, and the evaporated particles are ionized to form a vapor deposition film on the member applied with a negative voltage, and if necessary, , Reactive gas of ionized metal (for example, nitrogen gas when the film to be formed is nitride, hydrocarbon gas such as methane gas or acetylene gas when carbide, nitrogen gas and hydrocarbon gas when carbonitride is used) The mixed gas) reacts on a member applied with a negative voltage to form a film. The ion plating method is not particularly limited, and conventionally known methods can be used. For example, there are methods such as an arc discharge method, a direct current discharge method, a hollow cathode discharge method (hereinafter referred to as HCD method), and a high frequency excitation method (hereinafter referred to as RF method). The arc discharge method, the HCD method and the RF method are preferable in that a ceramic film can be formed on a surface having a complicated surface shape. The difference between these methods is that the evaporation method of metal and the ionization method of evaporated particles are different.

【0013】上記のいずれかの方法を用い、チタン系薄
膜を形成させるプロセスは以下の通りである。
The process for forming a titanium-based thin film using any of the above methods is as follows.

【0014】まず、チタン系薄膜の被覆を施すべき基材
としての金属部材(以下基材という)が汚れていると、
基材と薄膜の密着力が低下する等の不具合が生じるの
で、予め基材をよく洗浄しておく。
First, when a metal member (hereinafter referred to as a base material) as a base material to be coated with a titanium-based thin film is dirty,
Since a problem such as a decrease in the adhesive force between the base material and the thin film occurs, the base material is thoroughly washed beforehand.

【0015】次に、基材および金属チタンを真空容器内
に置き、十分な真空度が得られた後、真空容器内にアル
ゴンガス等の不活性ガスを導入し、基材に負電圧を印加
することによりボンバード処理を行ない、基材の表面を
清浄にしておくことが好ましい。
Next, the base material and metallic titanium are placed in a vacuum container, a sufficient degree of vacuum is obtained, and then an inert gas such as argon gas is introduced into the vacuum container to apply a negative voltage to the base material. By doing so, it is preferable to perform the bombarding treatment and clean the surface of the base material.

【0016】次に、基材を加熱するとともに真空容器内
を所定の真空度に減圧し、その後、金属チタンを蒸発さ
せ、さらにその蒸発粒子をイオン化する。イオン化電流
値は、高すぎても低すぎても硬度が低下するので、所要
値に適宜設定する。基材に負電圧を印加しながら、まず
下地層としてTi層を0.1〜1μm厚に形成する。次
に、窒素ガスを導入し、中間層として1〜3μm厚のT
iN層を形成する。さらに表面層としてTiC層を形成
する場合、アセチレンガスやメタンガス等の炭素含有ガ
スを導入し、TiCNを形成する場合、炭素含有ガスと
窒素ガスの混合ガスを導入し、表面層を0.1〜5μm
厚に形成する。
Next, the substrate is heated and the inside of the vacuum container is depressurized to a predetermined degree of vacuum, after which the metallic titanium is evaporated and the evaporated particles are ionized. The hardness of the ionization current value decreases if the ionization current value is too high or too low. Therefore, the ionization current value is appropriately set to a required value. While applying a negative voltage to the base material, a Ti layer is first formed as a base layer to a thickness of 0.1 to 1 μm. Next, nitrogen gas is introduced to form an intermediate layer having a thickness of 1 to 3 μm.
An iN layer is formed. Further, when forming a TiC layer as a surface layer, a carbon-containing gas such as acetylene gas or methane gas is introduced, and when forming TiCN, a mixed gas of a carbon-containing gas and a nitrogen gas is introduced to form a surface layer having a thickness of 0.1 to 0.1%. 5 μm
It is formed thick.

【0017】上記プロセスにおいて、基材の加熱温度
は、低くなると得られるセラミックス皮膜と基材との密
着性が低下し、高くなると基材が変形するので、200
〜800℃が好ましい。真空容器内の圧力は、高くなる
と得られるセラミックス皮膜に不純物が混入して皮膜の
硬度が低下するので、5×10-5Torr以下が好まし
い。なお、反応圧力は、用いるイオンプレーティングの
方式および形成するセラミックス皮膜の種類によって異
なるが、反応圧力が高すぎても低すぎても蒸発粒子のイ
オン化が不十分となるとともに、得られるセラミックス
皮膜の硬度が低下するので、アーク放電法およびRF法
の場合は1×10-5〜5×10-3Torrが好ましく、
直流放電法の場合は5×10-4〜1×10-2Torrが
好ましく、HCD法の場合は1×10-5〜3×10-3
orrが好ましい。そして、これらの反応圧力範囲内に
おいて、反応圧力のより好ましい範囲が、形成するセラ
ミックス皮膜の種類に応じて適宜決定される。例えば、
アーク放電法およびHCD法によるTiN皮膜もしくは
TiC皮膜の場合は5×10-5〜1×10-3Torrで
ある。
In the above process, when the heating temperature of the base material is lowered, the adhesion between the obtained ceramic film and the base material is lowered, and when it is increased, the base material is deformed.
~ 800 ° C is preferred. When the pressure in the vacuum container is increased, impurities are mixed into the obtained ceramic film and the hardness of the film is reduced, so that the pressure is preferably 5 × 10 −5 Torr or less. The reaction pressure varies depending on the type of ion plating used and the type of ceramic film to be formed, but if the reaction pressure is too high or too low, ionization of the vaporized particles will be insufficient and the resulting ceramic film Since hardness decreases, in the case of the arc discharge method and the RF method, 1 × 10 −5 to 5 × 10 −3 Torr is preferable,
In the case of the direct current discharge method, 5 × 10 −4 to 1 × 10 −2 Torr is preferable, and in the case of the HCD method, 1 × 10 −5 to 3 × 10 −3 T.
orr is preferred. Then, within these reaction pressure ranges, a more preferable range of the reaction pressure is appropriately determined according to the type of the ceramic film to be formed. For example,
In the case of the TiN film or the TiC film formed by the arc discharge method and the HCD method, it is 5 × 10 −5 to 1 × 10 −3 Torr.

【0018】また、基材に印加する直流電圧は、用いる
イオンプレーティングの方式および形成するセラミック
ス皮膜の種類によって大きく異なり、基材に印加する直
流電圧が大きすぎても小さすぎても得られる皮膜の硬度
が大きく変化するので、その好適範囲が、イオンプレー
ティングの方式および皮膜の種類に応じて適宜決定され
る。例えば、アーク放電法によるTiN層もしくはTi
C層の場合は、印加電圧は−200〜−800Vであ
り、HCD法によるTiN層もしくはTiC層の場合
は、−10〜−300Vである。
Further, the DC voltage applied to the base material greatly differs depending on the method of ion plating used and the type of ceramic coating formed, and a film obtained when the DC voltage applied to the base material is too large or too small. Since the hardness of No. 1 changes greatly, its suitable range is appropriately determined according to the type of ion plating and the type of film. For example, TiN layer or Ti by arc discharge method
In the case of the C layer, the applied voltage is -200 to -800V, and in the case of the TiN layer or the TiC layer by the HCD method, the applied voltage is -10 to -300V.

【0019】[0019]

【作用】本発明によれば、下地層としてTi層を、また
中間層としてTiN層をそれぞれ被覆することにより、
表面層としてのTiCN層またはTiC層の基材への密
着性を良好ならしめることができる。
According to the present invention, by coating the Ti layer as the underlayer and the TiN layer as the intermediate layer,
Adhesion of the TiCN layer or the TiC layer as the surface layer to the base material can be improved.

【0020】また、表面層としてのTiCN層またはT
iC層により表面硬度および摺動性を向上させることが
できる。
Further, a TiCN layer or T as a surface layer
The iC layer can improve surface hardness and slidability.

【0021】[0021]

【実施例】以下、本発明を具体的に説明するため、その
実施例を示す。
EXAMPLES Examples will be shown below to specifically explain the present invention.

【0022】実施例1 基材として高速度鋼(SKH51)製の13mm×13
mm×5mmの小片を使用し、下記の方法で13mm×
13mmの面に被覆を行なった。
Example 1 13 mm × 13 made of high speed steel (SKH51) as a base material
Use a small piece of 5 mm x 5 mm and 13 mm x according to the following method
The 13 mm surface was coated.

【0023】前処理として、基材をアセトン中で20分
間超音波洗浄した。その後、基材と金属Tiを真空容器
内に置き、真空容器内を2×10-5Torrになるまで
真空にすると同時に、基材を500℃まで加熱した。次
に、真空容器内にアルゴンガスを導入し、基材に−50
0Vの負電圧を印加し、20分間ボンバード処理を行っ
た。
As a pretreatment, the substrate was ultrasonically cleaned in acetone for 20 minutes. Then, the base material and metal Ti were placed in a vacuum container, and the interior of the vacuum container was evacuated to 2 × 10 −5 Torr, and at the same time, the base material was heated to 500 ° C. Next, an argon gas was introduced into the vacuum container to -50 the substrate.
A negative voltage of 0 V was applied and a bombarding process was performed for 20 minutes.

【0024】その後、上記負電圧印加の下で金属Tiを
蒸発させ、イオン化電流値を20Aに設定し、操作時間
5分で下地層として0.5μmのTi層を被覆させた。
After that, the metal Ti was evaporated under the application of the negative voltage, the ionization current value was set to 20 A, and a Ti layer of 0.5 μm was coated as an underlayer for 5 minutes of the operation time.

【0025】次に、全圧が7×10-4Torrになるよ
うに真空容器内に窒素ガスを導入し、操作時間15分間
で中間層として1.5μmのTiN層を形成させた。
Next, nitrogen gas was introduced into the vacuum vessel so that the total pressure was 7 × 10 -4 Torr, and a TiN layer of 1.5 μm was formed as an intermediate layer in the operating time of 15 minutes.

【0026】最後に、全圧が7×10-4Torrになる
ように真空容器内にアセチレンガスを導入し、操作時間
10分間で表面層として1.0μmのTiCを形成させ
る。層厚は蛍光X線膜厚測定機で測定した。密着力は薄
膜にダイヤモンドコーンを連続的に荷重し、剥離すると
きの重さ(臨界荷重)により測定した。また、硬度はビ
ッカース硬度を50gの荷重で測定した。摩擦係数は、
相手材にSUJ2ボールを用い、1Nの荷重で10mm
/secの速度で試料を回転半径3mmで1000回転
させ、その時の摩擦係数を測定した。以上の薄膜の積層
状態を後述の実施例2および比較例1〜6の積層状態と
共に表1に示し、得られた薄膜の上記の測定結果を後述
の実施例2および比較例1〜6の結果と共に表2に示し
た。
Finally, acetylene gas was introduced into the vacuum vessel so that the total pressure was 7 × 10 -4 Torr, and TiC of 1.0 μm was formed as a surface layer in the operating time of 10 minutes. The layer thickness was measured with a fluorescent X-ray film thickness meter. The adhesive force was measured by the weight (critical load) when a diamond cone was continuously loaded on the thin film and peeled off. The hardness was measured by Vickers hardness with a load of 50 g. The coefficient of friction is
SUJ2 ball is used as the mating material and 10 mm with a load of 1N
The sample was rotated 1000 times at a rotation radius of 3 mm at a speed of / sec, and the friction coefficient at that time was measured. The laminated state of the above thin films is shown in Table 1 together with the laminated states of Example 2 and Comparative Examples 1 to 6 described below, and the above measurement results of the obtained thin film are the results of Example 2 and Comparative Examples 1 to 6 described below. The results are shown in Table 2.

【0027】実施例2 表面層の形成において、アセチレンガスの代わりに、全
圧が7×10-4Torrになるようにアセチレンガスと
窒素ガスの1対1の混合ガスを導入し、操作時間10分
間で1.0μmのTiCNを形成させた以外、実施例1
と同様の操作を行った。
Example 2 In the formation of the surface layer, instead of acetylene gas, a 1: 1 mixed gas of acetylene gas and nitrogen gas was introduced so that the total pressure was 7 × 10 −4 Torr, and the operating time was 10 Example 1 except that 1.0 μm TiCN was formed in a minute.
The same operation was performed.

【0028】比較例1 操作時間15分間で下地層として1.5μmのTi層
を、操作時間15分間で中間層として1.5μmのTi
N層を、操作時間10分間で表面層として1.0μmの
TiCN層をそれぞれ形成させた以外、実施例2と同様
の操作を行った。 比較例2 操作時間30秒間で下地層として0.05μmのTi層
を、操作時間15分間で中間層として1.5μmのTi
N層を、操作時間10分間で表面層として1.0μmの
TiCN層をそれぞれ形成させた以外、実施例2と同様
の操作を行った。
Comparative Example 1 A Ti layer having a thickness of 1.5 μm was used as an underlayer for 15 minutes, and a Ti layer having a thickness of 1.5 μm was used as an intermediate layer for an operation time of 15 minutes.
The same operation as in Example 2 was performed, except that a TiCN layer having a thickness of 1.0 μm was formed as a surface layer on the N layer as an operation layer for 10 minutes. Comparative Example 2 A Ti layer having a thickness of 0.05 μm was used as an underlayer when the operation time was 30 seconds, and a Ti layer having a thickness of 1.5 μm was used as an intermediate layer when the operation time was 15 minutes.
The same operation as in Example 2 was performed, except that a TiCN layer having a thickness of 1.0 μm was formed as a surface layer on the N layer as an operation layer for 10 minutes.

【0029】比較例3 操作時間5分間で下地層として0.5μmのTi層を、
操作時間35分間で中間層として3.5μmのTiN層
を、操作時間10分間で表面層として1.0μmのTi
CN層をそれぞれ形成させた以外、実施例2と同様の操
作を行った。
Comparative Example 3 A Ti layer having a thickness of 0.5 μm was used as an underlayer for 5 minutes.
A TiN layer of 3.5 μm was used as an intermediate layer at an operation time of 35 minutes, and a TiN layer of 1.0 μm was used as a surface layer at an operation time of 10 minutes.
The same operation as in Example 2 was performed except that each CN layer was formed.

【0030】比較例4 操作時間5分間で下地層として0.5μmのTi層を、
操作時間5分間で中間層として0.5μmのTiN層
を、操作時間10分間で表面層として1.0μmのTi
CN層をそれぞれ形成させた以外、実施例2と同様の操
作を行った。
Comparative Example 4 A Ti layer having a thickness of 0.5 μm was used as a base layer after operating for 5 minutes.
A TiN layer having a thickness of 0.5 μm was used as an intermediate layer for 5 minutes, and a TiN layer having a thickness of 1.0 μm was used as a surface layer for a duration of 10 minutes.
The same operation as in Example 2 was performed except that each CN layer was formed.

【0031】比較例5 操作時間5分間で下地層として0.5μmのTi層を、
操作時間15分間で中間層として1.5μmのTiN層
を、操作時間70分間で表面層として7.0μmのTi
CN層をそれぞれ形成させた以外、実施例2と同様の操
作を行った。
Comparative Example 5 A Ti layer having a thickness of 0.5 μm was used as an underlayer for 5 minutes.
A TiN layer having a thickness of 1.5 μm was used as an intermediate layer at an operation time of 15 minutes, and a TiN layer having a thickness of 7.0 μm was used as a surface layer at an operation time of 70 minutes.
The same operation as in Example 2 was performed except that each CN layer was formed.

【0032】比較例6 操作時間5分間で下地層として0.5μmのTi層を、
操作時間15分間で中間層として1.5μmのTiN層
を、操作時間30秒間で表面層として0.05μmのT
iCN層をそれぞれ形成させた以外、実施例2と同様の
操作を行った。
Comparative Example 6 A Ti layer having a thickness of 0.5 μm was used as an underlayer for 5 minutes.
A TiN layer having a thickness of 1.5 μm was used as an intermediate layer at an operation time of 15 minutes, and a T layer having a thickness of 0.05 μm was used as a surface layer at an operation time of 30 seconds.
The same operation as in Example 2 was performed except that each iCN layer was formed.

【表1】 [Table 1]

【表2】 表1から明らかなように、本発明に属する実施例の各チ
タン系薄膜被覆金属部材はいずれも、密着力と表面硬度
に優れたものである。
[Table 2] As is clear from Table 1, each of the titanium-based thin film-coated metal members of the examples belonging to the present invention is excellent in adhesion and surface hardness.

【0033】[0033]

【発明の効果】本発明によれば、下地層としてTi層
を、また中間層としてTiN層をそれぞれ被覆すること
により、表面層としてのTiCN層またはTiC層の基
材への密着性を良好ならしめることができる。
According to the present invention, by coating the Ti layer as the underlayer and the TiN layer as the intermediate layer, respectively, the adhesion of the TiCN layer or the TiC layer as the surface layer to the substrate can be improved. Can be tightened.

【0034】また、表面層としてのTiCN層またはT
iC層により表面硬度および摺動性を向上させることが
できる。
Also, a TiCN layer or T as a surface layer
The iC layer can improve surface hardness and slidability.

【0035】したがって、本発明によるチタン系薄膜を
工具や金型等の金属部材表面に形成することにより、密
着力および表面硬度を増強し、寿命を延長し、摺動性を
向上させることができる。
Therefore, by forming the titanium-based thin film according to the present invention on the surface of a metal member such as a tool or a mold, the adhesion and the surface hardness can be enhanced, the life can be extended, and the slidability can be improved. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属部材表面に下地層として0.1〜1
μm厚の金属チタン層を被覆し、その上に中間層として
1〜3μm厚の窒化チタン層を被覆し、さらにその上に
表面層として0.1〜5μm厚の炭窒化チタン層もしく
は炭化チタン層を被覆してなるチタン系薄膜被覆金属部
材。
1. A 0.1 to 1 as an underlayer on the surface of a metal member.
A metallic titanium layer having a thickness of μm is coated, a titanium nitride layer having a thickness of 1 to 3 μm is coated thereon as an intermediate layer, and a titanium carbonitride layer or a titanium carbide layer having a thickness of 0.1 to 5 μm is further coated thereon as a surface layer. A titanium-based thin film-coated metal member obtained by coating.
JP5199293A 1993-03-12 1993-03-12 Titanium-based thin-film-coated metallic member Pending JPH06264213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5199293A JPH06264213A (en) 1993-03-12 1993-03-12 Titanium-based thin-film-coated metallic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5199293A JPH06264213A (en) 1993-03-12 1993-03-12 Titanium-based thin-film-coated metallic member

Publications (1)

Publication Number Publication Date
JPH06264213A true JPH06264213A (en) 1994-09-20

Family

ID=12902357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5199293A Pending JPH06264213A (en) 1993-03-12 1993-03-12 Titanium-based thin-film-coated metallic member

Country Status (1)

Country Link
JP (1) JPH06264213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1226911A2 (en) * 2001-01-29 2002-07-31 Ngk Insulators, Ltd. Method of manufacturing honeycomb extrusion die and die manufactured according to this method
JP2007533853A (en) * 2004-04-20 2007-11-22 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method for depositing a high melting point metal carbide layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1226911A2 (en) * 2001-01-29 2002-07-31 Ngk Insulators, Ltd. Method of manufacturing honeycomb extrusion die and die manufactured according to this method
EP1226911A3 (en) * 2001-01-29 2004-01-07 Ngk Insulators, Ltd. Method of manufacturing honeycomb extrusion die and die manufactured according to this method
US6723448B2 (en) 2001-01-29 2004-04-20 Ngk Insulators, Ltd. Method of manufacturing honeycomb extrusion die and die manufactured according to this method
JP2007533853A (en) * 2004-04-20 2007-11-22 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method for depositing a high melting point metal carbide layer
JP4868534B2 (en) * 2004-04-20 2012-02-01 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method for depositing a high melting point metal carbide layer

Similar Documents

Publication Publication Date Title
Helmersson et al. Adhesion of titanium nitride coatings on high‐speed steels
JPH04311569A (en) Hard multilayered film assembled body and its manufacture
US8372524B2 (en) Coated article
JP2816786B2 (en) Al-Ti-based or Al-Ta-based wear-resistant hard film and method for producing the same
JP3453033B2 (en) Coating member and method of manufacturing the same
CN110423989A (en) A kind of preparation method of the hard DLC film of low residual stress
US9249499B2 (en) Coated article and method for making same
JP4122387B2 (en) Composite hard coating, method for producing the same, and film forming apparatus
Zhitomirsky et al. Vacuum arc deposition of metal/ceramic coatings on polymer substrates
JP4231686B2 (en) Cr-based nitride and carbide-coated sliding member
Leu et al. Diamond-like coatings prepared by the filtered cathodic arc technique for minting application
US20070128826A1 (en) Article with multilayered coating and method for manufacturing same
JPH06264213A (en) Titanium-based thin-film-coated metallic member
JP2004238696A (en) Dlc coating film
JP3034241B1 (en) Method of forming high hardness and high adhesion DLC film
JPH07109561A (en) Chromium nitride film coated substrate
JP3693316B2 (en) Manufacturing method of covering member
JP2001192206A (en) Method for manufacturing amorphous carbon-coated member
Sridharan et al. Ion beam enhanced deposition of titanium-nitride on INCONEL 718
JP3260156B2 (en) Method for producing diamond-coated member
JP2006169614A (en) Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member
JPH06248420A (en) Hard film coated member
JPS63195260A (en) Coating material and its production
JPH07150337A (en) Production of nitride film
JPH05125521A (en) Sliding material and its manufacture