JPH0626247U - Semiconductor heat treatment equipment - Google Patents

Semiconductor heat treatment equipment

Info

Publication number
JPH0626247U
JPH0626247U JP6850392U JP6850392U JPH0626247U JP H0626247 U JPH0626247 U JP H0626247U JP 6850392 U JP6850392 U JP 6850392U JP 6850392 U JP6850392 U JP 6850392U JP H0626247 U JPH0626247 U JP H0626247U
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
reaction
heat treatment
gas introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6850392U
Other languages
Japanese (ja)
Inventor
良治 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Fukui Shin Etsu Quartz Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Fukui Shin Etsu Quartz Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd, Fukui Shin Etsu Quartz Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP6850392U priority Critical patent/JPH0626247U/en
Publication of JPH0626247U publication Critical patent/JPH0626247U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 半導体熱処理装置において、反応室内におい
て多数枚のウエハに均質な被膜生成を可能とする反応ガ
スの導入システムを有する半導体熱処理装置を提供す
る。 【構成】 ガス排気系2と、ガス導入系1と、前記二つ
の系を一端と他端とに持つ反応室3と、該反応室内に適
当間隔を隔てて積層配設された複数の被処理ウエハ6を
載置する支持ボ−ド5とよりなる半導体熱処理装置にお
いて、前記ガス導入系1は、複数のガスボンベ11と、
複数のマスコントロ−ラMFCよりなるガス制御系13
と、該制御系により流量規制をされ且つ混合された反応
ガスを前記反応室3にむけ断続パルス波状に送り出す制
御弁14と、該制御弁の開閉制御をするガス導入制御系
15とより構成する。
(57) [Summary] [Object] To provide a semiconductor heat treatment apparatus having a reaction gas introduction system capable of forming a uniform film on a large number of wafers in a reaction chamber. A gas exhaust system 2, a gas introduction system 1, a reaction chamber 3 having the two systems at one end and the other end, and a plurality of treatment targets stacked in the reaction chamber at appropriate intervals. In a semiconductor heat treatment apparatus including a support board 5 on which a wafer 6 is placed, the gas introduction system 1 includes a plurality of gas cylinders 11,
Gas control system 13 consisting of multiple mass control MFCs
And a control valve 14 for sending a mixed reaction gas whose flow rate is regulated by the control system to the reaction chamber 3 in the form of an intermittent pulse wave, and a gas introduction control system 15 for controlling the opening and closing of the control valve. ..

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、例えば反応ガス相互の化学反応または反応ガスと基板との化学反応 により半導体ウエハその他の基板上に酸化膜や絶縁膜、エピ膜等を生成する化学 的気相成長装置(熱型CVD)や酸化拡散炉等の半導体熱処理装置に係わり、特 に多数枚の基板に均質な被膜生成を可能とする反応ガスの導入システムを有する 半導体熱処理装置に関する。 The present invention is, for example, a chemical vapor deposition apparatus (thermal CVD) that forms an oxide film, an insulating film, an epi film, etc. on a semiconductor wafer or other substrate by a chemical reaction between reaction gases or a chemical reaction between a reaction gas and a substrate. ), An oxidation diffusion furnace, and the like, and particularly to a semiconductor heat treatment apparatus having a reaction gas introduction system that enables uniform film formation on a large number of substrates.

【0002】[0002]

【従来の技術】[Prior art]

従来より、図3に示す、ガス導入系25とガス排気系2とを一端と他端側とに 持ち、且つ周囲に高周波誘導加熱体等のヒ−タブロック4を持ち、内部に多数枚 の半導体ウエハ6を適当間隔を隔てて積層配設する支持ボ−ド5を収容する反応 室3よりなる、縦型半導体熱処理装置ないし図示してない横型半導体熱処理装置 が、前記化学的気相成長装置や酸化拡散炉として多用されている。 Conventionally, as shown in FIG. 3, a gas introduction system 25 and a gas exhaust system 2 are provided at one end and the other end side, and a heater block 4 such as a high frequency induction heating body is provided in the periphery, and a large number of sheets are provided inside. A vertical semiconductor heat treatment apparatus or a horizontal semiconductor heat treatment apparatus (not shown) comprising a reaction chamber 3 accommodating a support board 5 in which semiconductor wafers 6 are laminated at appropriate intervals is the chemical vapor deposition apparatus. Also widely used as an oxidation diffusion furnace.

【0003】 前記ガス導入系25は、原料ガス、キャリアガス、ド−ピングガスや乾燥酸素 や乾燥窒素等をそれぞれ内蔵する複数のガスボンベ11と、該ボンベを使用に先 立ち開閉する手動弁12と、前記ガスボンベ11からのガス流量を調整規制する 複数のマスコントロ−ラMFCを持つガス制御系13とよりなる。 また、前記ガス排気系2は、真空ポンプ20と、廃ガス処理系21とより構成 されている。 然して、前記半導体熱処理装置が前記減圧熱型CVD装置として使用する場合 は、反応室3内にキャリアガスH2をガス導入系25を介して流しながら、反応 室3をガス排気系2の真空ポンプ20により1〜10torr前後の減圧下に置 き、ヒ−タブロック4により前記反応室3を加熱して所定温度(1100〜12 00℃)に維持させたのち、前記H2ガス内に原料ガスとド−ピングガスを所定 割合で混入した反応ガスを前記ガス導入系25より反応室3に導入して、半導体 ウエハ上にエピ層、導電層、絶縁層等の成膜をするようにしている。The gas introduction system 25 includes a plurality of gas cylinders 11 each containing a raw material gas, a carrier gas, a doping gas, dry oxygen, dry nitrogen, etc., and a manual valve 12 for opening and closing the cylinders before use. It comprises a gas control system 13 having a plurality of mass controller MFCs for adjusting and regulating the gas flow rate from the gas cylinder 11. The gas exhaust system 2 comprises a vacuum pump 20 and a waste gas treatment system 21. However, when the semiconductor heat treatment apparatus is used as the reduced pressure thermal CVD apparatus, the carrier chamber H2 is caused to flow through the gas introduction system 25 while the reaction chamber 3 is evacuated to the vacuum pump 20 of the gas exhaust system 2. After heating the reaction chamber 3 to a predetermined temperature (1100 to 1200 ° C.) by heating the reaction chamber 3 with a heater block 4, the raw material gas and the gas are added to the H 2 gas. A reaction gas mixed with a ping gas in a predetermined ratio is introduced into the reaction chamber 3 from the gas introduction system 25 to form an epi layer, a conductive layer, an insulating layer and the like on a semiconductor wafer.

【0004】 そして、これら広義のCVD装置は、処理量の増大化、処理ウエハの大口径化 、膜質及び膜厚分布の均一化の要求の増大につれ装置の大型化の傾向にある。[0007] These CVD apparatuses in a broad sense tend to be large in size as the processing amount increases, the diameter of a processing wafer increases, and the demands for uniform film quality and film thickness distribution increase.

【0005】 しかしながら、上記従来技術によれば、反応室と同軸上にウエハを適当間隔を あけて積層配設する構成を取るため、反応室上端より導入された反応ガスは、前 記ウエハの配設面と直角方向(軸線方向)に流れ、反応室3の下端側のガス排気 系2より排出される。そのため、 ウエハ6の上面への反応ガスの回り込みが不充分になること、 導入側間近かのウエハは常に新しい反応ガスに接触し、排気側のウエハは使用 済みのガスに接触することになり、導入側と排気側とではウエハに接触するガス 濃度が異なること、 反応室3の反応空間のガス濃度は場所によつて一定でないこと、 等によりウエハ生成膜の膜質、膜厚の不均一を起こす欠陥を持っていた。However, according to the above-mentioned prior art, since the wafers are stacked and arranged coaxially with the reaction chamber at appropriate intervals, the reaction gas introduced from the upper end of the reaction chamber is distributed in the wafer. It flows in a direction perpendicular to the installation surface (axial direction) and is discharged from the gas exhaust system 2 on the lower end side of the reaction chamber 3. Therefore, the reaction gas does not sufficiently flow around the upper surface of the wafer 6, the wafer near the introduction side is always in contact with the new reaction gas, and the wafer on the exhaust side is in contact with the used gas. Since the gas concentration in contact with the wafer is different between the introduction side and the exhaust side, the gas concentration in the reaction space of the reaction chamber 3 is not constant depending on the location, and the like, the film quality of the wafer-formed film and the film thickness become uneven. Had a flaw.

【0006】 そのため、 特開平1−302815においては、反応室軸芯に沿って積層配設してあるウ エハに平行する反応ガス流を流す複数の吹き出し口を持つ複数本のガス導入管を 反応室軸芯に平行に設け、且つ公転ないし自転させること、及び前記積層配設し てあるウエハを積層軸を軸芯として回動させるようにして、ウエハ表面に接触す るガス濃度分布の均一化を図る。 特開平2−58825においては、縦型減圧CVD装置において、気相成長中 に適当間隔を隔てて積層配設されたウエハ群を反応室軸方向に上下させて、縦方 向の温度差やガス流の流れの差によるウエハ内の成長膜厚のバラツキの削減を図 る。 特開平3−19324においては、ガス導入管を内蔵する複数の支柱でウエハ を適当間隔に積層配設し、各段のウエハ面に反応ガスを放出できるように、各段 に吹き出し口を設け、ウエハ支持ボ−トの支柱により阻害されていたガス流の歪 みを除去しウエハ上に成長される成膜の膜厚、抵抗値のバラツキの削減を図る。 特開平3−184326においては、適当間隔をあけて積層配設してある各ウ エハ面方向のガス流を形成する反応ガスの吹き出し口と排出孔とを設け、且つ前 記積層配設してあるウエハを積層配設軸を中心に回動させて、ウエハ面内の膜厚 の均一化を図る。 等の諸提案が、ウエハ表面に接触するガス濃度の均一化を目途としてなされて いる。Therefore, in JP-A-1-302815, a plurality of gas introduction pipes having a plurality of outlets for flowing a reaction gas flow parallel to the wafer, which are stacked along the reaction chamber axis, are used. Uniformity of the gas concentration distribution in contact with the wafer surface by being provided in parallel with the chamber axis and revolving or rotating, and by rotating the stacked wafers with the stack axis as the axis. Plan. In Japanese Patent Laid-Open No. 2-58825, in a vertical low-pressure CVD apparatus, a group of wafers stacked at appropriate intervals during vapor phase growth is moved up and down in the axial direction of a reaction chamber to obtain a temperature difference and a gas in the vertical direction. We aim to reduce the variation in the film thickness grown on the wafer due to the difference in the flow. In Japanese Patent Laid-Open No. 19324/1993, the wafers are stacked and arranged at appropriate intervals by a plurality of columns containing a gas introduction pipe, and blowing holes are provided in each stage so that the reaction gas can be discharged to the wafer surface of each stage. The distortion of the gas flow, which was obstructed by the support of the wafer support boat, is removed to reduce the variation in the film thickness and resistance of the film grown on the wafer. In Japanese Patent Laid-Open No. 3-184326, there are provided a reaction gas outlet and a discharge hole for forming a gas flow in the direction of each wafer, which are laminated at appropriate intervals, and are laminated as described above. A certain wafer is rotated around the stacking arrangement axis to make the film thickness uniform within the wafer surface. Various proposals have been made with the aim of making the gas concentration in contact with the wafer surface uniform.

【0007】[0007]

【考案が解決しようとする課題】[Problems to be solved by the device]

上記提案のうち、 ウエハの前記積層配設軸を回動軸とする回動は、ウエハの大口径化と多層積層 化に伴う支持ボ−トの大型化により、高温処理中における構成器材の脆弱化が心 配され、ウエハの衝突破損及びパ−ティクルの発生の問題を内蔵している。 また、反応ガスの吹き出し口を積層配設されたウエハ周縁部に対面可能に延設 して、反応ガスを積層配設されたウエハ群の縁面に対応する多数箇所より分散導 入して多方向に散布する方法は、前記ウエハ表面に接触するガス濃度の均一化へ の一手段であっても、そのようにして形成された雰囲気ガスは不連続性を持ち、 完全なものとは言いがたいものがあある。 本考案は、上記事項に鑑みなされたもので、 半導体熱処理装置において、反応室内において多数枚のウエハに均質な被膜生 成を可能とする反応ガスの導入システムを有する半導体熱処理装置の提供を目的 とするものである。 Among the above proposals, the rotation of the wafer about the stacking axis is a fragile component during high temperature processing due to the increase in the diameter of the wafer and the increase in the size of the support boat accompanying the multilayer stacking. The problem of wafer damage due to collision and particle generation is built in. In addition, a reaction gas outlet is extended so as to be able to face the peripheral edge of the stacked wafers, and the reaction gas is dispersed and introduced from a number of locations corresponding to the edge of the stacked wafer group. Although the method of spraying in the direction is one means for making the gas concentration in contact with the wafer surface uniform, the atmosphere gas thus formed has discontinuity and is not perfect. I have something I want. The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor heat treatment apparatus having a reaction gas introduction system that enables a uniform film formation on a large number of wafers in a reaction chamber. To do.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

本考案はかかる技術的課題を達成するために、従来構造において兼ねてから指 摘されてきたところの、反応室の軸方向に適当間隔を隔てて積層配設されたウエ ハの各表面への反応ガスの回り込みを確実にするとともに、部分的な反応ガスの 滞留を防止し常に新鮮なガスとの置換を可能とし、結果としてウエハ表面に接触 するガス濃度の均一化を図るようにするため、反応ガスをパルス状に断続的に反 応室へ導入し、導入され反応ガスにガス排気系の減圧機能と相俟って波動的流れ 込みを誘起させ、その結果反応ガスのウエハ表面への確実な回り込みと接触を図 るとともに、部分的滞留を防止して常に新鮮なガスとの接触を可能にしたもので ある。 即ち、反応室へ反応ガスを導入するガス導入系において、 原料ガス、キャリアガス、ド−ピングガスや乾燥酸素、乾燥窒素等を内蔵する 複数のガスボンベより所要のガスをマスコントロ−ラMFCよりなるガス制御系 により、流量規制され混合された反応ガスを断続的に開閉してパルス波状に送り 出すようにした制御弁と、該制御弁の開閉制御をするガス導入制御系とを設ける ようにしたことを特徴とするものである。 In order to achieve the above technical problems, the present invention has been used for the purpose of achieving the above technical problems. In order to ensure that the reaction gas wraps around and to prevent partial retention of the reaction gas, it is possible to constantly replace it with fresh gas, and as a result, to make the gas concentration in contact with the wafer surface uniform. The reaction gas is intermittently introduced into the reaction chamber in a pulsed manner, and in combination with the decompression function of the gas exhaust system, the reaction gas is introduced to induce wave inflow, and as a result, the reaction gas is reliably transferred to the wafer surface. In addition to wraparound and contact, it prevents partial retention and allows constant contact with fresh gas. That is, in the gas introduction system for introducing the reaction gas into the reaction chamber, the required gas is supplied from a plurality of gas cylinders containing raw material gas, carrier gas, doping gas, dry oxygen, dry nitrogen, etc. The control system is provided with a control valve that intermittently opens and closes the mixed reaction gas whose flow rate is regulated and sends it out in the form of a pulse wave, and a gas introduction control system that controls the opening and closing of the control valve. It is characterized by.

【0009】[0009]

【作用】[Action]

上記技術手段により、反応ガスの反応室への導入に際して、従来のMFCより なるガス制御系により各原料ガスボンベより適宜流量規制された原料ガスを混合 しつつ反応ガスとして定常状態で流し込む代わりに、前記ガス導入制御系により 予め設定された最適の時間当たりの開閉回数、即ち開閉パルス数とデュ−ティサ イクルの下に制御弁である電磁弁を断続的に作動させ、パルス状に断続導入を図 っているため、反応室の一端より導入された反応ガスは、反応室全面に拡散して 団塊状の雰囲気ガスを形成しつつ、適当間隔を隔てて積層配設されたウエハ群を 波動的に包み込み、その波動的エネルギ−により反応ガスに充分な内部拡散を起 こさせ、反応ガスをして各ウエハ間への流入を余儀なくさせている。 その結果、従来見られたガスの部分的滞留はなくなり、パルス波毎に新鮮なガ スとの置換が可能となり、各ウエハは新鮮で且つ濃度一様な反応ガスに接触する ことが出来る。 When the reaction gas is introduced into the reaction chamber by the above technical means, instead of mixing the raw material gas whose flow rate is appropriately regulated from each raw material gas cylinder by the conventional gas control system of the MFC and pouring it as the reaction gas in a steady state, The gas introduction control system presets the optimal number of opening / closing operations per hour, that is, the number of opening / closing pulses and the solenoid valve, which is a control valve, is operated intermittently under the duty cycle to achieve intermittent introduction in a pulsed manner. Therefore, the reaction gas introduced from one end of the reaction chamber diffuses over the entire surface of the reaction chamber to form a nodule-like atmosphere gas, and also wraps the wafers stacked in layers at appropriate intervals in a wave-like manner. The wave energy causes sufficient internal diffusion of the reaction gas, and the reaction gas is forced to flow into each wafer. As a result, the partial retention of gas seen in the past is eliminated, and it is possible to replace with fresh gas for each pulse wave, and each wafer can be brought into contact with a reaction gas that is fresh and has a uniform concentration.

【0010】[0010]

【実施例】【Example】

以下、図面を参照して本考案の好適な実施例を例示的に詳しく説明する。但し この実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は 特に特定的な記載がないかぎりは、この考案の範囲をそれに限定する趣旨ではな く、単なる説明例にすぎない。 図1は、本考案の実施例に係わる半導体熱処理装置を示す部分断面図で、図2 は図1のガス導入制御系の概要を示すブロック図である。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention, but merely illustrative examples. Nothing more. 1 is a partial cross-sectional view showing a semiconductor heat treatment apparatus according to an embodiment of the present invention, and FIG. 2 is a block diagram showing an outline of the gas introduction control system of FIG.

【0011】 図において、3は円筒ド−ム状炉心管で形成される反応室で、基台7上に設置 可能に構成し、反応室3内の基台7の中心軸線に保温筒8を介してウエハ6を適 当間隔を隔てて積層配設する縦型支持ボ−ド5を収納する。 なお、前記縦型支持ボ−ド5に対応する反応室3の周囲には、ヒ−タブロック 4囲繞させ、高周波加熱可能に構成する。In the figure, reference numeral 3 denotes a reaction chamber formed by a cylindrical dome-shaped core tube, which is constructed so that it can be installed on a base 7, and a heat insulating cylinder 8 is provided on the central axis of the base 7 in the reaction chamber 3. A vertical support board 5 for accommodating the wafers 6 in a stacked manner at appropriate intervals is housed therein. A heater block 4 is surrounded around the reaction chamber 3 corresponding to the vertical support board 5 so that high frequency heating is possible.

【0012】 一方前記反応室3の上部には、ガス導入系1が、また、ヒ−タブロック4の囲 繞位置下方の反応室3の周面上にガス排気系2がそれぞれ設けられ、前記ガス導 入系1から導入された反応ガスは支持ボ−ド3と反応室3の内壁との間のスリッ トを通って前記積層配設された各ウエハ表面と接触したのちガス排気系2より外 部に排出可能に構成する。 また、前記排気系2は、真空ポンプ20と廃ガス処理系21とより構成し、真 空ポンプ20により反応室3の減圧処理をする構成とする。On the other hand, a gas introduction system 1 is provided above the reaction chamber 3, and a gas exhaust system 2 is provided on the peripheral surface of the reaction chamber 3 below the surrounding position of the heater block 4, The reaction gas introduced from the gas introduction system 1 passes through the slit between the support board 3 and the inner wall of the reaction chamber 3 and comes into contact with the surface of each of the stacked wafers. It is configured so that it can be discharged to the outside. Further, the exhaust system 2 is composed of a vacuum pump 20 and a waste gas processing system 21, and the vacuum pump 20 is used to decompress the reaction chamber 3.

【0013】 前記ガス導入系1は、原料ガス、キャリアガス、ド−ピングガスや乾燥酸素や 乾燥窒素をそれぞれ内蔵する複数の原料ガスボンベ11と、該ボンベを個別に開 閉する複数の手動弁12と、前記ガスボンベ11からの流量を調整規制する複数 のマスコントロ−ラMFCよりなるガス制御系13と、制御弁14とガス導入制 御系15とより構成する。 前記ガス制御系13は、所要の原料ガスをそれぞれ適量ずつ時間的流量規制を しながらガスボンベ11より取り出し、それらの原料ガスを混合して反応ガスと して制御弁14を経由、ガス導入制御系15の制御の下に反応室3へ送り出すよ うに構成する。The gas introduction system 1 includes a plurality of source gas cylinders 11 each containing a source gas, a carrier gas, a doping gas, dry oxygen and dry nitrogen, and a plurality of manual valves 12 for individually opening and closing the cylinders. A gas control system 13 including a plurality of mass controller MFCs that regulate and regulate the flow rate from the gas cylinder 11, a control valve 14 and a gas introduction control system 15. The gas control system 13 takes out the required raw material gas from the gas cylinder 11 while controlling an appropriate amount of each of them in a timely manner, mixes those raw material gases as a reaction gas, and passes through the control valve 14 to the gas introduction control system. It is constructed so that it is sent to the reaction chamber 3 under the control of 15.

【0014】 上記制御弁14は前記ガス導入制御系15により断続的に開閉し、前記反応ガ スを反応室3にむけ、反応ガスを断続パルス状に送り出す電磁弁である。 また、前記制御系15は、マイコン16と、例えば、のこぎり波発生回路17 と、パルス巾変調回路18とより構成する。 のこぎり波発生回路17は、前記マイコン16の指令により、その発振周波数 を適宜可変に設定出来るようにし、 また、前記パルス巾変調回路18は、例えば前記 のこぎり波と基準電圧とを コンパレ−タで比較し、且つ前記基準電圧をマイコン16の指令により適宜変更 して所要のデュ−ティサイクルを持つパルスを得る構成とし、このパルスにより 制御弁14を時間当たり何回かの割合(毎秒1〜60回に設定)で開閉出来るよ うにし、且つ一回の開閉動作においての制御弁14の開放時間と閉鎖時間との割 合を設定してある。The control valve 14 is an electromagnetic valve which is intermittently opened and closed by the gas introduction control system 15 to direct the reaction gas toward the reaction chamber 3 and send out the reaction gas in intermittent pulses. The control system 15 is composed of a microcomputer 16, a sawtooth wave generation circuit 17, and a pulse width modulation circuit 18, for example. The sawtooth wave generation circuit 17 makes it possible to set the oscillation frequency of the sawtooth wave in accordance with a command from the microcomputer 16, and the pulse width modulation circuit 18 compares the sawtooth wave with a reference voltage by a comparator. In addition, the reference voltage is appropriately changed by a command of the microcomputer 16 to obtain a pulse having a required duty cycle, and this pulse causes the control valve 14 to operate at a certain rate per hour (1 to 60 times per second). Setting), and the ratio of the opening time and the closing time of the control valve 14 in one opening / closing operation is set.

【0015】 上記構成によれば、熱処理に先立ち処理内容に基ずき、制御弁14の時間当た りの開閉回数、即ち開閉制御パルス数と、該制御弁14の開放時間と閉鎖時間の 割合を決める前記パルスのデュ−ティサイクルとを設定する。ついで、マイコン 16を介して、のこぎり波発生回路17とパルス巾変調回路18に指令して所要 のパルスを制御弁の電磁弁14に出力すれば、該電磁弁は14は前記パルスによ り断続的に開閉して、反応ガスは断続的にパルス波を形成して反応室3に送り込 まれることになる。According to the above configuration, the number of times the control valve 14 is opened / closed per hour, that is, the number of opening / closing control pulses, and the ratio of the opening time and the closing time of the control valve 14, based on the processing content prior to the heat treatment. And the duty cycle of the pulse. Then, through the microcomputer 16, the sawtooth wave generation circuit 17 and the pulse width modulation circuit 18 are instructed to output the required pulses to the solenoid valve 14 of the control valve, and the solenoid valve 14 is interrupted by the pulse. The reaction gas is intermittently formed into pulse waves to be sent to the reaction chamber 3.

【0016】 また、上記構成により反応室3内にパルス状に送り込まれた反応ガスは、反応 室全面に拡散して団塊状の雰囲気ガスを形成しつつ、適当間隔を隔てて積層配設 されたウエハ群を波動的に包み込み、その波動的エネルギ−により反応ガスは、 反応室内壁と前記ウエハ群の間のスリットを介して、内部拡散を起こさせ、反応 ガスをして各ウエハ6間への流入を余儀なくさせる。 その結果、従来見られたガスのウエハ間における部分的滞留はなくなり、パル ス波毎に新鮮なガスとの置換が可能となり、各ウエハは新鮮で且つ濃度一様な反 応ガスに接触させることが出来、均一な気相成長、導電膜、絶縁膜の生成が出来 る。In addition, the reaction gas, which is sent into the reaction chamber 3 in a pulsed manner according to the above configuration, diffuses over the entire surface of the reaction chamber to form a nodule-like atmosphere gas, and is laminated at appropriate intervals. Wafers are wrapped in a wave group, and the wave energy causes the reaction gas to internally diffuse through the slit between the inner wall of the reaction chamber and the wafer group to generate the reaction gas and spread between the wafers 6. Force inflow. As a result, the partial retention of gas between wafers, which was seen in the past, is eliminated, and it is possible to replace the pulse gas with fresh gas, and each wafer is brought into contact with a reaction gas that is fresh and has a uniform concentration. It is possible to perform uniform vapor phase growth, formation of conductive film and insulating film.

【0017】 なお、本考案では、図1に示す縦型半熱処理装置に限らず横型半導体熱処理装 置にも適用されることは言うまでもない。また、縦型半導体熱処理装置において は、反応室内に収納される支持ボ−ドの数は一個に限定されるものでもない。Needless to say, the present invention is applicable not only to the vertical semi-heat treatment apparatus shown in FIG. 1 but also to a horizontal semiconductor heat treatment apparatus. Further, in the vertical semiconductor heat treatment apparatus, the number of support boards accommodated in the reaction chamber is not limited to one.

【0018】[0018]

【考案の効果】[Effect of device]

以上記載した如く本考案によれば、反応ガスの反応室への導入に際して、パル ス状に断続的に反応室内に送り込むようにしたため、その波動的エネルギ−によ り反応ガスの各ウエハへの接触を確実なものとし、且つ部分的ガスの滞留を防止 し常に新鮮なガスとの置換を可能として、各ウエハに成長する被膜の膜厚の均一 を確保することが出来、ウエハ処理における品質向上に貢献する。 また、本考案により、従来ガス濃度均一化のためなされた、反応室内の煩雑な 処置を必要とせず、ガス導入系における簡単な処置により達成できコスト低減に 貢献する。又保守の点でも簡単になり煩雑な配慮は不必要となる。 As described above, according to the present invention, when the reaction gas is introduced into the reaction chamber, the reaction gas is intermittently fed into the reaction chamber. This ensures reliable contact, prevents partial gas retention, and allows replacement with fresh gas at all times, ensuring a uniform film thickness of the film that grows on each wafer and improving wafer processing quality. Contribute to. Further, according to the present invention, the complicated treatment in the reaction chamber, which has been conventionally performed for equalizing the gas concentration, is not required, and it can be achieved by the simple treatment in the gas introduction system, which contributes to the cost reduction. Also, maintenance is simplified, and complicated consideration is unnecessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実施例に係わる半導体熱処理装置を示
す部分断面図。
FIG. 1 is a partial sectional view showing a semiconductor heat treatment apparatus according to an embodiment of the present invention.

【図2】図1のガス導入制御系の概要を示すブロック図
である。
FIG. 2 is a block diagram showing an outline of the gas introduction control system of FIG.

【図3】従来の半導体熱処理装置を示す部分断面図。FIG. 3 is a partial cross-sectional view showing a conventional semiconductor heat treatment apparatus.

【符号の説明】[Explanation of symbols]

1、25…ガス導入系 2…ガス排気系 3…反応室 4…ヒ−タブロック 5…支持ボ−ド 6…ウエハ 7…基台 8…保温筒 11…ガスボンベ 12…手動弁 13…ガス制御系 14…制御弁 15…ガス導入制御系 16…マイコン 17…のこぎり波発生回路 18…パルス巾変調回路 1, 25 ... Gas introduction system 2 ... Gas exhaust system 3 ... Reaction chamber 4 ... Heater block 5 ... Support board 6 ... Wafer 7 ... Base 8 ... Heat insulation cylinder 11 ... Gas cylinder 12 ... Manual valve 13 ... Gas control System 14 ... Control valve 15 ... Gas introduction control system 16 ... Microcomputer 17 ... Sawtooth wave generation circuit 18 ... Pulse width modulation circuit

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 ガス排気系と、ガス導入系と、前記二つ
の系を一端と他端側とに持つ反応室と、該反応室内に適
当間隔を隔てて積層配設された複数の被処理ウエハを載
置する支持ボ−ドとよりなる半導体熱処理装置におい
て、 前記ガス導入系は、複数のガスボンベと、複数のマスコ
ントロ−ラMFCよりなるガス制御系と、該制御系によ
り流量規制をされ且つ混合された反応ガスを前記反応室
にむけ断続パルス波状に送り出す制御弁と、該制御弁の
開閉制御をするガス導入制御系とより構成したことを特
徴とする半導体熱処理装置。
1. A gas exhaust system, a gas introduction system, a reaction chamber having the two systems at one end and the other end, and a plurality of treatment targets stacked in the reaction chamber at appropriate intervals. In a semiconductor heat treatment apparatus including a support board on which a wafer is placed, the gas introduction system includes a plurality of gas cylinders, a gas control system including a plurality of mass controllers MFCs, and a flow rate regulation by the control system. A semiconductor heat treatment apparatus comprising a control valve for sending a mixed reaction gas to the reaction chamber in the form of an intermittent pulse wave, and a gas introduction control system for controlling opening / closing of the control valve.
【請求項2】 前記ガス導入制御系は、前記断続パルス
数を決定する、のこぎり波発生回路と、該パルスのデュ
−ティサイクルを決定するパルス巾変調回路と、それら
を制御するマイコンとより構成したことを特徴とする請
求項1記載の半導体熱処理装置。
2. The gas introduction control system comprises a sawtooth wave generation circuit for determining the number of intermittent pulses, a pulse width modulation circuit for determining the duty cycle of the pulse, and a microcomputer for controlling them. The semiconductor heat treatment apparatus according to claim 1, wherein:
JP6850392U 1992-09-04 1992-09-04 Semiconductor heat treatment equipment Pending JPH0626247U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6850392U JPH0626247U (en) 1992-09-04 1992-09-04 Semiconductor heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6850392U JPH0626247U (en) 1992-09-04 1992-09-04 Semiconductor heat treatment equipment

Publications (1)

Publication Number Publication Date
JPH0626247U true JPH0626247U (en) 1994-04-08

Family

ID=13375572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6850392U Pending JPH0626247U (en) 1992-09-04 1992-09-04 Semiconductor heat treatment equipment

Country Status (1)

Country Link
JP (1) JPH0626247U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010072B1 (en) * 2004-06-21 2011-01-24 도쿄엘렉트론가부시키가이샤 Film formation apparatus and method for semiconductor process and computer-readable medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010072B1 (en) * 2004-06-21 2011-01-24 도쿄엘렉트론가부시키가이샤 Film formation apparatus and method for semiconductor process and computer-readable medium

Similar Documents

Publication Publication Date Title
EP0910868B1 (en) Method and apparatus for contactless treatment of a semiconductor substrate in wafer form
KR102604354B1 (en) Multi-cycle ald process for film uniformity and thickness profile modulation
US8419854B2 (en) Film-forming apparatus
KR100390592B1 (en) Stacked showerhead assembly for delivering gases and rf power to a reaction chamber
US20030094903A1 (en) Selectively controllable gas feed zones for a plasma reactor
US20040152304A1 (en) Insitu post atomic layer deposition destruction of active species
WO2000026435A1 (en) Apparatus and method for depositing low k dielectric materials
TWI641067B (en) Substrate processing device and plasma generating mechanism
JP4399206B2 (en) Thin film manufacturing equipment
TWI606137B (en) Substrate processing apparatus
KR102350991B1 (en) Bevel Etch Profile Control
JP2014067783A (en) Substrate processing apparatus, semiconductor device manufacturing method and substrate processing method
JPS61234037A (en) Improved plasma etching system and method for semiconductor wafer
JPH07263361A (en) Treating device
JP2010056565A (en) Apparatus for forming thin film
JPH0626247U (en) Semiconductor heat treatment equipment
KR100800401B1 (en) Plasma processing, thin film forming and etching device by a high frequency inductively coupled plasma
JP2010212335A (en) Substrate-treating device
JP2005054252A (en) Thin film production apparatus and production method
JPH01305513A (en) Plasma cvd apparatus
JPH029116A (en) Forming method for film on semiconductor substrate
JP2021180215A (en) Plasma processing method, plasma processing apparatus, and controller
KR100301927B1 (en) High Density Chemical Vapor Deposition Equipment
JPS59159980A (en) Vapor growth device
JPH03151629A (en) Manufacturing equipment for semiconductor thin film and manufacture of semiconductor multilayer thin film