JPH0625821A - Wear resistance treatment for sliding member - Google Patents

Wear resistance treatment for sliding member

Info

Publication number
JPH0625821A
JPH0625821A JP18385092A JP18385092A JPH0625821A JP H0625821 A JPH0625821 A JP H0625821A JP 18385092 A JP18385092 A JP 18385092A JP 18385092 A JP18385092 A JP 18385092A JP H0625821 A JPH0625821 A JP H0625821A
Authority
JP
Japan
Prior art keywords
powder
friction coefficient
rotor
amount
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18385092A
Other languages
Japanese (ja)
Other versions
JP2982500B2 (en
Inventor
Yoshinori Ozaki
義則 尾崎
Takashi Tomota
隆司 友田
Shoichi Seko
昇一 瀬古
Kenji Shimoda
健二 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4183850A priority Critical patent/JP2982500B2/en
Publication of JPH0625821A publication Critical patent/JPH0625821A/en
Application granted granted Critical
Publication of JP2982500B2 publication Critical patent/JP2982500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To apply wear resistance treatment for a sliding member minimal in the amount of fluctuation in a friction coefficient due to changes in braking conditions and excellent in wear resistance. CONSTITUTION:A mixture of Fe-C powder and aluminum bronze powder in the amount of 10-50% based on the weight of the Fe-C powder is thermally sprayed onto the sliding surface of a sliding member. Because Fe-C powder is used instead of Fe-C-Cr powder, hardness is not increased and a friction coefficient of the desired level can be secured. Further, by mixing aluminum bronze powder, the difference in the thickness of a rotor film due to the difference in braking conditions is minimized and, accordingly, the amount of fluctuation in a friction coefficient is minimized, by which the friction coefficient can be stabilized. Moreover, a rotor film containing organic components is formed and this film acts as protective film for the thermally sprayed layer, by which wear resistance can remarkably be improved. As a result, the thickness of the thermally sprayed layer can be reduced to about 300mum, and cracking and peeling due to thermal stress can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は摺動部材、特にアルミニ
ウム製のブレーキロータの耐摩耗処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear resistant method for a sliding member, especially for a brake rotor made of aluminum.

【0002】[0002]

【従来の技術】自動車のディスク式ブレーキは、ブレー
キドラムの代わりに鋳鉄製のブレーキロータの両面に油
圧ピストンでブレーキパッドを押し付け、ディスクとロ
ータに生ずる摩擦によって制動力を発揮する構造のもの
である。このブレーキロータの材質としては、通常鋳鉄
等が用いられてきたが、最近では自動車の高出力化と低
燃費化に伴う軽量化の要請から、アルミニウム製のブレ
ーキーロータを用いることが考えられている。
2. Description of the Related Art An automobile disc brake has a structure in which brake pads are pressed against both sides of a brake rotor made of cast iron instead of a brake drum by hydraulic pistons, and a braking force is exerted by friction generated between the disc and the rotor. . As the material of the brake rotor, cast iron or the like has been usually used, but recently, due to the demand for weight reduction due to higher output of the automobile and lower fuel consumption, it is considered to use an aluminum brake rotor. There is.

【0003】しかし、アルミニウム製ブレーキロータ
は、鋳鉄製のものに比べ、摺動部の耐熱性、耐摩耗性に
劣ることから、ブレーキロータの摺動部をステンレス
鋼、銅、鋳鉄等の材料で溶射するか、あるいは鋳ぐるみ
により形成する技術が知られている。
However, since the aluminum brake rotor is inferior in heat resistance and wear resistance to the sliding portion as compared with that made of cast iron, the sliding portion of the brake rotor is made of a material such as stainless steel, copper or cast iron. Techniques for forming by spraying or casting are known.

【0004】また、特公昭61−59393号公報の摺
動部材の耐摩耗処理方法の発明においては、摺動部材の
摺動表面に対し、アルミニウムブロンズ粉末と、その重
量の5〜85%の高炭素フェロクロム粉末との混合物の
溶射を施している。
Further, in the invention of the abrasion-resistant treatment method for sliding members of Japanese Patent Publication No. 61-59393, the aluminum bronze powder and the weight thereof is 5 to 85% of the weight of the sliding surface of the sliding member. It is sprayed with a mixture of carbon ferrochrome powder.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記の
ごとく摺動部を溶射で形成する場合、鋳鉄材料を用いる
と摩擦係数は良好であるが、耐摩耗性が現状使用されて
いるブレーキロータに近いため、溶射層を片側で0.7
〜1.0mm必要とし、高温時にアルミニウム材との熱
膨張差のため、溶射層が剥離するという問題点がある。
However, when the sliding portion is formed by thermal spraying as described above, when a cast iron material is used, the friction coefficient is good, but the wear resistance is close to that of the currently used brake rotor. Therefore, the sprayed layer is 0.7 on one side.
˜1.0 mm is required, and there is a problem that the thermal spray layer peels off due to the difference in thermal expansion from the aluminum material at high temperature.

【0006】ステンレス鋼を用いると、耐摩耗性は良好
であるが、摩擦係数が低く、特に高速時の安全性を考え
ると、充分なものではない。また、焼結パッドなどで、
摩擦係数の低さをカバーしても、鳴きのレベルが高く、
実用性に乏しい。その上、熱だまりとなりやすく、やは
り剥がれのおそれがある。
When stainless steel is used, the wear resistance is good, but the friction coefficient is low, and it is not sufficient in view of safety especially at high speed. Also, with a sintering pad,
Even if the low coefficient of friction is covered, the squealing level is high,
Practicality is poor. In addition, heat tends to accumulate, and there is a risk of peeling.

【0007】ステンレス鋼と銅との混合溶射の場合、あ
る程度摩擦係数の改善はみられるものの、充分なものと
は言えない。また、硬質粒子などを添加した場合、摩擦
係数および耐摩耗性はかなり良くなるが、パッド材の耐
摩耗性、硬質粒子脱落による溶射層の傷つきなどがあ
り、完全なものとは言えない。
In the case of mixed spraying of stainless steel and copper, although the coefficient of friction is improved to some extent, it cannot be said to be sufficient. Further, when hard particles and the like are added, the coefficient of friction and wear resistance are considerably improved, but the wear resistance of the pad material and the damage of the sprayed layer due to the dropping of hard particles are not perfect.

【0008】前記特公昭61−59393号公報の発明
も、材料は非常に優れているが、Crを含有しているた
め、硬度が高くなり、摩擦係数が不安定である。すなわ
ち、Fe−Cr−C合金になると、Cr炭化物の存在に
より、硬くなるため、ブレーキロータの耐摩耗性は向上
するが、摩擦係数が低くなり、摩擦係数と耐摩耗性を同
時に満足するのが困難となる。また、固いために、低温
での繰り返し制動を行うと、パッド材からの転移膜が厚
くなりすぎて、摩擦係数の低下を生じる。制動条件によ
り摩擦係数の変動量が大きいなどFe−C合金に比べて
実用性に乏しい。
In the invention of Japanese Patent Publication No. 61-59393, the material is also very excellent, but since it contains Cr, the hardness is high and the friction coefficient is unstable. That is, in the case of an Fe-Cr-C alloy, the presence of Cr carbide makes it harder, so that the wear resistance of the brake rotor is improved, but the friction coefficient becomes low, and the friction coefficient and the wear resistance are satisfied at the same time. It will be difficult. Further, since it is hard, repeated transfer at a low temperature causes the transition film from the pad material to become too thick, resulting in a decrease in the friction coefficient. It is less practicable than the Fe-C alloy, such that the amount of change in the friction coefficient is large depending on the braking conditions.

【0009】本発明は摺動部材、特にアルミニウム製の
ブレーキロータの摺動面の耐摩耗処理方法の前記のごと
き問題点を解決するために発明されたものであって、耐
摩耗性に優れ、摩擦係数の変動量の少ない、摺動部材が
得られる耐摩耗処理方法を提供することを目的とする。
The present invention was invented in order to solve the above-mentioned problems in the method of treating the sliding surface of the sliding member, especially the sliding surface of the brake rotor made of aluminum, and has excellent abrasion resistance. An object of the present invention is to provide a wear-resistant treatment method capable of obtaining a sliding member with a small variation in the friction coefficient.

【0010】[0010]

【課題を解決するための手段】発明者等は先ず従来の鋳
鉄製ブレーキロータと、アルミニウム製のブレーキロー
タの摺動面に鋳鉄、ステンレス鋼、ステンレス鋼とCu
合金をそれぞれ溶射したものについて、ロータ皮膜の厚
さおよび摩擦係数の変化について検討した。
DISCLOSURE OF THE INVENTION The inventors of the present invention firstly found that the conventional cast iron brake rotor and cast aluminum, stainless steel, stainless steel and Cu were formed on the sliding surfaces of the aluminum brake rotor.
The changes in the thickness of the rotor coating and the friction coefficient were investigated for each of the alloys sprayed.

【0011】ブレーキロータに油圧ピストンによりブレ
ーキパッドを押し付けて制動すると、主にパッド材料成
分の転移によりブレーキロータ摺動面にフィルム状のロ
ータ皮膜が付着する。このロータ皮膜の厚さは制動条件
によって大きく違ってくる。また、このロータ皮膜厚さ
により摩擦係数が変化する。
When a brake pad is pressed against a brake rotor by a hydraulic piston to brake, a film-shaped rotor film adheres to the sliding surface of the brake rotor mainly due to the transfer of pad material components. The thickness of this rotor film varies greatly depending on the braking conditions. Further, the coefficient of friction changes depending on the thickness of the rotor coating.

【0012】図5は速度130km/h、油圧30kg
f/cm2と、速度50km/h、油圧30kgf/c
2のロータ皮膜厚さの差を示すものである。また、図
3は同じ制動条件で摩擦係数の変化を示すものである。
FIG. 5 shows a speed of 130 km / h and a hydraulic pressure of 30 kg.
f / cm 2 , speed 50 km / h, hydraulic pressure 30 kgf / c
shows the difference between the rotor coating thickness of m 2. Further, FIG. 3 shows changes in the friction coefficient under the same braking conditions.

【0013】その結果、図5に示したようにステンレス
鋼溶射のブレーキロータは、溶射層に形成されるロータ
膜厚が制動条件によって、大きく違ってくるため、図3
に示したように摩擦係数の変動量が大きくなってしま
う。この傾向はステンレス鋼の場合、Cu合金などを混
ぜれは改善されるが、摩擦係数のレベル自体が低くなっ
てしまう。また、ロータ皮膜の厚さの差および摩擦係数
の変化は、鋳鉄溶射のブレーキロータがこれに次ぎ、鋳
鉄製ブレーキロータが最も優れていた。
As a result, as shown in FIG. 5, in the stainless steel sprayed brake rotor, the film thickness of the rotor formed on the sprayed layer greatly differs depending on the braking conditions.
As shown in, the fluctuation amount of the friction coefficient becomes large. In the case of stainless steel, this tendency is improved by mixing Cu alloy or the like, but the level of the friction coefficient itself becomes low. Further, the difference in the thickness of the rotor coating and the change in the friction coefficient were the second highest in the cast iron sprayed brake rotor, and the greatest in the cast iron brake rotor.

【0014】そこで、発明者等はFe−C系の溶射材料
が最も有利であるとの着想の元に、Fe−C系の溶射材
料について、鋭意検討を進めた。しかしながら、Fe−
C系でもC含有量が多いと、気孔率が大きくなり、パッ
ド材料からの転移がし易くなるため、ロータ皮膜の厚さ
が制動条件によって大きく変化し、摩擦係数の安定性が
失われる。そのため、Fe−C系の溶射材料のC含有量
を一定値以下に規制すべきことを知見した。
Therefore, the inventors of the present invention, based on the idea that the Fe-C based thermal spray material is most advantageous, have made earnest studies on the Fe-C based thermal spray material. However, Fe-
Even in the C system, if the C content is large, the porosity becomes large, and the transition from the pad material easily occurs, so that the thickness of the rotor film largely changes depending on the braking condition, and the stability of the friction coefficient is lost. Therefore, it was found that the C content of the Fe-C based thermal spray material should be regulated to a certain value or less.

【0015】また、Fe−C系溶射材料を単味で用いる
と、軽制動時には温度も低く、ロータ皮膜が付着しにく
いためロータ皮膜厚さが薄く、逆に高負荷時には付着し
易いためロータ皮膜が厚くなり、摩擦係数の変動量を最
適レベルにすることができないことが判明した。そこ
で、アルミニウム青銅が有機成分を付着させやすい性質
を持っていることに着目しさらに研究進めた結果、Fe
−C系溶射材料にアルミニウム青銅を混合して溶射層を
形成すると、有機成分を含んだロータ皮膜が生成すると
共に、溶射層の保護膜の役目を果たし、耐摩耗性も向上
することを見出して本発明を完成した。
Further, when the Fe-C type thermal spraying material is used alone, the temperature is low during light braking and the rotor coating is less likely to adhere, so that the rotor coating thickness is thin, and conversely, under high load, the rotor coating easily adheres. It has become clear that the thickness of the friction coefficient becomes thicker and the amount of fluctuation of the friction coefficient cannot be set to the optimum level. Therefore, as a result of further research focusing on the fact that aluminum bronze has a property of easily adhering organic components, Fe
It has been found that, when aluminum bronze is mixed with a -C type thermal spray material to form a thermal spray layer, a rotor coating containing an organic component is formed, and at the same time, it serves as a protective film for the thermal spray layer and also improves wear resistance. The present invention has been completed.

【0016】本発明の摺動部材の耐摩耗処理方法は、摺
動部材の摺動表面に対し、Fe−C粉末と、その重量の
10〜50%のアルミニウム青銅粉末との混合物の溶射
を施すことを要旨とする。
According to the method for abrasion resistance treatment of a sliding member of the present invention, the sliding surface of the sliding member is sprayed with a mixture of Fe-C powder and aluminum bronze powder of 10 to 50% of its weight. That is the summary.

【0017】Fe−C粉末に含有されるC含有量は2%
未満とすることが好ましい。図6および図7は、Cを
0.8〜3%の範囲で含有するFe−C粉末に、アルミ
ニウム青銅粉末を種々の%で混合した溶射材料を用い
て、アルミニウム製ブレーキロータの摺動面に溶射層を
形成した場合のブレーキロータの摩耗量と摩擦係数を示
すものである。ブレーキロータ摩耗量については、図6
に示したようにFe−C粉末のC含有量が多いほどブレ
ーキロータ摩耗量が多く、また図7に示したように、ア
ルミニウム青銅粉末混合量が0のときは、C含有量が高
い程摩擦係数が高く、アルミニウム青銅粉末混合量が増
加すると、Fe−C粉末のC含有量が多いほど摩擦係数
の低下量が大きくなるが、ブレーキロータ摩耗量と摩擦
係数の要求レベルを同時に満足するのはC含有量が2%
未満のときである。
The C content in the Fe-C powder is 2%.
It is preferably less than. FIG. 6 and FIG. 7 show sliding surfaces of aluminum brake rotors using a thermal spray material prepared by mixing aluminum bronze powder with various percentages in Fe—C powder containing 0.8 to 3% of C. It shows the wear amount and the friction coefficient of the brake rotor when a sprayed layer is formed on. For the amount of brake rotor wear, see Fig. 6.
As shown in Fig. 7, the greater the C content of the Fe-C powder, the greater the amount of wear of the brake rotor, and as shown in Fig. 7, when the aluminum bronze powder mixing amount is 0, the higher the C content, the higher the friction. When the coefficient is high and the amount of aluminum bronze powder mixed increases, the amount of decrease in the friction coefficient increases as the C content of the Fe-C powder increases, but it is necessary to satisfy both the brake rotor wear amount and the required level of friction coefficient at the same time. C content is 2%
When less than.

【0018】本発明に用いられるアルミニウム青銅粉末
は、5〜15重量%のアルミニウムを含有するCuを主
成分とする合金である。このアルミニウム青銅は少量の
Fe、Ni、Mnを含有することができる。例えば、J
IS C6161、C6191、C6241等は本発明
方法に使用することができる。
The aluminum bronze powder used in the present invention is a Cu-based alloy containing 5 to 15% by weight of aluminum. This aluminum bronze can contain small amounts of Fe, Ni, Mn. For example, J
IS C6161, C6191, C6241 etc. can be used for the method of this invention.

【0019】本発明方法における溶射操作は、通常の方
法に従って行うことができる。すなわち、Fe−C粉末
とアルミニウム青銅粉末との混合物をプラズマジェット
または火炎によって溶融し、これをノズルから所望の摺
動面に吹き付ける。このとき溶射層の平均厚さは300
μm程度に抑える必要がある。なお、溶射層の耐剥離性
を向上させるためには、アルミニウム製のブレーキロー
タの摺動面に溶射層を形成するに先立って、Ni基ベー
ス材料からなるアンダーコートを施すことが好ましい。
The thermal spraying operation in the method of the present invention can be carried out according to a usual method. That is, a mixture of Fe-C powder and aluminum bronze powder is melted by a plasma jet or a flame, and this is sprayed from a nozzle onto a desired sliding surface. At this time, the average thickness of the sprayed layer is 300
It is necessary to suppress to about μm. In order to improve the peeling resistance of the sprayed layer, it is preferable to apply an undercoat made of a Ni-based base material before forming the sprayed layer on the sliding surface of the brake rotor made of aluminum.

【0020】[0020]

【作用】本発明では、Fe−C−Cr粉末を用いずにF
e−C粉末を用いたので、硬度が高くなく所望のレベル
の摩擦係数を確保することができる。さらに、アルミニ
ウム青銅粉末を混合することにより、制動条件の差によ
るロータ皮膜厚さの差が少なく、これに伴って摩擦係数
の変動量が少なくなり、摩擦係数を安定化させることが
できた。また、有機成分を含んだロータ皮膜を生成する
ため、溶射層の保護膜の役目を果たし、耐摩耗性を著し
く向上するので、溶射層の厚さを300μm程度に抑え
ることが可能であって、熱応力によるクラック、剥がれ
を防止することができる。
In the present invention, F-C-Cr powder is not used and F
Since the e-C powder is used, the hardness is not high and a desired level of friction coefficient can be secured. Further, by mixing the aluminum bronze powder, the difference in the thickness of the rotor coating due to the difference in the braking condition was small, and the variation in the friction coefficient was reduced accordingly, and the friction coefficient could be stabilized. Further, since a rotor coating containing an organic component is produced, it serves as a protective film for the sprayed layer, and wear resistance is significantly improved, so that the thickness of the sprayed layer can be suppressed to about 300 μm. It is possible to prevent cracking and peeling due to thermal stress.

【0021】既に述べたように、本発明においては、F
e−C粉末のC含有量は2%未満にすることが好まし
い。C含有量が2%以上では、気孔率が大きくなり、パ
ッドからの転移がし易くなり、ロータ皮膜厚さが制動条
件によって大きく変化し、摩擦係数の安定性が損なわれ
るからであり、またロータ摩耗量が大きくなり、所望の
レベルの摩擦係数を確保することができないからであ
る。
As described above, in the present invention, F
The C content of the e-C powder is preferably less than 2%. This is because when the C content is 2% or more, the porosity becomes large, the transfer from the pad easily occurs, the rotor film thickness largely changes depending on the braking condition, and the stability of the friction coefficient is impaired. This is because the amount of wear becomes large and a desired level of friction coefficient cannot be secured.

【0022】また、アルミニウム青銅粉末の混合量を1
0〜50%としたのは、混合量が10%未満であると、
有機成分を含んだロータ皮膜が生成せず、制動条件の差
による摩擦係数の変動量が大きくなると共にロータ摩耗
量が大きくなるからであり、混合量が50%を越える
と、Fe−C粉末の減少により、却って耐摩耗性が劣化
するからである。
The amount of aluminum bronze powder mixed is 1
0 to 50% means that the mixed amount is less than 10%,
This is because the rotor coating containing the organic component is not formed, the variation of the friction coefficient due to the difference in the braking conditions increases, and the amount of rotor wear also increases. This is because the wear resistance deteriorates due to the decrease.

【0023】[0023]

【実施例】本発明の実施例を従来例および比較例と対比
して説明し、本発明の効果を明らかにする。 (実施例1)本発明の実施例として、図8の正面図およ
び図9の断面図に示すアルミニウム製ブレーキロータ1
の摺動面にNi基ベース材料からなるアンダーコート3
を施し、さらにFe−0.8%C粉末に30%のアルミ
ニウム青銅粉末を混合した溶射材料を溶射して、300
μmの厚さの溶射層2を形成した。
EXAMPLES Examples of the present invention will be described in comparison with conventional examples and comparative examples to clarify the effects of the present invention. (Embodiment 1) As an embodiment of the present invention, an aluminum brake rotor 1 shown in a front view of FIG. 8 and a sectional view of FIG.
Undercoat 3 made of Ni-based base material on the sliding surface of
And further spraying a thermal spray material in which 30% aluminum bronze powder is mixed with Fe-0.8% C powder,
The sprayed layer 2 having a thickness of μm was formed.

【0024】得られた本発明品のブレーキロータと、従
来の鋳鉄製ブレーキロータおよびアルミニウム製のブレ
ーキロータの摺動面に鋳鉄、ステンレス鋼、ステンレス
鋼とCu合金をそれぞれ溶射したものについて、第2効
力(速度50km/h、油圧20kgf/cm2)の摩
擦係数を測定し、得られた結果を図2に示した。
The obtained brake rotor of the present invention, and the conventional cast iron brake rotor and aluminum brake rotor having their sliding surfaces sprayed with cast iron, stainless steel, stainless steel and a Cu alloy, respectively, The friction coefficient of efficacy (speed 50 km / h, hydraulic pressure 20 kgf / cm 2 ) was measured, and the obtained results are shown in FIG.

【0025】図2に示したように、摩擦係数はステンレ
ス鋼+Cu合金溶射のブレーキロータが最も低く、鋳鉄
溶射のブレーキロータがこれに次ぎ、本発明品は鋳鉄製
ブレーキロータに最も近い摩擦係数を有することが判明
した。
As shown in FIG. 2, the friction coefficient of the brake rotor of stainless steel + Cu alloy spraying is the lowest, followed by that of the cast iron spraying brake rotor, and the product of the present invention has the friction coefficient closest to that of the cast iron brake rotor. Turned out to have.

【0026】続いて、これらブレーキロータのロータ皮
膜の厚さおよび摩擦係数の変動量について測定した。ロ
ータ皮膜の厚さは、制動条件を速度130km/h、油
圧30kgf/cm2と、速度50km/h、油圧30
kgf/cm2に変化させ、それぞれの場合に形成され
たロータ皮膜厚さの差を測定したものである。得られた
結果は図5に示した。また、摩擦係数の変動量は、制動
条件を速度50km/h、油圧30kgf/cm2から
速度130km/h、油圧30kgf/cm2に変化さ
せ、摩擦係数の変動量を測定したものである。得られた
結果は図3に示した。
Subsequently, the thickness of the rotor coating of these brake rotors and the variation of the friction coefficient were measured. The thickness of the rotor film is such that the braking conditions are a speed of 130 km / h, a hydraulic pressure of 30 kgf / cm 2 , a speed of 50 km / h and a hydraulic pressure of 30.
The difference in the thickness of the rotor coating formed in each case was measured by changing to kgf / cm 2 . The obtained results are shown in FIG. Further, the variation amount of the friction coefficient is measured by changing the braking condition from a speed of 50 km / h and an oil pressure of 30 kgf / cm 2 to a velocity of 130 km / h and an oil pressure of 30 kgf / cm 2 . The obtained results are shown in FIG.

【0027】図5に示したように、ロータ皮膜の厚さの
差は、ステンレス鋼溶射のものが最も多く、鋳鉄溶射と
ステンレス鋼+Cu合金溶射がこれに次ぎ、何れも高い
水準であった。本発明品は最も低く、制動条件の差によ
るロータ皮膜の厚さの差が非常に小さいことが確認され
た。また、図3に示したように、摩擦係数の変動量はロ
ータ皮膜厚さの差に比例して、ステンレス鋼溶射のもの
が最も多く、鋳鉄溶射とステンレス鋼+Cu合金溶射が
これに次ぎ、本発明品は鋳鉄製ブレーキロータに次いで
摩擦係数変動量が小さく、摩擦係数の安定性の高いこと
が判明した。
As shown in FIG. 5, the difference in the thickness of the rotor coating was the largest for stainless steel spraying, followed by cast iron spraying and stainless steel + Cu alloy spraying, both at high levels. It was confirmed that the product of the present invention was the lowest, and the difference in the thickness of the rotor coating due to the difference in braking conditions was very small. Further, as shown in FIG. 3, the variation of the friction coefficient is proportional to the difference in the thickness of the rotor coating, most of which is stainless steel thermal spraying, followed by cast iron thermal spraying and stainless steel + Cu alloy thermal spraying. It was found that the invention product has the smallest variation in the coefficient of friction next to the cast iron brake rotor and the stability of the coefficient of friction is high.

【0028】次ぎに、これらブレーキロータの耐摩耗料
を評価した。得られた結果は図4にまとめて示した。
Next, the wear resistance of these brake rotors was evaluated. The obtained results are summarized in FIG.

【0029】図4に示したように、鋳鉄溶射の摩耗量が
最も多く、12μmであり、ステンレス鋼溶射がこれに
次ぎ6μmであった。鋳鉄製が5μmであったのに対
し、本発明品は、ステンレス鋼+Cu合金溶射の0.1
μmに次いで0.2μmであり、本発明品は耐摩耗性に
優れていることが確認された。
As shown in FIG. 4, the wear amount of cast iron spraying was the largest at 12 μm, followed by stainless steel spraying at 6 μm. While the product made from cast iron had a thickness of 5 μm, the product of the present invention has a stainless steel + Cu alloy sprayed content of 0.1 μm.
It was 0.2 μm after μm, and it was confirmed that the product of the present invention has excellent wear resistance.

【0030】(実施例2)C含有量0.8%のFe−C
粉末に0〜70%のアルミニウム青銅粉末を含有する溶
射材料を用いて、アルミニウム製ブレーキロータの摺動
面に溶射層を形成し、摩擦係数の変動量およびブレーキ
ロータ摩耗量を測定した。なお、摩擦係数の変動量およ
びブレーキロータ摩耗量の測定条件は実施例1と同じ条
件で行った。得られた結果は図1に示す。
(Example 2) Fe-C having a C content of 0.8%
A sprayed material containing 0 to 70% of aluminum bronze powder was used as a powder to form a sprayed layer on the sliding surface of the aluminum brake rotor, and the fluctuation amount of the friction coefficient and the brake rotor wear amount were measured. The conditions for measuring the variation of the friction coefficient and the amount of wear of the brake rotor were the same as in Example 1. The results obtained are shown in FIG.

【0031】図1に示したように、摩擦係数の変動量に
ついては、アルミニウム青銅粉末混合量が10%になる
と、急減して目標レベルを下回り、以下混合量の増加に
伴って漸次減少した。一方、ブレーキロータ摩耗量は、
アルミニウム青銅粉末の混合量が10%になると、急減
して目標レベルを下回り、20%で最小になった後、漸
次増加し、50%を越えると目標レベルを越えてしまっ
た。以上の結果より、アルミニウム青銅粉末の混合量が
10〜50%において最良の結果が得られることが確認
された。
As shown in FIG. 1, the variation of the friction coefficient decreased sharply below the target level when the amount of aluminum bronze powder mixed reached 10%, and gradually decreased as the amount of mixing increased. On the other hand, the amount of brake rotor wear is
When the amount of aluminum bronze powder mixed was 10%, it decreased sharply to fall below the target level, reached a minimum at 20%, then gradually increased, and exceeded 50% when it exceeded the target level. From the above results, it was confirmed that the best results were obtained when the amount of aluminum bronze powder mixed was 10 to 50%.

【0032】(実施例3)Cを0.8〜3%の範囲で含
有するFe−C粉末に、アルミニウム青銅粉末を0〜7
0%の割合で混合した溶射材料を用いて、アルミニウム
製ブレーキロータの摺動面に溶射層を形成した。得られ
たブレーキロータの摩耗量と摩擦係数を測定し、得られ
た結果を図6および図7にまとめて示した。なお、ブレ
ーキロータ摩耗量測定の条件および摩擦係数測定の条件
はそれぞれ実施例1および実施例2と同一条件で行っ
た。
(Example 3) Fe-C powder containing 0.8 to 3% of C and aluminum bronze powder of 0 to 7
A sprayed layer was formed on the sliding surface of the aluminum brake rotor by using the sprayed material mixed in the proportion of 0%. The amount of wear and the coefficient of friction of the obtained brake rotor were measured, and the obtained results are shown in FIGS. 6 and 7. The brake rotor wear amount measurement condition and the friction coefficient measurement condition were the same as in Example 1 and Example 2, respectively.

【0033】図6のFe−C粉末のC含有量別のアルミ
ニウム青銅粉末含有量とブレーキロータの摩耗量との関
係図、図7のFe−C粉末のC含有量別のアルミニウム
青銅粉末含有量と摩擦係数との関係図から明らかなよう
に、ブレーキロータの摩耗量と摩擦係数の要求レベルを
同時に満足するのは、Fe−C粉末のC含有量が2%未
満の場合であることが確認された。
FIG. 6 is a graph showing the relationship between the content of aluminum bronze powder by the C content of the Fe--C powder and the wear amount of the brake rotor, and the content of the aluminum bronze powder by the C content of the Fe--C powder shown in FIG. As is clear from the relationship diagram between the friction coefficient and the friction coefficient, it is confirmed that the wear amount of the brake rotor and the required level of the friction coefficient are simultaneously satisfied when the C content of the Fe—C powder is less than 2%. Was done.

【0034】[0034]

【発明の効果】本発明の摺動部材の耐摩耗処理方法は以
上詳述したように、摺動部材の摺動表面に対し、Fe−
C粉末と、その重量の10〜50%のアルミニウム青銅
粉末との混合物の溶射を施すことを特徴とするものであ
って、Fe−C−Cr粉末を用いずにFe−C粉末を用
いたので、硬度が高くなく所望のレベルの摩擦係数を確
保することができる。さらに、アルミニウム青銅粉末を
混合することにより、制動条件の差によるロータ皮膜厚
さの差が少なくなり、これに伴って摩擦係数の変動量が
少なくなり、摩擦係数を安定化させることができた。ま
た、有機成分を含んだロータ皮膜を生成するため、溶射
層の保護膜の役目を果たし、耐摩耗性を著しく向上する
ので、溶射層の厚さを300μm程度に抑えることが可
能であって、熱応力によるクラック、剥がれを防止する
ことができる。
As described above in detail, the method for abrasion resistance treatment of the sliding member of the present invention is such that Fe-
It is characterized in that a mixture of C powder and 10 to 50% of its weight of aluminum bronze powder is sprayed, and Fe-C powder is used without using Fe-C-Cr powder. However, the hardness is not high and a desired level of friction coefficient can be secured. Further, by mixing the aluminum bronze powder, the difference in the thickness of the rotor coating due to the difference in the braking conditions was reduced, and the variation of the friction coefficient was reduced accordingly, and the friction coefficient could be stabilized. Further, since a rotor coating containing an organic component is produced, it serves as a protective film for the sprayed layer, and wear resistance is significantly improved, so that the thickness of the sprayed layer can be suppressed to about 300 μm. It is possible to prevent cracking and peeling due to thermal stress.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルミニウム青銅粉末混合量と形成された溶射
層の摩擦係数の変動量およびブレーキロータ摩耗量の関
係を示す線図である。
FIG. 1 is a diagram showing a relationship between a mixed amount of aluminum bronze powder, a variation amount of a friction coefficient of a formed sprayed layer, and a brake rotor wear amount.

【図2】本発明例および従来例の摩擦係数を示す図であ
る。
FIG. 2 is a diagram showing friction coefficients of an example of the present invention and a conventional example.

【図3】本発明例および従来例の摩擦係数変動量を示す
図である。
FIG. 3 is a diagram showing friction coefficient fluctuation amounts of the present invention example and the conventional example.

【図4】本発明例および従来例のブレーキロータ摩耗量
を示す図である。
FIG. 4 is a diagram showing an amount of wear of a brake rotor of an example of the present invention and a conventional example.

【図5】本発明例および従来例のロータ皮膜厚さの差を
示す図である。
FIG. 5 is a diagram showing a difference in rotor film thickness between an example of the present invention and a conventional example.

【図6】Fe−C粉末のC含有量別のアルミニウム青銅
粉末含有量とブレーキロータの摩耗量との関係を示す線
図である。
FIG. 6 is a graph showing the relationship between the aluminum bronze powder content and the wear amount of the brake rotor for each C content of Fe—C powder.

【図7】Fe−C粉末のC含有量別のアルミニウム青銅
粉末含有量と摩擦係数との関係を示す線図である。
FIG. 7 is a graph showing the relationship between the aluminum bronze powder content and the friction coefficient for each C content of Fe—C powder.

【図8】アルミニウム製ブレーキロータの正面図であるFIG. 8 is a front view of an aluminum brake rotor.

【図9】図8のA−A線における断面図である。9 is a cross-sectional view taken along the line AA of FIG.

【符号の説明】[Explanation of symbols]

1 ブレーキロータ 2 溶射層 3 アンダーコート 1 Brake rotor 2 Thermal spray layer 3 Undercoat

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下田 健二 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Shimoda 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 摺動部材の摺動表面に対し、Fe−C粉
末と、その重量の10〜50%のアルミニウム青銅粉末
との混合物の溶射を施すことを特徴とする摺動部材の耐
摩耗処理方法。
1. Abrasion resistance of a sliding member, characterized in that the sliding surface of the sliding member is sprayed with a mixture of Fe-C powder and aluminum bronze powder of 10 to 50% of its weight. Processing method.
JP4183850A 1992-07-10 1992-07-10 Wear resistance treatment method for sliding members Expired - Fee Related JP2982500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4183850A JP2982500B2 (en) 1992-07-10 1992-07-10 Wear resistance treatment method for sliding members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4183850A JP2982500B2 (en) 1992-07-10 1992-07-10 Wear resistance treatment method for sliding members

Publications (2)

Publication Number Publication Date
JPH0625821A true JPH0625821A (en) 1994-02-01
JP2982500B2 JP2982500B2 (en) 1999-11-22

Family

ID=16142928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4183850A Expired - Fee Related JP2982500B2 (en) 1992-07-10 1992-07-10 Wear resistance treatment method for sliding members

Country Status (1)

Country Link
JP (1) JP2982500B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032948A1 (en) * 1999-10-29 2001-05-10 Man B & W Diesel A/S Method and device for producing machine components that are provided with at least one sliding surface
JP2010266020A (en) * 2009-05-15 2010-11-25 Akebono Brake Ind Co Ltd Brake disk rotor
JP2011002009A (en) * 2009-06-18 2011-01-06 Nagaki Seiki Co Ltd Chuck device of belt for binding load
US7964239B2 (en) * 2005-07-08 2011-06-21 Toyota Jidosha Kabushiki Kaisha Bearing material coated slide member and method for manufacturing the same
WO2015176837A1 (en) * 2014-05-20 2015-11-26 Bayerische Motoren Werke Aktiengesellschaft Sliding arrangement and method for producing the sliding arrangement, in particular for a cylinder liner
CN116043148A (en) * 2022-11-10 2023-05-02 江西昌河航空工业有限公司 High-aluminum QAl10-3-1.5 aluminum bronze heat treatment method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032948A1 (en) * 1999-10-29 2001-05-10 Man B & W Diesel A/S Method and device for producing machine components that are provided with at least one sliding surface
US7964239B2 (en) * 2005-07-08 2011-06-21 Toyota Jidosha Kabushiki Kaisha Bearing material coated slide member and method for manufacturing the same
JP2010266020A (en) * 2009-05-15 2010-11-25 Akebono Brake Ind Co Ltd Brake disk rotor
JP2011002009A (en) * 2009-06-18 2011-01-06 Nagaki Seiki Co Ltd Chuck device of belt for binding load
WO2015176837A1 (en) * 2014-05-20 2015-11-26 Bayerische Motoren Werke Aktiengesellschaft Sliding arrangement and method for producing the sliding arrangement, in particular for a cylinder liner
CN106029935A (en) * 2014-05-20 2016-10-12 宝马股份公司 Sliding arrangement and method for producing the sliding arrangement, in particular for a cylinder liner
US10066578B2 (en) 2014-05-20 2018-09-04 Bayerische Motoren Werke Aktiengesellschaft Sliding arrangement and method for producing the sliding arrangement, in particular for a cylinder liner
CN116043148A (en) * 2022-11-10 2023-05-02 江西昌河航空工业有限公司 High-aluminum QAl10-3-1.5 aluminum bronze heat treatment method

Also Published As

Publication number Publication date
JP2982500B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
EP0713972B1 (en) Swash plate for a swash plate type compressor
JP4589458B2 (en) Mechanical member belonging to sliding pair and method for manufacturing the mechanical member
JPH0225538A (en) Brake disk material for rolling stock
EP1118768B1 (en) Swash plate of swash plate type compressor
JPH0854060A (en) Flame spraying method, manufacture of slide member having flame-sprayed layer as forming slide surface, piston, and manufacture of the piston
JPH0625821A (en) Wear resistance treatment for sliding member
JP4293295B2 (en) Swash plate compressor swash plate
CA1250715A (en) Thermal pulverisation materials
JP3207863B2 (en) Aluminum alloy sliding material
JP3753981B2 (en) Aluminum alloy sprayed layer and sliding material with excellent sliding properties
JPH06145845A (en) Sintered friction material
JP2002533601A (en) Protective layer
JP3357949B2 (en) Brake disc material for high-speed railway vehicles
JP3294209B2 (en) Aluminum alloy sprayed layer and sliding material with excellent sliding characteristics
JPH0544753A (en) Disc brake rotor
JP2001317573A (en) Disc rotor for brake
JP2002012960A (en) Sliding member
JP3262365B2 (en) Manufacturing method of brake disc
JP3556863B2 (en) Method for producing copper-aluminum composite material
JPH04312220A (en) Disc rotor
JPH01116326A (en) Disc rotor
JP3048143B1 (en) Thermal spray layer with excellent sliding properties
JPH06173981A (en) Friction plate
JPH08253856A (en) Thermal spraying powder, thermally sprayed sliding face and formation of thermally sprayed sliding face
JPH0258345B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080924

LAPS Cancellation because of no payment of annual fees