JPH0625427A - Method for postcuring thermosetting resin - Google Patents

Method for postcuring thermosetting resin

Info

Publication number
JPH0625427A
JPH0625427A JP18420392A JP18420392A JPH0625427A JP H0625427 A JPH0625427 A JP H0625427A JP 18420392 A JP18420392 A JP 18420392A JP 18420392 A JP18420392 A JP 18420392A JP H0625427 A JPH0625427 A JP H0625427A
Authority
JP
Japan
Prior art keywords
post
resin
molded
cured
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18420392A
Other languages
Japanese (ja)
Inventor
Yoshihisa Sone
嘉久 曽根
Hidekazu Futagawa
秀和 二川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18420392A priority Critical patent/JPH0625427A/en
Publication of JPH0625427A publication Critical patent/JPH0625427A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PURPOSE:To produce a cured molding greatly improved in water resistance, chemical resistance, and electrical insulating property. CONSTITUTION:A thermosetting resin obtained by thermally reacting a condensed aromatic compound, such as naphthalene or a component of a tar or pitch, along with di(hydroxymethyl)benzene or a di(halomethyl)benzene as a crosslinking agent in the presence of an acid catalyst is molded and cured. The molding is postcured by heating it in the absence of oxygen (e.g. by embedding in a carbon powder).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、耐水性、耐薬品性、
電気絶縁性、および耐熱性に非常に優れた熱硬化性芳香
族炭化水素樹脂の成形硬化物を得るための後硬化方法に
関するものである。
This invention relates to water resistance, chemical resistance,
The present invention relates to a post-curing method for obtaining a molded and cured product of a thermosetting aromatic hydrocarbon resin having excellent electric insulation and heat resistance.

【0002】[0002]

【従来の技術】熱硬化性樹脂としては、フェノール樹
脂、尿素樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポ
リエステル樹脂、ポリイミド樹脂、ポリウレタン樹脂、
シリコーン樹脂、フラン樹脂、キシレン樹脂等が知られ
ている。一般に、このような熱硬化性樹脂は、熱可塑性
樹脂に比べて優れた耐熱性を示すが、それでもポリイミ
ド樹脂を除けば、長期使用可能温度は最高150 〜200 ℃
程度である。一方、ポリイミド樹脂は、長期使用可能温
度が 200〜300 ℃と非常に優れた耐熱性を有するが、反
面、成形加工性に劣るという欠点がある。
2. Description of the Related Art Thermosetting resins include phenol resins, urea resins, melamine resins, epoxy resins, unsaturated polyester resins, polyimide resins, polyurethane resins,
Silicone resin, furan resin, xylene resin and the like are known. Generally, such a thermosetting resin exhibits superior heat resistance to a thermoplastic resin, but even if the polyimide resin is excluded, the long-term usable temperature is up to 150 to 200 ° C.
It is a degree. On the other hand, the polyimide resin has a very long-term usable temperature of 200 to 300 ° C., which is extremely excellent in heat resistance, but on the other hand, it has a drawback that it has poor moldability.

【0003】近年、新たな熱硬化性樹脂として、ナフタ
レンなどの縮合多環芳香族化合物またはこれを主成分と
する混合物と、芳香環に結合した少なくとも2個のヒド
ロキシメチル基および/またはハロメチル基を有する芳
香族化合物からなる架橋剤とを、酸触媒の存在下に加熱
反応させると、ポリイミドに匹敵するような非常に優れ
た耐熱性を示す縮合多環多核型の芳香族炭化水素樹脂が
容易に得られることが報告された (特開昭62−521 号公
報、同62−522 号公報) 。この熱硬化性樹脂はCOPN
A樹脂と命名され、耐熱性樹脂として工業化が検討され
ている。本明細書においても、以下、この樹脂をCOP
NA樹脂と略記する。
Recently, as a new thermosetting resin, a condensed polycyclic aromatic compound such as naphthalene or a mixture containing it as a main component, and at least two hydroxymethyl groups and / or halomethyl groups bonded to an aromatic ring are used. When a cross-linking agent comprising an aromatic compound is heated and reacted in the presence of an acid catalyst, a condensed polycyclic polynuclear aromatic hydrocarbon resin showing extremely excellent heat resistance comparable to that of polyimide can be easily obtained. It was reported that they were obtained (Japanese Patent Laid-Open Nos. 62-521 and 62-522). This thermosetting resin is COPN
It is named A resin and is being industrialized as a heat resistant resin. In the present specification, this resin will be referred to as COP hereinafter.
Abbreviated as NA resin.

【0004】一般に熱硬化性樹脂は金型等を用いて賦形
され、成形中に硬化させて成形硬化物とした後、得られ
た成形体に対して、耐熱性向上、寸法安定性向上、成形
時の残留応力除去等の目的で、後硬化処理(ポストキュ
ア)を施すことが多い。後硬化処理は、通常は常圧下、
空気中での熱処理により行われ、加熱温度は樹脂種によ
っても異なるが一般には 150〜350 ℃の範囲内である。
上述したCOPNA樹脂においても、このような後硬化
処理は成形体の耐熱性や寸法安定性の向上のために非常
に有効な手段であることが知られている。
Generally, a thermosetting resin is shaped by using a mold or the like, and is cured during molding to obtain a molded and cured product, and then the resulting molded product is improved in heat resistance and dimensional stability. Post-curing treatment is often performed for the purpose of removing residual stress during molding. Post-curing treatment is usually under normal pressure,
It is carried out by heat treatment in air, and the heating temperature is generally within the range of 150 to 350 ° C, although it varies depending on the resin species.
Also in the above-mentioned COPNA resin, it is known that such a post-curing treatment is a very effective means for improving the heat resistance and dimensional stability of the molded body.

【0005】[0005]

【発明が解決しようとする課題】COPNA樹脂は、後
硬化処理を施すことにより耐熱性が向上するため、耐熱
性樹脂として使用する場合には後硬化処理が必要なこと
が多い。本発明者らは、COPNA樹脂の後硬化処理の
挙動を調べた結果、COPNA樹脂の後硬化処理は、成
形体の耐熱性や寸法安定性の向上には有効であるもの
の、同時に耐水性、耐薬品性、電気絶縁性が低下すると
いう現象をもたらすことを発見した。この発明は、後硬
化処理により耐熱性と同時に、耐水性、耐薬品性、電気
絶縁性にも非常に優れ、高温の空気中で長期使用が可能
なCOPNA樹脂の成形硬化物を製造し得る後硬化処理
方法を提供することを目的とする。
Since the heat resistance of COPNA resin is improved by post-curing treatment, post-curing treatment is often required when it is used as a heat-resistant resin. As a result of investigating the behavior of the post-curing treatment of the COPNA resin, the present inventors found that the post-curing treatment of the COPNA resin is effective in improving the heat resistance and the dimensional stability of the molded product, but at the same time, the water resistance and the It was discovered that it causes a phenomenon that the chemical property and the electrical insulating property are deteriorated. This invention is capable of producing a molded and cured product of a COPNA resin which is excellent in heat resistance, water resistance, chemical resistance, and electrical insulation by post-curing treatment and can be used for a long time in high-temperature air. An object is to provide a curing treatment method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
の達成を目指して研究を重ねた結果、COPNA樹脂の
成形体を酸素を遮断した状態で後硬化処理することが有
効であることを知り、この発明を完成した。
Means for Solving the Problems As a result of repeated studies aimed at achieving the above object, the present inventors have found that it is effective to post-cure the molded product of the COPNA resin in a state where oxygen is blocked. And completed this invention.

【0007】ここに、この発明の要旨は、COPNA樹
脂(即ち、縮合多環芳香族化合物またはこれを主成分と
する混合物と、芳香環に結合した少なくとも2個のヒド
ロキシメチル基および/またはハロメチル基を有する芳
香族化合物からなる架橋剤とを、酸触媒の存在下に加熱
反応させて得た熱硬化性樹脂)を、成形硬化後、成形体
を酸素を遮断した状態で熱処理して後硬化させることを
特徴とする、耐水性、耐薬品性および電気絶縁性の優れ
た熱硬化性樹脂硬化物を得るための後硬化方法である。
Here, the gist of the present invention is a COPNA resin (that is, a condensed polycyclic aromatic compound or a mixture containing it as a main component, and at least two hydroxymethyl groups and / or halomethyl groups bonded to an aromatic ring. A thermosetting resin obtained by heating and reacting a cross-linking agent composed of an aromatic compound having an acid catalyst in the presence of an acid catalyst) is molded and cured, and then the molded body is heat-treated in a state in which oxygen is blocked and post-cured. It is a post-curing method for obtaining a thermosetting resin cured product having excellent water resistance, chemical resistance, and electrical insulation properties.

【0008】[0008]

【作用】以下、この発明の構成をその作用とともに詳述
する。本発明者らは、COPNA樹脂の成形体を通常の
方法、つまり常圧下、空気中で150 〜350 ℃に加熱する
方法で後硬化処理を施した場合に、成形硬化物の耐水
性、耐薬品性、電気絶縁性が低下することを見い出し
た。またこの原因を究明するために、COPNA樹脂の
後硬化処理前後のIRスペクトル分析、および電気的性
質のうち体積抵抗率と表面抵抗率とを調査した。
The structure of the present invention will be described in detail below together with its operation. The present inventors have found that when a molded product of a COPNA resin is subjected to a post-curing treatment by a usual method, that is, a method of heating to 150 to 350 ° C. in air under normal pressure, the molded cured product has water resistance and chemical resistance. It has been found that the electrical conductivity and the electrical insulation are deteriorated. In order to investigate the cause of this, IR spectrum analysis before and after the post-curing treatment of COPNA resin, and volume resistivity and surface resistivity among electrical properties were investigated.

【0009】その結果、COPNA樹脂に通常の後硬化
処理を施すと、IRスペクトルの含酸素官能基に帰属さ
れるピークが増大すること、および体積抵抗率に比べて
表面抵抗率のみが大きく低下することを見い出した。こ
れらの事実から、後硬化処理によりCOPNA樹脂の耐
水性、耐薬品性、電気絶縁性が低下する原因は、空気中
での後硬化処理による成形体表面の著しい酸化であるこ
とを究明した。さらに、成形体表面に残存するジメチル
エーテル結合やヒドロキシメチル基が優先的に酸化を受
けること、酸触媒として用いるスルホン酸やその分解物
(例えばSO3)が酸化開始剤として作用していることな
ども判明した。
As a result, when the COPNA resin is subjected to the usual post-curing treatment, the peak attributed to the oxygen-containing functional group in the IR spectrum is increased and only the surface resistivity is greatly reduced as compared with the volume resistivity. I found a thing. From these facts, it was clarified that the reason why the water resistance, chemical resistance and electric insulation of the COPNA resin are deteriorated by the post-curing treatment is the remarkable oxidation of the surface of the molded article by the post-curing treatment in air. Furthermore, the dimethyl ether bonds and hydroxymethyl groups remaining on the surface of the molded body are preferentially oxidized, and sulfonic acid used as an acid catalyst and its decomposition products.
It was also found that (for example, SO 3 ) acts as an oxidation initiator.

【0010】この発明によれば、COPNA樹脂の成形
体を酸素を遮断した状態で後硬化処理するため、成形体
表面への含酸素官能基の導入(表面酸化)が妨げられ、
成形硬化物の耐水性、耐薬品性、電気絶縁性の低下が防
止される。
According to the present invention, since the molding of the COPNA resin is post-cured in a state where oxygen is blocked, introduction of oxygen-containing functional groups (surface oxidation) on the surface of the molding is prevented,
The deterioration of water resistance, chemical resistance, and electric insulation of the molded and cured product is prevented.

【0011】さらに驚くべきことには、一旦、この発明
の方法で後硬化処理を施した成形硬化物は、その後に空
気中で高温に放置されても成形体表面の酸化を受けず、
その結果、非常に優れた耐水性、耐薬品性、電気絶縁性
を維持することができるという予想外の効果を発揮す
る。
Even more surprisingly, the molded and cured product once subjected to the post-curing treatment by the method of the present invention does not undergo oxidation on the surface of the molded product even if it is subsequently left at high temperature in air,
As a result, it has an unexpected effect of being able to maintain extremely excellent water resistance, chemical resistance, and electrical insulation.

【0012】この発明の方法により後硬化処理したCO
PNA樹脂の成形硬化物が、その後に酸化性雰囲気中で
高温に放置されても、酸化を受けずに耐水性、耐薬品
性、電気絶縁性を保持できる理由については、酸化を受
け易い表面のジメチルエーテル結合やヒドロキシメチル
基が、この発明による酸素を遮断した状態での後硬化処
理によって、酸化に対して安定な芳香環間のメチレン結
合に変わること、さらには酸触媒として用いるスルホン
酸由来の分解物で酸化の開始剤となりうるSO3等が、
この発明の方法による後硬化処理により系外に抜けでる
ことなどが考えられる。
CO post-cured by the method of the present invention
The reason why the molded and cured product of the PNA resin can retain water resistance, chemical resistance, and electrical insulation without being oxidized even if it is left at high temperature in an oxidizing atmosphere thereafter is that Dimethyl ether bond and hydroxymethyl group are converted to methylene bond between aromatic rings, which is stable against oxidation, by post-curing treatment with oxygen blocked according to the present invention, and further decomposition derived from sulfonic acid used as an acid catalyst. SO 3 which can be an initiator of oxidation
It is conceivable that the material may escape to the outside of the system by the post-curing treatment by the method of the present invention.

【0013】この発明の熱硬化性樹脂の製造に用いる主
原料は、縮合多環芳香族化合物またはこれを主成分とす
る混合物と、これを架橋する架橋剤である。
The main raw materials used in the production of the thermosetting resin of the present invention are a condensed polycyclic aromatic compound or a mixture containing it as a main component, and a crosslinking agent for crosslinking it.

【0014】縮合多環芳香族化合物は、2環以上の芳香
環を持ち、その少なくとも2環が縮合している任意の炭
化水素化合物を含むものである。その具体例としては、
ナフタレン、アセナフテン、アセナフチレン、フェナン
トレン、アントラセン、ピレン、クリセン、ナフタセ
ン、コロネン、ペリレン、フルオランテン、ピセン、各
種ベンゾピレン類、各種ベンゾペリレン類、およびこれ
らの化合物のアルキル誘導体が例示され、これらを単独
で、または2種以上の混合物で使用することができる。
また、これらの縮合多環芳香族化合物が、メチレン基、
フェニレン基、キシリレン基、エーテル基等の2価基で
連結された構造の炭化水素化合物(例、ジナフチルメタ
ン)も包含される。さらに、縮合多環芳香族化合物はヒ
ドロキシル基で置換されていてもよい。即ち、ナフトー
ル、ヒドロキシアントラセンなどもこの化合物に包含さ
れる。
The condensed polycyclic aromatic compound includes any hydrocarbon compound having two or more aromatic rings and at least two of which are condensed. As a concrete example,
Examples include naphthalene, acenaphthene, acenaphthylene, phenanthrene, anthracene, pyrene, chrysene, naphthacene, coronene, perylene, fluoranthene, picene, various benzopyrenes, various benzoperylenes, and alkyl derivatives of these compounds, and these alone or It can be used in a mixture of two or more kinds.
In addition, these condensed polycyclic aromatic compounds, methylene group,
A hydrocarbon compound having a structure in which a divalent group such as a phenylene group, a xylylene group and an ether group is linked (eg, dinaphthylmethane) is also included. Furthermore, the fused polycyclic aromatic compound may be substituted with a hydroxyl group. That is, naphthol, hydroxyanthracene and the like are also included in this compound.

【0015】縮合多環芳香族化合物は純品である必要は
ない。即ち、合多環芳香族化合物を主成分とする石炭系
または石油系の重質油類、タール、ピッチ類も原料とし
て使用可能である。また、縮合多環芳香族化合物に少量
のフェノール、アルキルフェノール、アルキルベンゼン
などの単環芳香族化合物が混合した混合物も使用するこ
とができる。
The fused polycyclic aromatic compound need not be pure. That is, coal-based or petroleum-based heavy oils, tars, and pitches containing a polycyclic aromatic compound as a main component can also be used as a raw material. Also, a mixture of a condensed polycyclic aromatic compound and a small amount of a monocyclic aromatic compound such as phenol, alkylphenol, or alkylbenzene can be used.

【0016】この発明の方法で架橋剤として使用するの
は、芳香環に結合した少なくとも2個のヒドロキシルメ
チル基および/またはハロメチル基を有する芳香族化合
物である。かかる架橋剤の例としては、ベンゼン、キシ
レン、ナフタレン、アントラセン、ピレンまたはそれら
のアルキル誘導体等の芳香族炭化水素化合物のポリ (ヒ
ドロキシメチル) 誘導体ならびにポリ (ハロメチル) 誘
導体が挙げられる。架橋剤も1種もしくは2種以上を使
用できる。好ましい架橋剤は、2個以上のヒドロキシメ
チル基を持つ芳香族化合物であり、特にジ (ヒドロキシ
メチル) ベンゼンおよびジ (ヒドロキシメチル) キシレ
ンが好ましい。
It is an aromatic compound having at least two hydroxylmethyl and / or halomethyl groups attached to the aromatic ring that is used as a crosslinker in the process of this invention. Examples of such cross-linking agents include poly (hydroxymethyl) derivatives and poly (halomethyl) derivatives of aromatic hydrocarbon compounds such as benzene, xylene, naphthalene, anthracene, pyrene or alkyl derivatives thereof. As the crosslinking agent, one kind or two or more kinds can be used. Preferred cross-linking agents are aromatic compounds having two or more hydroxymethyl groups, with di (hydroxymethyl) benzene and di (hydroxymethyl) xylene being particularly preferred.

【0017】上述した縮合多環芳香族化合物と架橋剤と
は酸触媒の存在下で重縮合反応させて熱硬化性樹脂とす
る。酸触媒としては、硫酸、有機スルホン酸等が使用で
きる。その中で、トルエンスルホン酸、キシレンスルホ
ン酸、フェノールスルホン酸、ナフタレンスルホン酸等
の有機スルホン酸が好ましい。また、ポリスチレンスル
ホン酸樹脂やフェノールスルホン酸樹脂といったスルホ
ン酸基を含有する樹脂も触媒として有用である。
The above-mentioned condensed polycyclic aromatic compound and the crosslinking agent are subjected to polycondensation reaction in the presence of an acid catalyst to obtain a thermosetting resin. As the acid catalyst, sulfuric acid, organic sulfonic acid or the like can be used. Among them, organic sulfonic acids such as toluene sulfonic acid, xylene sulfonic acid, phenol sulfonic acid and naphthalene sulfonic acid are preferable. Resins containing sulfonic acid groups such as polystyrene sulfonic acid resins and phenol sulfonic acid resins are also useful as catalysts.

【0018】主原料である縮合多環芳香族化合物 (混合
物の場合には混合物中の縮合多環芳香族化合物) に対す
る架橋剤の配合比は、モル比換算で 0.7〜6の範囲が適
切である。モル比が0.7 より小さい場合は、生成物の熱
硬化性が不足し、逆にモル比が6より大きい場合は架橋
剤が過剰になり、やや不均質な生成物を与える。より好
ましい範囲としては、1〜3である。
The blending ratio of the cross-linking agent to the condensed polycyclic aromatic compound (in the case of a mixture, the condensed polycyclic aromatic compound in the mixture) as the main raw material is appropriately in the range of 0.7 to 6 in terms of molar ratio. . If the molar ratio is less than 0.7, the thermosetting property of the product will be insufficient, and conversely, if the molar ratio is greater than 6, the crosslinking agent will be in excess, giving a somewhat inhomogeneous product. A more preferable range is 1 to 3.

【0019】酸触媒の添加量は、縮合多環芳香族化合物
と架橋剤との合計重量に対して0.2〜20重量%、好まし
くは 0.5〜10重量%の範囲である。
The addition amount of the acid catalyst is in the range of 0.2 to 20% by weight, preferably 0.5 to 10% by weight, based on the total weight of the condensed polycyclic aromatic compound and the crosslinking agent.

【0020】主原料である縮合多環芳香族化合物と架橋
剤を、酸触媒と共に所定の割合で混合し、好ましくは非
酸化性雰囲気で加熱反応させることにより、容易に熱硬
化性プレポリマー状態の芳香族炭化水素樹脂を製造する
ことができる。
The condensed polycyclic aromatic compound as the main raw material and the cross-linking agent are mixed with an acid catalyst in a predetermined ratio, and the mixture is heated and reacted preferably in a non-oxidizing atmosphere to easily prepare a thermosetting prepolymer. Aromatic hydrocarbon resins can be produced.

【0021】反応温度は、約50〜300 ℃、好ましくは約
80〜200 ℃である。反応圧力は、通常は常圧ないし若干
の加圧であるが、反応で副生する縮合水 (または塩化水
素)を反応系から除去して反応効率を高めるために、減
圧下で反応させることもできる。反応は、溶融状態 (溶
融重合) で行うのが簡単であるが、適当な溶媒または分
散媒中 (溶液重合または懸濁重合) で実施することもで
きる。
The reaction temperature is about 50 to 300 ° C., preferably about
80 to 200 ° C. The reaction pressure is usually normal pressure or slightly increased pressure, but in order to remove the condensed water (or hydrogen chloride) by-produced in the reaction from the reaction system to enhance the reaction efficiency, the reaction may be performed under reduced pressure. it can. The reaction is easy to carry out in a molten state (melt polymerization), but can also be carried out in a suitable solvent or dispersion medium (solution polymerization or suspension polymerization).

【0022】溶融重合の場合、反応の進行にともなって
反応物の粘度が上昇し、熱硬化性プレポリマーであるB
ステージ樹脂が得られる。この段階からさらに反応を進
めると、不溶不融性の硬化物となるので、成形可能な熱
硬化性樹脂を得るように、Bステージ状態の適当な段階
で反応混合物の温度を下げて反応を停止させる。こうし
て得られる熱硬化性樹脂は、まだ加熱溶融性および溶剤
溶解性が残っている段階の未硬化中間重縮合物 (プレポ
リマー) である。
In the case of melt polymerization, the viscosity of the reaction product increases as the reaction proceeds, and the thermosetting prepolymer B is used.
A stage resin is obtained. If the reaction proceeds further from this stage, it becomes an insoluble and infusible cured product, so the temperature of the reaction mixture is lowered at an appropriate stage in the B stage state to stop the reaction so as to obtain a thermosetting resin that can be molded. Let The thermosetting resin thus obtained is an uncured intermediate polycondensate (prepolymer) at a stage where the heat meltability and the solvent solubility still remain.

【0023】この熱硬化性プレポリマーは、約 100〜35
0 ℃に加熱することによって、容易に熱硬化物となるの
で、適当な方法で賦形と加熱を行うことにより成形硬化
させて、不溶不融の成形体とする。成形硬化は、例え
ば、粉末状にして加熱プレスする圧縮成形法、或いは溶
融状態または溶媒に溶解させた溶液状態で成形金型に流
し込んでから加熱する流し込み成形法、さらにはトラン
スファー成形法等の従来より知られた各種の熱硬化性樹
脂の成形方法を利用して実施することができる。
The thermosetting prepolymer has a viscosity of about 100-35.
By heating to 0 ° C., a thermosetting product is easily obtained. Therefore, shaping and curing are performed by shaping and heating by an appropriate method to obtain an insoluble and infusible shaped product. Molding and hardening can be performed, for example, by a compression molding method in which a powder is formed and heated and pressed, a casting molding method in which the material is poured into a molding die in a molten state or a solution state dissolved in a solvent and then heated, and further, a transfer molding method or the like. It can be carried out by utilizing various known thermosetting resin molding methods.

【0024】また、この成形硬化時に、樹脂中に繊維
状、粒状、フレーク状の各種セラミック質、炭素質、有
機質または金属質材料を骨材 (即ち、充填材または強化
材) として樹脂に配合することによって、所望の特性機
能を付与することもできる。有用な骨材の例は、ガラス
繊維、カーボン繊維、黒鉛などである。
At the time of molding and curing, various fibrous, granular, and flake-like ceramic, carbonaceous, organic or metallic materials are added to the resin as an aggregate (that is, a filler or a reinforcing material). As a result, a desired characteristic function can be imparted. Examples of useful aggregates are glass fibers, carbon fibers, graphite and the like.

【0025】こうして得られた成形体は、耐熱性向上、
寸法安定性向上、成形時の残留応力除去等のために、後
硬化処理を施す。この発明の特徴は、この樹脂の優れた
耐水性、耐薬品性、電気絶縁性を引き出すために、酸素
を遮断した状態で後硬化処理を実施することである。具
体的には、炭素質粉末、耐熱オイルなどの還元性を持つ
固体もしくは液体中に成形体を埋設して後硬化のための
熱処理を行う方法が簡単である。或いは、窒素、アルゴ
ンガス等の非酸化性ガスを流しながら、またはこのガス
中に成形体を封入して熱処理を行う方法も可能である。
The molded body thus obtained has improved heat resistance,
A post-curing treatment is performed to improve dimensional stability and remove residual stress during molding. A feature of the present invention is to carry out a post-curing treatment in a state where oxygen is blocked in order to bring out the excellent water resistance, chemical resistance and electric insulation of this resin. Specifically, a method of embedding the molded body in a solid or liquid having reducing properties such as carbonaceous powder and heat-resistant oil and performing heat treatment for post-curing is simple. Alternatively, it is also possible to perform a heat treatment while flowing a non-oxidizing gas such as nitrogen or argon gas, or enclosing the compact in this gas.

【0026】熱処理は通常常圧下で行うが、硬化反応お
よびスルホン酸分解物の系外除去を促進するため、若干
の減圧下で行っても良い。熱処理条件は、温度と時間の
組合せで異なるが、熱処理温度が低い、または熱処理時
間が短い等で熱処理が不足する場合、耐熱性、寸法安定
性の向上が不十分になるばかりでなく、後硬化処理物を
高温、空気中 (酸化性雰囲気) で使用すると耐水性、耐
薬品性、電気絶縁性が低下するためこの発明の目的を達
成できない。また、熱処理条件が過剰の場合は、樹脂の
熱分解が起こり、機械的特性等の低下を引き起こすこと
となる。好ましい後硬化用の熱処理条件は、約180 〜約
350 ℃の温度範囲で1〜30時間である。
The heat treatment is usually carried out under normal pressure, but it may be carried out under a slight reduced pressure in order to accelerate the curing reaction and removal of the sulfonic acid decomposition product from the outside of the system. Heat treatment conditions differ depending on the combination of temperature and time, but when heat treatment is insufficient due to low heat treatment temperature or short heat treatment time, not only the improvement of heat resistance and dimensional stability becomes insufficient, but also post-curing If the treated product is used at high temperature in the air (oxidizing atmosphere), the water resistance, chemical resistance, and electric insulation will be deteriorated, so that the object of the present invention cannot be achieved. On the other hand, when the heat treatment conditions are excessive, the resin is thermally decomposed, resulting in deterioration of mechanical properties and the like. The preferred post-curing heat treatment conditions are from about 180 to about
It is 1 to 30 hours in the temperature range of 350 ° C.

【0027】この発明の方法により製造されたCOPN
A樹脂の成形硬化物は、従来の後硬化処理法で得られた
ものに比べ、耐水性、耐薬品性、電気絶縁性が良好であ
り、しかも、後硬化処理を施さない硬化体と比べても、
使用時に高温の空気中に曝された時に酸化劣化を受けに
くく、樹脂の特性(耐水性、耐薬品性、電気絶縁性)が
劣化しにくいという、非常に有利な性質を示す。例え
ば、この発明の方法により製造されたCOPNA樹脂
は、アルカリ処理 (10% NaOH 中に23℃で5週間浸漬)
による曲げ強度保持率が90%以上、好ましくは95%以上
を示し、この処理後の重量変化も0.1 %以下、好ましく
は0.05%以下と小さい。そして、この樹脂を空気中で25
0 ℃に500 時間加熱した後で同様にアルカリ処理して
も、アルカリ処理後の曲げ強度保持率および重量変化の
いずれも、この加熱処理前と実質的に変化せず、空気中
での長時間の加熱によって特性の劣化を受けない。
COPN produced by the method of the present invention
Molded and cured products of resin A have better water resistance, chemical resistance, and electrical insulation than those obtained by the conventional post-curing treatment method, and moreover, compared with cured products not subjected to post-curing treatment. Also,
When used, it is not susceptible to oxidative deterioration when exposed to high temperature air, and the resin properties (water resistance, chemical resistance, electrical insulation) are not easily deteriorated, which is a very advantageous property. For example, the COPNA resin produced by the method of the present invention is treated with an alkali (soaked in 10% NaOH at 23 ° C. for 5 weeks).
The flexural strength retention rate by 90% or more is preferably 90% or more, preferably 95% or more, and the change in weight after this treatment is 0.1% or less, preferably 0.05% or less. Then, in the air,
Even if the sample is heated to 0 ° C for 500 hours and subjected to the same alkali treatment, neither the flexural strength retention rate nor the weight change after the alkali treatment is substantially the same as before the heat treatment, and the product is kept in air for a long time. No deterioration of characteristics due to heating.

【0028】[0028]

【実施例】以下に、この発明を実施例に基づいて具体的
に説明する。 〔実施例1〕ガラス製反応器に、ナフタレン64.0重量部
(0.5モル) 、p−ジ (ヒドロキシメチル) ベンゼン110.
4 重量部(0.8モル) 、およびp−トルエンスルホン酸1
水和物8.72重量部を仕込み、窒素気流中、攪拌しなが
ら、110 ℃で、120 分間反応させて、流動点が99℃のC
OPNA樹脂プレポリマー (Bステージ樹脂) を得た。
樹脂の流動点は、樹脂を6℃/分で昇温させながらフロ
ーテスターを用いて見掛け粘度を測定し、見掛け粘度が
105 ポイズになる温度を流動点とした。
EXAMPLES The present invention will be specifically described below based on examples. [Example 1] 64.0 parts by weight of naphthalene in a glass reactor
(0.5 mol), p-di (hydroxymethyl) benzene 110.
4 parts by weight (0.8 mol), and p-toluenesulfonic acid 1
Charge 8.72 parts by weight of the hydrate, and stir in a nitrogen stream at 110 ° C for 120 minutes with stirring to give a C having a pour point of 99 ° C.
An OPNA resin prepolymer (B stage resin) was obtained.
The pour point of the resin is determined by measuring the apparent viscosity using a flow tester while raising the temperature of the resin at 6 ° C / min.
The temperature at which 10 5 poise was reached was defined as the pour point.

【0029】このCOPNA樹脂プレポリマーを3mm以
下に粉砕し、熱硬化性樹脂の成形材料を得た。この成形
材料を180 ℃、300 kg/cm2で2分間圧縮成形して、直径
100 mm、厚さ2mmの円板状の不溶不融の硬化成形体を得
た。この成形体を、次いで粒径1mm以下のコークス微粉
中に埋設し、オーブン中で、250 ℃に12時間加熱するこ
とにより後硬化処理を行い、後硬化処理した成形硬化物
を得た。後硬化処理した成形硬化物の体積抵抗率と表面
抵抗率をJIS K-6911に基づいて測定した結果を表1に示
す。
This COPNA resin prepolymer was crushed to 3 mm or less to obtain a thermosetting resin molding material. This molding material was compression molded at 180 ° C and 300 kg / cm 2 for 2 minutes to obtain the diameter
A disc-shaped insoluble and infusible cured molded product having a thickness of 100 mm and a thickness of 2 mm was obtained. This compact was then embedded in coke fine powder having a particle size of 1 mm or less, and post-cured by heating at 250 ° C. for 12 hours in an oven to obtain a post-cured molded cured product. Table 1 shows the results of measuring the volume resistivity and surface resistivity of the post-cured molded cured product according to JIS K-6911.

【0030】〔比較例1〕硬化成形品をコークス微粉中
に埋設せずに後硬化処理を行った以外は、実施例1と同
様の方法で硬化成形物を得た。この硬化成形物の体積抵
抗率と表面抵抗率を表1に併せて示す。
Comparative Example 1 A cured molded product was obtained in the same manner as in Example 1 except that the cured product was subjected to post-curing treatment without being embedded in coke fine powder. The volume resistivity and surface resistivity of this cured molded product are also shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から、従来法により後硬化処理した比
較例1の硬化物に比べて、この発明の方法で後硬化処理
した実施例1の硬化物は、特に表面抵抗率が約1000倍も
大きく、電気絶縁性に優れていることが分かる。
From Table 1, as compared with the cured product of Comparative Example 1 post-cured by the conventional method, the cured product of Example 1 post-cured by the method of the present invention has a surface resistivity of about 1000 times. It can be seen that it is large and has excellent electrical insulation.

【0033】〔実施例2〕実施例1と同様にして得た成
形材料を、180 ℃、300 kg/cm2で5分間圧縮成形するこ
とにより、20mm×40mm×10mmの寸法の矩形成形体を得
た。この成形体を、次いで粒径1mm以下のコークス微粉
中に埋設し、オーブン中で230 ℃×4時間の熱処理を行
った後、さらにわずかに減圧しながら260 ℃で12時間の
熱処理を行い、後硬化処理した成形硬化物を得た。
Example 2 The molding material obtained in the same manner as in Example 1 was compression-molded at 180 ° C. and 300 kg / cm 2 for 5 minutes to obtain a rectangular molded body having a size of 20 mm × 40 mm × 10 mm. Obtained. The compact was then embedded in fine coke powder having a particle size of 1 mm or less, heat-treated at 230 ° C for 4 hours in an oven, and then further heat-treated at 260 ° C for 12 hours while slightly reducing the pressure. A molded cured product was obtained.

【0034】この後硬化処理品からJIS K-6911に示され
た絶縁抵抗測定用試験片を作製した後、沸騰蒸留水中に
入れて、2時間煮沸した。煮沸前後の試験片の絶縁抵抗
を、JIS K-6911にもとづき測定した結果を表2に示す。
また、この後硬化処理品 (煮沸前の試験片) を空気中で
250 ℃で500 時間熱処理した後も、煮沸後の絶縁抵抗に
大きな低下は認められなかった。
After the test piece for insulation resistance measurement shown in JIS K-6911 was prepared from the post-cured product, it was placed in boiling distilled water and boiled for 2 hours. Table 2 shows the results of measuring the insulation resistance of the test pieces before and after boiling according to JIS K-6911.
In addition, this post-cured product (test piece before boiling) was placed in air.
Even after heat treatment at 250 ° C for 500 hours, no significant decrease in insulation resistance after boiling was observed.

【0035】〔比較例2〕成形体をコークス微粉中に埋
設せずに後硬化処理を行った以外は実施例2と同様の方
法で成形硬化と後硬化処理を行った。得られた後硬化処
理試験片の煮沸前後の絶縁抵抗を表2に併せて示した
が、煮沸処理により絶縁抵抗の大幅な低下が認められ
た。また後硬化処理品(煮沸前)を空気中で250 ℃で50
0 時間熱処理すると、さらに煮沸後の絶縁抵抗の低下が
大きくなった。参考のために、後硬化処理を施さなかっ
た(圧縮成形のみ)硬化物の煮沸後および空気中250
℃、500 時間処理後の絶縁抵抗も表2にあわせて記載し
た。
[Comparative Example 2] Molding and post-curing treatment were carried out in the same manner as in Example 2 except that the post-curing treatment was carried out without embedding the compact in coke fine powder. The insulation resistance before and after boiling of the obtained post-curing test piece is also shown in Table 2, and a significant decrease in insulation resistance was observed by the boiling treatment. The post-cured product (before boiling) should be heated at 250 ° C in air at 50 ° C.
After the heat treatment for 0 hour, the insulation resistance after boiling was further decreased. For reference, after boiling the cured product without post-curing treatment (compression molding only) and in air 250
The insulation resistance after treatment at 500 ° C for 500 hours is also shown in Table 2.

【0036】[0036]

【表2】 [Table 2]

【0037】表2に示した結果から分かるように、この
発明の後硬化処理方法により得られた実施例2の硬化成
形物は、煮沸前後の絶縁抵抗の変化が非常に小さく、煮
沸後も絶縁抵抗は同じオーダーにとどまっており、耐水
性が非常によい。また高温で長時間使用しても絶縁性の
目立った低下が認められない。これに対し、比較例2で
は煮沸後に絶縁抵抗は1/1000と大きく低下し、耐水性が
低い。また、後硬化を施さない場合、高温に長時間さら
されると耐水性、絶縁性の低下が認められた。
As can be seen from the results shown in Table 2, the cured molded article of Example 2 obtained by the post-curing treatment method of the present invention has a very small change in insulation resistance before and after boiling, and has insulation even after boiling. The resistance remains on the same order and the water resistance is very good. In addition, no noticeable deterioration of insulation is observed even when used at high temperature for a long time. On the other hand, in Comparative Example 2, the insulation resistance was greatly reduced to 1/1000 after boiling and the water resistance was low. In addition, when post-curing was not performed, deterioration of water resistance and insulating property was observed when exposed to high temperature for a long time.

【0038】〔実施例3〕実施例1と同様にして得た成
形材料から、180 ℃、500 kg/cm2で5分間のトランスフ
ァー成形により、80mm×10mm×4mmの薄板状の硬化成形
体を得た。この成形体を窒素気流を流したオーブンで23
0 ℃×4時間の熱処理を施した後、さらにわずかに減圧
しながら、280 ℃で5時間の熱処理を行い、後硬化処理
した成形硬化物を得た。
[Example 3] From a molding material obtained in the same manner as in Example 1, transfer molding was carried out at 180 ° C and 500 kg / cm 2 for 5 minutes to give a 80 mm × 10 mm × 4 mm thin plate-shaped cured molded article. Obtained. This molded body is placed in an oven with a nitrogen stream for 23
After heat treatment at 0 ° C. for 4 hours, heat treatment was further performed at 280 ° C. for 5 hours under slightly reduced pressure to obtain a post-cured molded cured product.

【0039】この後硬化処理品を10%水酸化ナトリウム
水溶液に浸漬し、23℃で5週間放置した。アルカリ処理
による曲げ強さの保持率および重量変化を測定した結果
を表3に示す。
After this, the cured product was immersed in a 10% aqueous sodium hydroxide solution and left at 23 ° C. for 5 weeks. Table 3 shows the results of measuring the flexural strength retention rate and the weight change due to the alkali treatment.

【0040】〔比較例3〕後硬化処理を空気中で行った
以外は、すべて実施例3と同様の方法、条件で試験片を
作成し、アルカリ処理による曲げ強さの保持率、および
重量変化を測定した。その結果を表3に併せて示す。
[Comparative Example 3] Test pieces were prepared under the same conditions and conditions as in Example 3, except that the post-curing treatment was carried out in air. Was measured. The results are also shown in Table 3.

【0041】〔実施例4〕実施例3で得られた後硬化処
理品を、さらに空気中で250 ℃、500 時間の熱処理を行
った。この試験片を実施例3と同様の方法、条件でアル
カリ処理したときの曲げ強さの保持率、および重量変化
を測定した。その結果を表3に示す。
[Example 4] The post-cured product obtained in Example 3 was further heat-treated in air at 250 ° C for 500 hours. This test piece was subjected to the same method and conditions as in Example 3 to measure the bending strength retention rate and weight change when treated with alkali. The results are shown in Table 3.

【0042】[0042]

【表3】 [Table 3]

【0043】表3から分かるように、この発明の方法に
より酸素遮断下で後硬化処理した成形硬化物 (実施例
3) は、アルカリ処理後も曲げ強さを実質的に維持して
おり、また重量増加も最小にとどまっている。即ち、ア
ルカリに耐え、耐薬品性に優れている。一方、後硬化処
理雰囲気を空気に変えた比較例3では、アルカリ処理後
の曲げ強さが半分近くに低下し、重量増加も大きいこと
から、耐薬品性を有していないことは明らかである。さ
らに予想外なことに、この発明の方法で後硬化処理した
成形硬化物を空気中で高温に長時間さらした実施例4の
成形硬化物も、実施例3と同等の耐薬品性を保持してお
り、この発明の方法により空気遮断下で後硬化処理した
後は、高温の空気に曝されても特性の劣化が起こらなく
なることがわかる。
As can be seen from Table 3, the molded and cured product (Example 3) which was post-cured under oxygen blocking by the method of the present invention substantially maintained the flexural strength even after the alkali treatment, and Weight gain is also minimal. That is, it is resistant to alkalis and has excellent chemical resistance. On the other hand, in Comparative Example 3 in which the atmosphere of the post-curing treatment is changed to air, the bending strength after the alkali treatment is reduced to almost half, and the weight increase is large, it is clear that it does not have chemical resistance. . Even more unexpectedly, the molded and cured product of Example 4, which was obtained by subjecting the molded and cured product post-cured by the method of the present invention to high temperature in air for a long time, retained the same chemical resistance as that of Example 3. Therefore, it can be seen that after the post-curing treatment with the air shut off by the method of the present invention, the deterioration of the characteristics does not occur even when exposed to high temperature air.

【0044】[0044]

【発明の効果】以上述べた通り、この発明の方法に従っ
て後硬化処理を酸素遮断下の条件で実施することによ
り、通常の空気中 (酸化性雰囲気) での後硬化処理硬化
物に比べ、耐水性、耐薬品性、電気絶縁性が大幅に向上
した成形硬化物を製造することができる。さらに、こう
して得られた成形硬化物は、その後に高温の空気中に長
時間放置されても著しい特性の劣化を受けないので、高
温にさらされる用途にも十分に使用できる。従って、こ
の発明はCOPNA樹脂の特性を改善し、その用途を拡
大するのに有効である上、ポリイミド樹脂に匹敵する優
れた耐熱性を示し、各種物性にも優れた耐熱性樹脂を安
価に供給することを可能にし、産業上極めて有用であ
る。
As described above, by performing the post-curing treatment according to the method of the present invention under the condition of blocking oxygen, water resistance is higher than that of the post-curing treatment cured product in normal air (oxidizing atmosphere). It is possible to produce a cured product having significantly improved properties, chemical resistance, and electrical insulation. Further, the molded and cured product thus obtained does not undergo significant deterioration in properties even if it is subsequently left to stand in high temperature air for a long time, so that it can be sufficiently used in applications exposed to high temperatures. Therefore, the present invention is effective in improving the properties of COPNA resin and expanding its applications, and also exhibits excellent heat resistance comparable to that of polyimide resin and supplies heat resistant resin excellent in various physical properties at low cost. And is extremely useful in industry.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 縮合多環芳香族化合物またはこれを主成
分とする混合物と、芳香環に結合した少なくとも2個の
ヒドロキシメチル基および/またはハロメチル基を有す
る芳香族化合物からなる架橋剤とを、酸触媒の存在下に
加熱反応させて得た熱硬化性樹脂を、成形硬化後、成形
体を酸素を遮断した状態で熱処理して後硬化させること
を特徴とする、耐水性、耐薬品性および電気絶縁性の優
れた熱硬化性樹脂硬化物を得るための後硬化方法。
1. A condensed polycyclic aromatic compound or a mixture containing the same as a main component, and a cross-linking agent comprising an aromatic compound having at least two hydroxymethyl groups and / or halomethyl groups bonded to an aromatic ring, Thermosetting resin obtained by heating reaction in the presence of an acid catalyst, after molding and curing, characterized by heat-treating the molded body in a state of blocking oxygen, post-curing, water resistance, chemical resistance and A post-curing method for obtaining a thermosetting resin cured product having excellent electric insulation.
【請求項2】 前記熱硬化性樹脂に骨材を配合してから
成形硬化を行う、請求項1記載の方法。
2. The method according to claim 1, wherein the thermosetting resin is mixed with an aggregate and then molded and cured.
JP18420392A 1992-07-10 1992-07-10 Method for postcuring thermosetting resin Withdrawn JPH0625427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18420392A JPH0625427A (en) 1992-07-10 1992-07-10 Method for postcuring thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18420392A JPH0625427A (en) 1992-07-10 1992-07-10 Method for postcuring thermosetting resin

Publications (1)

Publication Number Publication Date
JPH0625427A true JPH0625427A (en) 1994-02-01

Family

ID=16149167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18420392A Withdrawn JPH0625427A (en) 1992-07-10 1992-07-10 Method for postcuring thermosetting resin

Country Status (1)

Country Link
JP (1) JPH0625427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152623A (en) * 1996-10-14 2000-11-28 Esselte N.V. Tape printing apparatus and tape holding cases
KR20210039257A (en) * 2019-10-01 2021-04-09 박종하 Nonflammable wire cladding and electric wire manufacturing method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152623A (en) * 1996-10-14 2000-11-28 Esselte N.V. Tape printing apparatus and tape holding cases
US6332725B1 (en) 1996-10-14 2001-12-25 Esselte N.V. Tape printing apparatus and tape holding cases
KR20210039257A (en) * 2019-10-01 2021-04-09 박종하 Nonflammable wire cladding and electric wire manufacturing method using the same

Similar Documents

Publication Publication Date Title
SU867317A3 (en) Thermoresistant thermosetting composition
EP0225802A2 (en) Adhesion structures and method of producing the same
EP0196160B1 (en) Thermosetting composition, method of producing a fusible thermosetting resin using this composition, and process for the production of a condensed, polynuclear aromatic hydrocarbon resin using one of the compositions
JPH0625427A (en) Method for postcuring thermosetting resin
SU419042A3 (en)
JPH0579094B2 (en)
JP2700798B2 (en) Manufacturing method of carbon and graphite materials
Mitchell et al. The effect of phenol/formaldehyde ratio on the char yield from phenolic resins
JPH0689092B2 (en) Process for producing phenolic resin modified with heavy petroleum oils or pitches
JP3031626B2 (en) Binder, impregnating agent, and method for producing them
JPH04321559A (en) Composition for carbon material, composite carbon material and their production
JP2657291B2 (en) Thermosetting resin composition containing petroleum heavy oils or pitch-modified phenolic resin and compression molded article from the modified phenolic resin
JPS6351419A (en) Production of thermosetting hydrocarbon resin
JPH0717449B2 (en) Method for producing impermeable carbon material
JPH04142359A (en) Glass fiber-reinforced thermoset resin and preparation of molding therefrom
JPS63112147A (en) Carbon and graphite bonding structure and manufacture thereof
JP3129333B2 (en) Manufacturing method of carbon material
JP2010159348A (en) Phenol resin-cured article
Guo et al. Preparation and properties of a new silicon-polytriazole resin and its composite
JPH02229823A (en) Production of thermosetting condensed polycyclic aromatic hydrocarbon resin and production of thermosetted material from the same resin
JPH01101320A (en) Production of thermosetting aromatic hydrocarbon resin
JPS6351424A (en) Production of thermosetting resin
JPS6351432A (en) Friction material and production thereof
JPS6128631B2 (en)
JPS6351421A (en) Production of thermosetting resin capable of affording high carbonization yield

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005