JPH06251764A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH06251764A
JPH06251764A JP5031722A JP3172293A JPH06251764A JP H06251764 A JPH06251764 A JP H06251764A JP 5031722 A JP5031722 A JP 5031722A JP 3172293 A JP3172293 A JP 3172293A JP H06251764 A JPH06251764 A JP H06251764A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrode plate
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5031722A
Other languages
Japanese (ja)
Inventor
Hidetoshi Tanaka
秀敏 田中
Kohei Yamamoto
浩平 山本
Yoshihisa Hino
義久 日野
Yoshiro Harada
吉郎 原田
Hideaki Nagura
秀哲 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP5031722A priority Critical patent/JPH06251764A/en
Publication of JPH06251764A publication Critical patent/JPH06251764A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve a cycle characteristic in a lithium secondary battery. CONSTITUTION:A lithium secondary battery has a power generating element having a structure formed by superposing a positive electrode plate containing LiCoO2, a separator and a negative electrode plate containing pitch coak in order upon each other and nonaqueous electrolyte. An ion conductive thin film having a component being Li3.6Si0.6P0.4O4 unrelated to electrode reaction between these positive electrode plate and negative electrode plate, is formed on the surfaces of the positive electrode plate and the negative electrode plate of this lithium secondary battery by using an RF sputtering method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、サイクル特性の向上を
図ることができるリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery capable of improving cycle characteristics.

【0002】[0002]

【従来の技術】正極活物質としてLiCoO2 等のリチ
ウム−金属複合酸化物を用い、負極としてLiイオンを
ドープ,脱ドープが可能な炭素質材料からなるリチウム
担持体を備えたいわゆるロッキングチェアー形のリチウ
ム二次電池は、放電時においてはLiイオンが正極側に
移行し、充電時においてはLiイオンが負極側に移行す
るもので、高い電池電圧および高エネルギー密度を得ら
れることから、コンピュータのメモリバックアップ用電
源など、種々の分野での利用が考えられている。
2. Description of the Related Art A lithium-metal composite oxide such as LiCoO 2 is used as a positive electrode active material, and a so-called rocking chair type having a lithium carrier made of a carbonaceous material capable of doping and dedoping Li ions as a negative electrode. In a lithium secondary battery, Li ions move to the positive electrode side during discharging and Li ions move to the negative electrode side during charging, and a high battery voltage and high energy density can be obtained. It is considered to be used in various fields such as backup power source.

【0003】この種のリチウム二次電池としては、例え
ば特開平3−22366号公報に開示されているものが
ある。
An example of this type of lithium secondary battery is disclosed in Japanese Patent Application Laid-Open No. 3-22366.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うなリチウム二次電池にあっては、本来の電池としての
電極反応以外にも、正負極表面上でLiイオンを消費し
ながら電解液の分解反応などの副次的な反応が進行する
ために、充放電サイクルを繰り返すにしたがって電極反
応に関与するLiイオンが減少し、放電容量が低下して
行くというサイクル特性劣化の問題があった。
However, in such a lithium secondary battery, in addition to the electrode reaction as the original battery, the decomposition reaction of the electrolytic solution is consumed while consuming Li ions on the positive and negative electrode surfaces. Therefore, there is a problem of deterioration of cycle characteristics that Li ions involved in the electrode reaction decrease as the charge / discharge cycle is repeated and the discharge capacity decreases as the charge / discharge cycle is repeated.

【0005】この発明は前記の問題点に鑑みてなされた
もので、その目的は、サイクル特性の劣化を抑制するこ
とができるリチウム二次電池を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide a lithium secondary battery capable of suppressing deterioration of cycle characteristics.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に本発明は、リチウム−金属複合酸化物を有する正極
と、セパレータと、リチウムのドープ,脱ドープが可能
である炭素質材料を有する負極とを順次重ね合わせた構
造を有する発電要素と非水電解液とを備えたリチウム二
次電池において、前記正極および負極の表面に該正極と
該負極との間の電極反応に関与しないイオン伝導性薄膜
が形成されていることを特徴とする。
In order to achieve the above object, the present invention provides a positive electrode having a lithium-metal composite oxide, a separator, and a negative electrode having a carbonaceous material capable of lithium doping and dedoping. In a lithium secondary battery including a power generation element having a structure in which and are sequentially stacked and a non-aqueous electrolyte, ion conductivity not involved in an electrode reaction between the positive electrode and the negative electrode on the surfaces of the positive electrode and the negative electrode. It is characterized in that a thin film is formed.

【0007】ここで、前記イオン伝導性薄膜は、RFス
パッタ法を用いて形成されることが好ましい。
Here, the ion conductive thin film is preferably formed by RF sputtering.

【0008】[0008]

【作用】正極活物質および負極の表面に電池電極反応に
関与しないイオン伝導性薄膜が形成されているので、L
iイオンは正極活物質あるいは負極と副次的な反応を起
こして不活性化されることがなく、充放電サイクルを繰
り返してもサイクル特性は劣化しない。またこの薄膜は
イオン伝導性を有しておりLiイオンの通過を支障する
ことがないので、本来の電池電極反応を妨げることはな
い。
[Function] Since the ion conductive thin film that does not participate in the battery electrode reaction is formed on the surfaces of the positive electrode active material and the negative electrode, L
The i-ion is not inactivated by causing a secondary reaction with the positive electrode active material or the negative electrode, and the cycle characteristics do not deteriorate even if the charge / discharge cycle is repeated. Further, since this thin film has ion conductivity and does not hinder passage of Li ions, it does not interfere with the original battery electrode reaction.

【0009】なお、前記イオン伝導性薄膜をRFスパッ
タ法を用いて形成すれば、正極活物質または負極の表面
上の微細な凹凸部にも、均一に薄膜を生成させることが
できる。
If the ion conductive thin film is formed by the RF sputtering method, the thin film can be uniformly formed on the fine irregularities on the surface of the positive electrode active material or the negative electrode.

【0010】[0010]

【実施例】以下、本発明の好適実施例につき添付図面を
参照して詳細に説明する。ただし、本発明は以下の実施
例のみに限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the following examples.

【0011】《実施例1》図1に、本実施例の正極板の
模式的な断面図を示す。この正極板1の製造工程は次に
示すとおりである。正極活物質として、リチウム−金属
複合酸化物10としてのLiCoO2 を86重量%、導
電剤12としての黒鉛およびアセチレンブラックをそれ
ぞれ4重量%、バインダー14としてのポリフッ化ビニ
リデン(PVDF)を6重量%混合して作製した粉体
に、N−メチル−2−ピロリジノンを100:120の
割合で混合し混練した。このようにして得られた正極活
物質のスラリーを、アルミニウム板30(本実施例にあ
っては厚さ20μm)に塗布し、80℃で1時間熱風乾
燥炉内で乾燥させ、その後圧延して充填密度を高めて正
極板1を作製した。そして、この正極板1に塗布された
正極活物質の表面に、RFスパッタ法を用いてLi3.6
Si0.6 0.4 4 なる組成を有するイオン伝導性非晶
質薄膜20を生成して被覆した。
Example 1 FIG. 1 is a schematic sectional view of the positive electrode plate of this example. The manufacturing process of the positive electrode plate 1 is as follows. As the positive electrode active material, 86 wt% of LiCoO 2 as the lithium-metal composite oxide 10, 4 wt% of graphite and acetylene black as the conductive agent 12, and 6 wt% of polyvinylidene fluoride (PVDF) as the binder 14 were used. N-methyl-2-pyrrolidinone was mixed with the powder produced by mixing in a ratio of 100: 120 and kneaded. The slurry of the positive electrode active material thus obtained was applied to an aluminum plate 30 (20 μm in thickness in this example), dried in a hot air drying oven at 80 ° C. for 1 hour, and then rolled. Positive electrode plate 1 was produced by increasing the packing density. Then, on the surface of the positive electrode active material applied to this positive electrode plate 1, Li 3.6 was used by RF sputtering.
An ion conductive amorphous thin film 20 having a composition of Si 0.6 P 0.4 O 4 was formed and coated.

【0012】他方、図2に、本実施例の負極板2の模式
的な断面図を示す。この負極板2を作製するにあたり、
まずLiイオンのドープ,脱ドープが可能である炭素質
材料40としてのピッチコークスを70重量%、導電剤
42としてのアセチレンブラックを10重量%、フッ素
系バインダー44を20重量%混合して作製した粉体
に、N−メチル−2−ピロリジノンを100:120の
割合で混合して混練した。このようにして得られた負極
合剤のスラリーを銅板60(本実施例にあっては厚さ1
0μm)に塗布して、150℃,30分間真空乾燥炉中
で乾燥させて負極板2を作製した。そして、この負極板
2にRFスパッタ法を用いてLi3.6 Si0.6 0.4
4 なる組成を有するイオン伝導性非晶質薄膜50を生成
して被覆した。
On the other hand, FIG. 2 shows a schematic sectional view of the negative electrode plate 2 of this embodiment. In producing this negative electrode plate 2,
First, it was prepared by mixing 70% by weight of pitch coke as a carbonaceous material 40 capable of doping and dedoping with Li ions, 10% by weight of acetylene black as a conductive agent 42, and 20% by weight of a fluorine-based binder 44. N-methyl-2-pyrrolidinone was mixed with the powder at a ratio of 100: 120 and kneaded. The slurry of the negative electrode mixture thus obtained was applied to a copper plate 60 (thickness 1 in this embodiment).
0 μm) and dried in a vacuum drying oven at 150 ° C. for 30 minutes to prepare negative electrode plate 2. Then, Li 3.6 Si 0.6 P 0.4 O was applied to the negative electrode plate 2 by RF sputtering.
An ion conductive amorphous thin film 50 having a composition of 4 was produced and coated.

【0013】以上のようにして得られた正極板1および
負極板2の間にポリプロピレン製マイクロポーラスフィ
ルムからなるセパレータ3を介装しスパイラル状に捲回
して発電要素とし、この発電要素を負極缶4に収装した
後エチレンカーボネートと炭酸ジエチルとの混合溶媒に
LiPF6 を1mol/l 溶解して得られた非水電解液を含
浸させて、図3に示すスパイラル形リチウム二次電池を
完成した。
A separator 3 made of a polypropylene microporous film is interposed between the positive electrode plate 1 and the negative electrode plate 2 obtained as described above and spirally wound to form a power generating element. This power generating element is used as a negative electrode can. 4, and then impregnated with a non-aqueous electrolyte obtained by dissolving 1 mol / l of LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate to complete the spiral lithium secondary battery shown in FIG. .

【0014】《実施例2》正極活物質として、リチウム
−金属複合酸化物10としてのLiNiO2 を70重量
%、導電剤12としての黒鉛およびアセチレンブラック
をそれぞれ10重量%、フッ素系バインダー14を10
重量%混合して作製した粉体に、N−メチル−2−ピロ
リジノンを100:200の割合で加えて混練した。こ
のようにして得られた正極活物質のスラリーを、アルミ
ニウム板30(本実施例にあっては厚さ20μm)に塗
布し、80℃で1時間熱風乾燥炉内で乾燥させ、その後
圧延して充填密度を高めて正極板1を作製した。そし
て、この正極板1に塗布された正極活物質の表面に、R
Fスパッタ法を用いてLi1.3 Al0.3 Ti1.7 (PO
4 3 なる組成を有するイオン伝導性非晶質薄膜20を
生成して被覆した。
Example 2 As the positive electrode active material, 70% by weight of LiNiO 2 as the lithium-metal composite oxide 10, 10% by weight of graphite and acetylene black as the conductive agent 12, and 10% by weight of the fluorine-based binder 14 were used.
N-methyl-2-pyrrolidinone was added at a ratio of 100: 200 to the powder prepared by mixing by weight% and kneaded. The slurry of the positive electrode active material thus obtained was applied to an aluminum plate 30 (20 μm in thickness in this example), dried in a hot air drying oven at 80 ° C. for 1 hour, and then rolled. Positive electrode plate 1 was produced by increasing the packing density. Then, on the surface of the positive electrode active material applied to the positive electrode plate 1, R
Li 1.3 Al 0.3 Ti 1.7 (PO
4 ) An ion conductive amorphous thin film 20 having a composition of 3 was produced and coated.

【0015】他方、Liイオンのドープ,脱ドープが可
能である炭素質材料40としての天然黒鉛を70重量
%、導電剤42としてのアセチレンブラックを10重量
%、フッ素系バインダー44を20重量%混合して作製
した粉体に、N−メチル−2−ピロリジノンを100:
120の割合で混合して混練した。このようにして得ら
れた負極合剤のスラリーを銅板60(本実施例にあって
は厚さ10μm)に塗布して、150℃,30分間真空
乾燥炉中で乾燥させて負極板2を作製した。そして、こ
の負極板2にRFスパッタ法を用いてLi1.3 Al0.3
Ti1.7 (PO43 なる組成を有するイオン伝導性非
晶質薄膜50を生成して被覆した。
On the other hand, 70% by weight of natural graphite as a carbonaceous material 40 capable of doping and dedoping with Li ions, 10% by weight of acetylene black as a conductive agent 42, and 20% by weight of a fluorine-based binder 44 are mixed. N-methyl-2-pyrrolidinone was added to the powder produced by 100:
The mixture was mixed and kneaded at a ratio of 120. The slurry of the negative electrode mixture thus obtained is applied to a copper plate 60 (thickness 10 μm in this embodiment) and dried in a vacuum drying oven at 150 ° C. for 30 minutes to prepare the negative electrode plate 2. did. Then, Li 1.3 Al 0.3 is applied to the negative electrode plate 2 by the RF sputtering method.
An ion conductive amorphous thin film 50 having a composition of Ti 1.7 (PO 4 ) 3 was produced and coated.

【0016】以上のようにして得られた正極板1および
負極板2を用いて、前記実施例1と同様にスパイラル形
リチウム二次電池を完成した。
Using the positive electrode plate 1 and the negative electrode plate 2 obtained as described above, a spiral type lithium secondary battery was completed in the same manner as in Example 1.

【0017】《実施例3》正極活物質として、リチウム
−金属複合酸化物10としてのLiMn2 4 を85重
量%、導電剤12としてのアセチレンブラックを7重量
%、フッ素系バインダー14を8重量%混合して作製し
た粉体に、N−メチル−2−ピロリジノンを100:1
20の割合で加えて混練した。このようにして得られた
正極活物質のスラリーを、アルミニウム板30(本実施
例にあっては厚さ20μm)に塗布し、80℃,1時間
熱風乾燥炉内で乾燥させ、その後圧延して充填密度を高
めて正極板1を作製した。そして、この正極板1に塗布
された正極活物質の表面に、RFスパッタ法を用いてL
1.3 Al0.3 Zr1.9 (PO4 3 なる組成を有する
イオン伝導性非晶質薄膜20を生成して被覆した。
Example 3 As the positive electrode active material, 85 wt% of LiMn 2 O 4 as the lithium-metal composite oxide 10, 7 wt% of acetylene black as the conductive agent 12, and 8 wt% of the fluorine-based binder 14 were used. %, N-methyl-2-pyrrolidinone was added to the powder prepared by mixing 100%.
20 parts were added and kneaded. The positive electrode active material slurry thus obtained was applied to an aluminum plate 30 (thickness 20 μm in this example), dried in a hot air drying oven at 80 ° C. for 1 hour, and then rolled. Positive electrode plate 1 was produced by increasing the packing density. Then, on the surface of the positive electrode active material applied to this positive electrode plate 1, L
An ion conductive amorphous thin film 20 having a composition of i 1.3 Al 0.3 Zr 1.9 (PO 4 ) 3 was produced and coated.

【0018】他方、Liイオンのドープ,脱ドープが可
能である炭素質材料40としての天然黒鉛を70重量
%、導電剤42としてのアセチレンブラックを10重量
%、フッ素系バインダー44を20重量%混合して作製
した粉体に、N−メチル−2−ピロリジノンを100:
120の割合で混合して混練した。このようにして得ら
れた負極合剤のスラリーを、銅板60(本実施例にあっ
ては厚さ10μm)に塗布して、150℃,30分間真
空乾燥炉中で乾燥させて負極板2を作製した。そして、
この負極板2にRFスパッタ法を用いてLi1.3 Al
0.3 Zr1.9 (PO4 3 なる組成を有するイオン伝導
性非晶質薄膜50を生成して被覆した。
On the other hand, 70% by weight of natural graphite as a carbonaceous material 40 capable of doping and dedoping with Li ions, 10% by weight of acetylene black as a conductive agent 42, and 20% by weight of a fluorine-based binder 44 are mixed. N-methyl-2-pyrrolidinone was added to the powder produced by 100:
The mixture was mixed and kneaded at a ratio of 120. The slurry of the negative electrode mixture thus obtained was applied to a copper plate 60 (thickness 10 μm in this example) and dried in a vacuum drying oven at 150 ° C. for 30 minutes to form the negative electrode plate 2. It was made. And
This negative electrode plate 2 was coated with Li 1.3 Al by RF sputtering.
An ion conductive amorphous thin film 50 having a composition of 0.3 Zr 1.9 (PO 4 ) 3 was produced and coated.

【0019】以上のようにして得られた正極板1および
負極板2を用いて、前記実施例1,2と同様にスパイラ
ル形リチウム二次電池を完成した。
Using the positive electrode plate 1 and the negative electrode plate 2 obtained as described above, a spiral type lithium secondary battery was completed in the same manner as in Examples 1 and 2.

【0020】次に、本実施例の作用について説明する。
図4〜図6は、前記実施例1〜3に係るスパイラル形リ
チウム二次電池のサイクル特性に対して従来の同形電池
のサイクル特性を比較例として示したグラフである。こ
こで比較例の電池とは、イオン伝導性非晶質薄膜20,
50がそれぞれ設けられていない正極板と負極板とを用
い、その他は実施例1〜3の電池と同様の仕様で完成さ
れたスパイラル形リチウム二次電池を示す。このグラフ
から明らかなように、本願発明の実施例1〜3に係る電
池は、比較例の従来電池と異なり充放電サイクルの反復
に伴う放電容量の減少、すなわちサイクル特性の劣化が
ほとんどないことが分かる。また、完成後の初期放電容
量自体も正極板および負極板にイオン伝導性非晶質薄膜
20,50が設けられていない比較例に比べて増加して
いる。
Next, the operation of this embodiment will be described.
4 to 6 are graphs showing, as comparative examples, the cycle characteristics of the conventional same-type battery with respect to the cycle characteristics of the spiral type lithium secondary batteries according to Examples 1 to 3 above. Here, the battery of the comparative example means the ion conductive amorphous thin film 20,
A spiral type lithium secondary battery completed by using the same specifications as those of the batteries of Examples 1 to 3 except that a positive electrode plate and a negative electrode plate not provided with 50 are used. As is clear from this graph, the batteries according to Examples 1 to 3 of the invention of the present application, unlike the conventional battery of the comparative example, have almost no decrease in discharge capacity with repeated charge / discharge cycles, that is, almost no deterioration in cycle characteristics. I understand. Also, the initial discharge capacity itself after completion is increased as compared with the comparative example in which the ion conductive amorphous thin films 20 and 50 are not provided on the positive electrode plate and the negative electrode plate.

【0021】これは、正極活物質および負極合剤の表面
を、電池電極反応とは直接関与しないイオン伝導性非晶
質薄膜で被覆したことによって、Liイオンの消費を伴
う電解液の分解反応や正極活物質および負極合剤表面上
でのLiイオンの不活性化を伴う副次的な反応が防止さ
れるためと推定される。
This is because the surfaces of the positive electrode active material and the negative electrode mixture are coated with an ion conductive amorphous thin film that is not directly involved in the battery electrode reaction, so that the decomposition reaction of the electrolytic solution accompanied by the consumption of Li ions or It is presumed that this is because a side reaction accompanied by inactivation of Li ions on the surface of the positive electrode active material and the negative electrode mixture is prevented.

【0022】[0022]

【発明の効果】以上詳細に説明したように、本発明によ
れば、正極活物質および負極合剤の表面に電池電極反応
に関与しないイオン伝導性薄膜が形成されているので、
Liイオンは正極活物質あるいは負極合剤と副次的な反
応を起こしていたずらに消費されたり不活性化されるこ
とがなく、サイクル特性の劣化を抑制することができ
る。
As described in detail above, according to the present invention, since the ion conductive thin film that does not participate in the battery electrode reaction is formed on the surface of the positive electrode active material and the negative electrode mixture,
Li ions do not cause a secondary reaction with the positive electrode active material or the negative electrode mixture and are not consumed or deactivated without being mischievous, and deterioration of cycle characteristics can be suppressed.

【0023】さらに、前記イオン伝導性薄膜をRFスパ
ッタ法を用いて形成すれば、正極活物質または負極合剤
表面上の微細な凹凸部にも、均一に薄膜を生成させるこ
とができ、サイクル特性の劣化をより確実に抑制するこ
とができる。
Further, if the ion conductive thin film is formed by the RF sputtering method, the thin film can be uniformly formed on the fine irregularities on the surface of the positive electrode active material or the negative electrode mixture, and the cycle characteristics can be improved. Can be more reliably suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明に係る正極板の一実施例の断面を示す
模式図である。
FIG. 1 is a schematic view showing a cross section of an embodiment of a positive electrode plate according to the present invention.

【図2】本願発明の係る負極板の一実施例の断面を示す
模式図である。
FIG. 2 is a schematic view showing a cross section of an embodiment of a negative electrode plate according to the present invention.

【図3】スパイラル形リチウム二次電池の断面図であ
る。
FIG. 3 is a cross-sectional view of a spiral type lithium secondary battery.

【図4】本願第一実施例に係るスパイラル形リチウム二
次電池のサイクル特性と従来の同形電池のサイクル特性
とを比較して示すグラフである。
FIG. 4 is a graph showing a comparison between the cycle characteristics of the spiral lithium secondary battery according to the first embodiment of the present application and the cycle characteristics of a conventional same-shaped battery.

【図5】本願第二実施例に係るスパイラル形リチウム二
次電池のサイクル特性と従来の同形電池のサイクル特性
とを比較して示すグラフである。
FIG. 5 is a graph showing the cycle characteristics of the spiral type lithium secondary battery according to the second embodiment of the present application in comparison with the cycle characteristics of a conventional same-type battery.

【図6】本願第三実施例に係るスパイラル形リチウム二
次電池のサイクル特性と従来の同形電池のサイクル特性
とを比較して示すグラフである。
FIG. 6 is a graph showing the cycle characteristics of the spiral type lithium secondary battery according to the third embodiment of the present application in comparison with the cycle characteristics of a conventional same-type battery.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 負極缶 10 リチウム−金属複合酸化物 40 炭素質材料(リチウムのドープ,脱ドープが可能
な)
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Negative electrode can 10 Lithium-metal composite oxide 40 Carbonaceous material (lithium can be doped and dedoped)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 吉郎 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (72)発明者 名倉 秀哲 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiro Harada 5-311, Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. (72) Hidenori Nagura 5-36-11 Shinbashi, Minato-ku, Tokyo Fuji Electrochemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム−金属複合酸化物を有する正極
と、セパレータと、リチウムのドープ,脱ドープが可能
である炭素質材料を有する負極とを順次重ね合わせた構
造を有する発電要素と非水電解液とを備えたリチウム二
次電池において、 前記正極および負極の表面に該正極と該負極との間の電
極反応に関与しないイオン伝導性薄膜が形成されている
ことを特徴とするリチウム二次電池。
1. A power generation element having a structure in which a positive electrode having a lithium-metal composite oxide, a separator, and a negative electrode having a carbonaceous material capable of lithium doping and dedoping are sequentially stacked, and a non-aqueous electrolysis. A lithium secondary battery including a liquid, wherein an ion conductive thin film that does not participate in an electrode reaction between the positive electrode and the negative electrode is formed on the surfaces of the positive electrode and the negative electrode. .
【請求項2】 前記イオン伝導性薄膜がRFスパッタ法
を用いて形成されることを特徴とする請求項1に記載の
リチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the ion conductive thin film is formed by using an RF sputtering method.
JP5031722A 1993-02-22 1993-02-22 Lithium secondary battery Pending JPH06251764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5031722A JPH06251764A (en) 1993-02-22 1993-02-22 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5031722A JPH06251764A (en) 1993-02-22 1993-02-22 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH06251764A true JPH06251764A (en) 1994-09-09

Family

ID=12338945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5031722A Pending JPH06251764A (en) 1993-02-22 1993-02-22 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH06251764A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290773A (en) * 1993-03-30 1994-10-18 Nippondenso Co Ltd Lithium secondary battery
JPH09171813A (en) * 1995-12-21 1997-06-30 Sony Corp Nonaqueous electrolyte battery
WO1998012761A1 (en) * 1996-09-23 1998-03-26 Valence Technology, Inc. Lithium-containing, lithium-intercalating phosphates and their use as the positive or negative electrode material in a lithium secondary battery
JPH1196993A (en) * 1997-09-22 1999-04-09 Toyota Motor Corp Negative electrode for lithium ion secondary battery
JP2000048810A (en) * 1998-07-31 2000-02-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2004087251A (en) * 2002-08-26 2004-03-18 Nec Corp Nonaqueous electrolytic solution secondary battery
US6720110B2 (en) 1996-09-23 2004-04-13 Valence Technology, Inc. Lithium-containing phosphates, method of preparation, and uses thereof
US6777132B2 (en) 2000-04-27 2004-08-17 Valence Technology, Inc. Alkali/transition metal halo—and hydroxy-phosphates and related electrode active materials
US6855462B2 (en) 2000-04-27 2005-02-15 Valence Technology, Inc. Lithium metal fluorophosphate materials and preparation thereof
US6884544B2 (en) 2000-01-18 2005-04-26 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6890686B1 (en) 1999-03-23 2005-05-10 Valence Technology, Inc. Lithium-containing phosphate active materials
US6964827B2 (en) 2000-04-27 2005-11-15 Valence Technology, Inc. Alkali/transition metal halo- and hydroxy-phosphates and related electrode active materials
US7482097B2 (en) 2002-04-03 2009-01-27 Valence Technology, Inc. Alkali-transition metal phosphates having a +3 valence non-transition element and related electrode active materials
US7524584B2 (en) 2000-04-27 2009-04-28 Valence Technology, Inc. Electrode active material for a secondary electrochemical cell
US8057769B2 (en) 2000-04-27 2011-11-15 Valence Technology, Inc. Method for making phosphate-based electrode active materials
JP2017073929A (en) * 2015-10-09 2017-04-13 株式会社デンソー Charge/discharge control device and battery pack device
JP2017527970A (en) * 2014-09-09 2017-09-21 シオン・パワー・コーポレーション Protective layer in lithium ion electrochemical cell and associated electrode and method
JP2018170099A (en) * 2017-03-29 2018-11-01 Tdk株式会社 Active material, electrode, and lithium ion secondary battery
JP2019175632A (en) * 2018-03-28 2019-10-10 Tdk株式会社 Active material, electrode, and lithium ion secondary battery
JP2020021642A (en) * 2018-08-01 2020-02-06 本田技研工業株式会社 Negative electrode active material layer, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290773A (en) * 1993-03-30 1994-10-18 Nippondenso Co Ltd Lithium secondary battery
JPH09171813A (en) * 1995-12-21 1997-06-30 Sony Corp Nonaqueous electrolyte battery
WO1998012761A1 (en) * 1996-09-23 1998-03-26 Valence Technology, Inc. Lithium-containing, lithium-intercalating phosphates and their use as the positive or negative electrode material in a lithium secondary battery
US6720110B2 (en) 1996-09-23 2004-04-13 Valence Technology, Inc. Lithium-containing phosphates, method of preparation, and uses thereof
JPH1196993A (en) * 1997-09-22 1999-04-09 Toyota Motor Corp Negative electrode for lithium ion secondary battery
JP2000048810A (en) * 1998-07-31 2000-02-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US6890686B1 (en) 1999-03-23 2005-05-10 Valence Technology, Inc. Lithium-containing phosphate active materials
US6884544B2 (en) 2000-01-18 2005-04-26 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US7214448B2 (en) 2000-04-27 2007-05-08 Valence Technology, Inc. Alkali/transition metal halo-and hydroxy-phosphates and related electrode active materials
US8057769B2 (en) 2000-04-27 2011-11-15 Valence Technology, Inc. Method for making phosphate-based electrode active materials
US6777132B2 (en) 2000-04-27 2004-08-17 Valence Technology, Inc. Alkali/transition metal halo—and hydroxy-phosphates and related electrode active materials
US6964827B2 (en) 2000-04-27 2005-11-15 Valence Technology, Inc. Alkali/transition metal halo- and hydroxy-phosphates and related electrode active materials
US6855462B2 (en) 2000-04-27 2005-02-15 Valence Technology, Inc. Lithium metal fluorophosphate materials and preparation thereof
US7261977B2 (en) 2000-04-27 2007-08-28 Valence Technology, Inc. Lithium metal fluorophosphate and preparation thereof
US7270915B2 (en) 2000-04-27 2007-09-18 Valence Technology, Inc. Alkali/transition metal HALO-and hydroxy-phosphates and related electrode active materials
US7524584B2 (en) 2000-04-27 2009-04-28 Valence Technology, Inc. Electrode active material for a secondary electrochemical cell
US7482097B2 (en) 2002-04-03 2009-01-27 Valence Technology, Inc. Alkali-transition metal phosphates having a +3 valence non-transition element and related electrode active materials
JP2004087251A (en) * 2002-08-26 2004-03-18 Nec Corp Nonaqueous electrolytic solution secondary battery
JP2017527970A (en) * 2014-09-09 2017-09-21 シオン・パワー・コーポレーション Protective layer in lithium ion electrochemical cell and associated electrode and method
US11038178B2 (en) 2014-09-09 2021-06-15 Sion Power Corporation Protective layers in lithium-ion electrochemical cells and associated electrodes and methods
JP2017073929A (en) * 2015-10-09 2017-04-13 株式会社デンソー Charge/discharge control device and battery pack device
JP2018170099A (en) * 2017-03-29 2018-11-01 Tdk株式会社 Active material, electrode, and lithium ion secondary battery
JP2019175632A (en) * 2018-03-28 2019-10-10 Tdk株式会社 Active material, electrode, and lithium ion secondary battery
JP2020021642A (en) * 2018-08-01 2020-02-06 本田技研工業株式会社 Negative electrode active material layer, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JPH06251764A (en) Lithium secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
KR102378583B1 (en) Separator Having Coating Layer of Lithium-Containing Composite, and Lithium Secondary Battery Comprising the Separator and Preparation Method Thereof
US20050186474A1 (en) Positive electrodes for lithium batteries and their methods of fabrication
JPH08236114A (en) Lithium secondary battery
KR20080029479A (en) Cathode active material, lithium secondary battery comprising same, and hybrid capacitor comprising same
US20110236748A1 (en) Current collector for non-aqueous electrolyte secondary battery, electrode, non-aqueous electrolyte secondary battery, and method for producing the same
JPH10162823A (en) Non-aqueous secondary battery
JPH07153495A (en) Secondary battery
JPH06349493A (en) Secondary battery
JP3693827B2 (en) Electrode plate fabrication method
US20010031399A1 (en) Positive active material for rechargeable lithium battery and method of preparing same
JP2001250536A (en) Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JPH07153496A (en) Secondary battery
JP3508411B2 (en) Lithium ion secondary battery
JP2000294291A (en) Polymer electrolyte battery
JPH08171936A (en) Lithium secondary battery
WO2017179395A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP3292777B2 (en) Manufacturing method of lithium secondary battery
KR102475433B1 (en) Anode, Preparation Method Thereof and Lithium Secandary Battery Comprising Same
JP3451602B2 (en) Non-aqueous electrolyte battery
JPH06275273A (en) Nonaqueous secondary battery
JP2005071617A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JPH10112307A (en) Nonaqueous electrolyte secondary battery
JP3172444B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with the same