JPH06250204A - Spatial optical modulation element - Google Patents

Spatial optical modulation element

Info

Publication number
JPH06250204A
JPH06250204A JP6352793A JP6352793A JPH06250204A JP H06250204 A JPH06250204 A JP H06250204A JP 6352793 A JP6352793 A JP 6352793A JP 6352793 A JP6352793 A JP 6352793A JP H06250204 A JPH06250204 A JP H06250204A
Authority
JP
Japan
Prior art keywords
light
reading out
mirror
film
spatial light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6352793A
Other languages
Japanese (ja)
Inventor
Masanobu Shigeta
正信 茂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP6352793A priority Critical patent/JPH06250204A/en
Publication of JPH06250204A publication Critical patent/JPH06250204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To inexpensively produce a bright projector, etc., which have a high resolution and high contrast ratio and are compact without always requiring provision of light shielding films and thick dielectric mirrors by using a wavelength selection mirror which reflects unnecessary light on the surface of the element. CONSTITUTION:The wavelength selection mirror 10 which reflects the light of the unnecessary wavelength region as reading out light is formed on the reading out light incident surface of a transparent substrate 8 of the spatial optical modulation element constituted of at least a reading out side transparent metal 8, a reading out side transparent electrode 7, optical modulating element 6, reading out light reflection layer 5, photoconductor layer 3 and writing side transparent electrode 2 successively laminated and provided on the transparent substrate 8. The photoconductor layer 3 is formed out of hydrogen amorphous silicon and the wavelength selection mirror 10 is formed as an IR reflection mirror. The spectral reflectivity characteristic of the wavelength selection mirror 10 exhibits the effect similar to the effect obtd. by imparting an antireflection film at <=1% reflectivity near 540nm and has nearly 100% reflectivity to near IR light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空間光変調素子に係
り、特にビデオプロジェクタなどに使用されて、非常に
強い読出し光によって情報が読み出されるタイプの空間
光変調素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spatial light modulator, and more particularly to a spatial light modulator of a type which is used in a video projector or the like and in which information is read by very strong read light.

【0002】[0002]

【従来の技術】空間光変調素子は、インコヒーレント・
コヒーレント光変換またはその逆の変換が可能で、デー
タの並列処理や画像の直接演算処理などに対する応用が
考えられている。また、光の強度増幅を行うようにすれ
ば、ビデオプロジェクタなどの表示システムにも応用す
ることができる。このような空間光変調素子としては、
例えばSID 86 DIGESTp379〜p382
(1986)に開示されたものがあり、図4に示すよう
な構成となっている。同図において、変調材料として液
晶が用いられた光変調層6の書き込み光入射側には、誘
電体ミラー5、不導体の遮光膜4が各々順に積層して形
成されている。そして、この遮光膜4の更に書き込み光
側には、光導電体層3が積層されており、更にその外側
には、透明電極2、ガラス基板1が各々積層されてい
る。他方、光変調層6の読み出し光入射側には、透明電
極7、ガラス基板8が各々積層されている。そして、透
明電極2、7間には、適宜の駆動用電源9が接続されて
いる。
2. Description of the Related Art Spatial light modulators are incoherent
Coherent light conversion or vice versa is possible, and its application to parallel processing of data and direct arithmetic processing of images is considered. Further, if the light intensity is amplified, it can be applied to a display system such as a video projector. As such a spatial light modulator,
For example, SID 86 DIGEST p379-p382
(1986), which has a configuration as shown in FIG. In the figure, a dielectric mirror 5 and a non-conductive light-shielding film 4 are sequentially laminated on the writing light incident side of a light modulation layer 6 using liquid crystal as a modulation material. The photoconductor layer 3 is laminated further on the writing light side of the light shielding film 4, and the transparent electrode 2 and the glass substrate 1 are further laminated on the outer side thereof. On the other hand, the transparent electrode 7 and the glass substrate 8 are laminated on the reading light incident side of the light modulation layer 6. An appropriate driving power source 9 is connected between the transparent electrodes 2 and 7.

【0003】以上のような空間光変調素子の概略の作用
を説明すると、所望される情報を含んだ書き込み光は、
矢印F1で示すように素子の光導電体層3に入射する。
光導電体層3では、書き込み光の強度に応じてその導電
性が変化し、書き込み光の強度分布に対応した導電性分
布となる。このため、駆動用電源9の電圧がその導電性
分布、すなわち書き込み光の強度分布に対応して光変調
層6に印加されるようになる。他方、光変調層6には、
矢印F2で示すように読み出し光が入射する。ところ
が、この光変調層6には、書き込み光の強度分布に対応
した電界が影響しており、この電界分布に対応して読み
出し光の光変調が行われることとなる。変調を受けた読
み出し光は、誘電体ミラー5によって反射され矢印F3
で示すように出力される。なお、遮光膜4は、誘電体ミ
ラー5を突き抜けた読み出し光が光導電体層3に達して
電荷像を乱し、読み出し画像のコントラストの低下が起
こらないようにするためのもので、必要に応じて設けら
れるものであり、図3(A),(B)は、誘電体ミラー
5自体に遮光機能を付与することにより遮光膜を省略し
た構成の空間光変調素子を示すものである。
To explain the general operation of the spatial light modulator as described above, the writing light containing the desired information is
It is incident on the photoconductor layer 3 of the device as indicated by arrow F1.
In the photoconductor layer 3, the conductivity changes according to the intensity of the writing light, and the conductivity distribution corresponds to the intensity distribution of the writing light. Therefore, the voltage of the driving power source 9 is applied to the light modulation layer 6 in accordance with its conductivity distribution, that is, the intensity distribution of the writing light. On the other hand, in the light modulation layer 6,
Readout light enters as indicated by arrow F2. However, the light modulation layer 6 is affected by the electric field corresponding to the intensity distribution of the writing light, and the read light is optically modulated in accordance with the electric field distribution. The read light that has been modulated is reflected by the dielectric mirror 5 and is indicated by an arrow F3.
It is output as shown in. The light-shielding film 4 is provided to prevent the read light penetrating the dielectric mirror 5 from reaching the photoconductor layer 3 and disturbing the charge image, so that the contrast of the read image does not deteriorate. 3A and 3B show a spatial light modulator having a structure in which the light shielding film is omitted by providing the dielectric mirror 5 itself with a light shielding function.

【0004】以上のように、反射型の空間光変調素子で
は、読出し光の反射手段が不可欠である。また、かかる
反射手段として、金属膜などの導電性材料が原理上使え
ないため、誘電体ミラー5が使用されている。この誘電
体ミラー5は、一般に低屈折率膜と高屈折率膜とを、読
出し光の波長λに対してλ/4の光学厚みで交互に積層
した構造となっている。一般に、このような誘電体ミラ
ー5では、各膜の積層数が増すほど読出し光の反射率が
向上する。別言すれば、読出し光の透過率が下がる。し
かし、その分光特性上の設定波長λをはずれると、反射
率が下がり透過率は上がるようになる。このため、読出
し光が単色光でない場合は、弱い光であっても遮光膜4
が必要になる。なお、積層数を大幅に増加すれば読出し
光の反射率を上げることも可能だが、生産性は非常に悪
くなり、厚みも数μm以上となる。特に、ビデオプロジ
ェクタなどのように非常に強い読出し光を使う場合には
1〜10μmもの厚い遮光膜が不可欠となる。
As described above, in the reflection type spatial light modulator, the reading light reflecting means is indispensable. In addition, since a conductive material such as a metal film cannot be used as the reflecting means in principle, the dielectric mirror 5 is used. This dielectric mirror 5 generally has a structure in which low refractive index films and high refractive index films are alternately laminated with an optical thickness of λ / 4 with respect to the wavelength λ of the read light. Generally, in such a dielectric mirror 5, the read light reflectance is improved as the number of laminated layers of each film is increased. In other words, the transmittance of read light is reduced. However, when the wavelength deviates from the set wavelength λ on the spectral characteristic, the reflectance decreases and the transmittance increases. Therefore, when the reading light is not monochromatic light, the light-shielding film 4 can be used even if it is weak light.
Will be required. It is possible to increase the reflectance of the reading light by significantly increasing the number of stacked layers, but the productivity becomes extremely poor and the thickness becomes several μm or more. In particular, when a very strong read light is used as in a video projector, a thick light-shielding film having a thickness of 1 to 10 μm is essential.

【0005】以下、従来例に係る空間光変調素子のう
ち、誘電体ミラー自体に遮光機能を付与することにより
遮光膜を省略した構成の空間光変調素子(従来例1)
と、遮光膜を用いた構成の空間光変調素子(従来例2)
の詳細な構成及び概略の製造方法について順に説明す
る。尚、図3(A)は従来例1に係る空間光変調素子の
全体構成を示す斜視図であり、同図(B)は、その拡大
部分断面図である。また、図4(A)は従来例2に係る
空間光変調素子の全体構成を示す斜視図であり、同図
(B)は、その拡大部分断面図である。
Of the spatial light modulators according to the conventional example, the spatial light modulator having the structure in which the light shielding film is omitted by providing the dielectric mirror itself with a light shielding function (conventional example 1).
And a spatial light modulator using a light-shielding film (conventional example 2)
The detailed configuration and the manufacturing method will be described in order. 3A is a perspective view showing the entire configuration of the spatial light modulator according to Conventional Example 1, and FIG. 3B is an enlarged partial sectional view thereof. Further, FIG. 4A is a perspective view showing the entire configuration of the spatial light modulator according to Conventional Example 2, and FIG. 4B is an enlarged partial sectional view thereof.

【0006】(従来例1)図3に示す従来例1にあって
は、まず、ITO膜が透明電極2として形成されたガラ
ス基板1上にCVD法により、a−Si:H光導電膜3
を20μm成膜する。この上に光学膜厚λ/4(膜厚d
=λ/n n:膜の屈折率)のSiO2 膜5aとSi膜
5bを交互に8層づつ積層し、更に光学膜厚λ/4のS
iO2 膜5aとTiO2 膜5cを交互に2層づつ積層
し、最後に光学膜厚λ/2のSiO2膜5dを1層加
え、遮光膜を兼ねた誘電体ミラー5を作製する。尚、こ
こでSiO2 膜およびTiO2 膜の成膜は酸素イオンビ
ームアシスト蒸着法によって行われ、Si膜の成膜は真
空蒸着法によって行われる。また、ここではλ=540
nmとした。こうして得られた透明電極2、光導電膜
3、誘電体ミラー5が順次形成されたガラス基板1と、
もう一つの透明電極(ITO膜)7が形成されたガラス
基板8とに垂直配向処理を施して、図示しないスペーサ
を介して張り合わせ、ネマチック液晶(チッソ社製 E
N−38)を注入して、図3(A)の空間光変調素子を
作製する。
(Conventional Example 1) In Conventional Example 1 shown in FIG. 3, first, an a-Si: H photoconductive film 3 is formed on a glass substrate 1 on which an ITO film is formed as a transparent electrode 2 by a CVD method.
Is formed to a thickness of 20 μm. On top of this, the optical film thickness λ / 4 (film thickness d
= Λ / n n: refractive index of the film), 8 layers of SiO 2 films 5a and 5b of Si films are alternately laminated, and S of an optical film thickness λ / 4 is further laminated.
Two layers of the iO 2 film 5a and the TiO 2 film 5c are alternately laminated, and finally one layer of the SiO 2 film 5d having an optical film thickness λ / 2 is added to fabricate the dielectric mirror 5 which also serves as a light shielding film. Here, the SiO 2 film and the TiO 2 film are formed by the oxygen ion beam assisted vapor deposition method, and the Si film is formed by the vacuum vapor deposition method. Further, here, λ = 540
nm. The glass substrate 1 on which the transparent electrode 2, the photoconductive film 3, and the dielectric mirror 5 thus obtained are sequentially formed,
The glass substrate 8 on which another transparent electrode (ITO film) 7 is formed is subjected to a vertical alignment treatment, and is bonded via a spacer (not shown) to form a nematic liquid crystal (E manufactured by Chisso Corporation).
N-38) is injected to fabricate the spatial light modulator of FIG.

【0007】(従来例2)図4に示す従来例2にあって
は、まず、ITO膜が透明電極2として形成されたガラ
ス基板1上にCVD法により、a−Si:H光導電膜3
を20μm成膜する。この上にCdTeの遮光膜4をス
パッタ法により1.5μm形成する。更にその上に光学
膜厚λ/4(λ=540nm)のSiO2 膜5aとTi
2 膜5eを交互に6層づつ積層し、最後に光学膜厚λ
/2のSiO2 膜5dを1層加え誘電体ミラー5を作製
する。尚、SiO2 膜およびTiO2 膜の成膜は酸素イ
オンビームアシスト蒸着法によって行われる点について
は従来例1と同様である。こうして得られた透明電極
2、光導電膜3、遮光膜4、誘電体ミラー5が順次形成
されたガラス基板1と、もう一つの透明電極(ITO
膜)7が形成されたガラス基板8とに垂直配向処理を施
して、図示しないスペーサを介して張り合わせ、ネマチ
ック液晶(チッソ社製 EN−38)を注入して、図4
(A)の空間光変調素子を作製する。
(Conventional Example 2) In Conventional Example 2 shown in FIG. 4, first, an a-Si: H photoconductive film 3 is formed on a glass substrate 1 on which an ITO film is formed as a transparent electrode 2 by a CVD method.
Is formed to a thickness of 20 μm. A CdTe light-shielding film 4 is formed thereon by sputtering to a thickness of 1.5 μm. Further thereon, an SiO 2 film 5a having an optical film thickness of λ / 4 (λ = 540 nm) and Ti are formed.
Six layers of O 2 films 5e are alternately laminated, and finally the optical film thickness λ
A dielectric mirror 5 is manufactured by adding one layer of a SiO 2 film 5d of / 2. It should be noted that the SiO 2 film and the TiO 2 film are formed by the oxygen ion beam assisted vapor deposition method as in the case of the conventional example 1. The glass substrate 1 on which the transparent electrode 2, the photoconductive film 3, the light shielding film 4, and the dielectric mirror 5 thus obtained are sequentially formed, and another transparent electrode (ITO).
The glass substrate 8 on which the film 7 is formed is subjected to a vertical alignment treatment, and is bonded through a spacer (not shown), and a nematic liquid crystal (EN-38 manufactured by Chisso Co.) is injected, and then, as shown in FIG.
The spatial light modulator of (A) is manufactured.

【0008】[0008]

【発明が解決しようとする課題】しかし、上述したよう
な従来の空間光変調素子では、必ずしも充分な性能が得
られない場合がある。特に、ビデオプロジェクタ等で
は、明るい投影画像を得るために非常に強い白色光光源
をダイクロイックミラー等で3原色に分離した光が読出
し光として用いられるが、このようにして分離された光
には色再現の為には必ずしも必要がなく、むしろ空間光
変調素子にとって有害な波長域成分が含まれている。特
に赤外域の光は、光導電体層に水素化アモルファスシリ
コン(a−Si:H)膜等の近赤外に高い感度を持つ材
料を使用する場合には有害となる。即ち、この赤外光が
誘電体ミラーを透過して光導電体層に至るのを防止する
ために遮光膜や誘電体ミラーの厚みを非常に厚くする
と、光導電体層3導電性変化に基づいて光変調層6に印
加される電圧の損失が大きくなる。従って、電源9の駆
動電圧は増大し、また、読出し画像のコントラストが低
下することになる。更に、光導電体層3における電界の
横方向の広がりが大きくなり、読出し画像の解像度が低
下するという不都合も生ずるばかりか、このような遮光
層や誘電体ミラーは光を吸収して遮光作用をなすもので
あるため、熱線である赤外光が吸収されることにより空
間光変調素子内で発熱し空間光変調素子の温度が上昇し
てしまうという問題がある。
However, the conventional spatial light modulator as described above may not always obtain sufficient performance. In particular, in a video projector or the like, in order to obtain a bright projected image, a very strong white light source is separated into three primary colors by a dichroic mirror or the like and used as the reading light. It is not always necessary for reproduction, but rather contains a wavelength range component harmful to the spatial light modulator. In particular, light in the infrared region is harmful when a material having high sensitivity to near infrared rays such as hydrogenated amorphous silicon (a-Si: H) film is used for the photoconductor layer. That is, if the thickness of the light-shielding film or the dielectric mirror is made extremely large in order to prevent this infrared light from passing through the dielectric mirror and reaching the photoconductor layer, the change in conductivity of the photoconductor layer 3 is caused. As a result, the loss of the voltage applied to the light modulation layer 6 increases. Therefore, the drive voltage of the power source 9 increases, and the contrast of the read image decreases. Furthermore, the lateral spread of the electric field in the photoconductor layer 3 becomes large, which causes the disadvantage that the resolution of the read-out image is lowered. Moreover, such a light-shielding layer or a dielectric mirror absorbs light and has a light-shielding function. However, there is a problem in that the infrared light, which is a heat ray, is absorbed to generate heat in the spatial light modulation element and the temperature of the spatial light modulation element rises.

【0009】この温度上昇の問題を解決する方法として
は、特開昭64−28678号公報に示されているよう
な、読出し光の光源と空間光変調素子との間に不要光を
カットするフィルタを設ける方法や強制冷却する方法等
が考えられるが、いずれも装置のローコスト化や小型化
の上で障害となるという問題がある。
As a method for solving the problem of the temperature rise, a filter for cutting unnecessary light between the light source for reading light and the spatial light modulator, as disclosed in Japanese Patent Laid-Open No. 64-28678. Although a method of providing a device, a method of forced cooling, and the like are conceivable, both have a problem in that they hinder cost reduction and downsizing of the device.

【0010】[0010]

【課題を解決するための手段】本願発明は、上記問題点
に鑑みなされたものであり請求項1に係る発明は、「読
出し側透明基板と、該透明基板上に順次積層して設けら
れた読出し側透明電極と、光変調層と、読出し光反射層
と、光導電体層と、書込み側透明電極とから少なくとも
構成された空間光変調素子において、該透明基板の読出
し光入射面に読出し光として不要な波長域の光を反射す
る波長選択性ミラーを形成したことを特徴とする空間光
変調素子。」を提供するものであり、
The present invention has been made in view of the above problems, and the invention according to claim 1 is "a transparent substrate on the reading side, and the transparent substrate is sequentially laminated on the transparent substrate. In a spatial light modulator including at least a read side transparent electrode, a light modulation layer, a read light reflection layer, a photoconductor layer, and a write side transparent electrode, the read light is incident on the read light incident surface of the transparent substrate. As a spatial light modulation element, a wavelength selective mirror that reflects light in an unnecessary wavelength range is formed as ".

【0011】請求項2に係る発明は、「該光導電体層を
水素化アモルファスシリコンで形成するとともに該波長
選択性ミラーを赤外線反射ミラーとしたことを特徴とす
る請求項1記載の空間光変調素子。」を提供するもので
ある。
The invention according to claim 2 is that "the photoconductive layer is made of hydrogenated amorphous silicon and the wavelength selective mirror is an infrared reflecting mirror. Element. "

【0012】[0012]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1は、本発明の実施例である空間光変調
素子の構成を示す斜視図である。本実施例の空間光変調
素子の構成は、読出し側の透明基板8の表面に赤外域の
光を反射する赤外線反射ミラー10が形成されている点
を除いては、図3で示した従来例1に係る空間光変調素
子と同様の構成になっている。そして、この赤外線反射
ミラー10は次のようにして作製される。まず、透明基
板8上に光学膜厚約λ/12のSiO2 膜を成膜し、つ
づいて光学膜厚約6λ/19のTiO2 膜を成膜する。
この上に光学膜厚λ/4のSiO2 膜と光学膜厚λ/4
のTiO2 膜を交互に10層づつ積層する。更に光学膜
厚約2λ/7のSiO2 膜と光学膜厚約3λ/13のT
iO2 膜を積層し、最後に光学膜厚約3λ/20のSi
2 膜を成膜する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing the configuration of a spatial light modulation element that is an embodiment of the present invention. The structure of the spatial light modulator of this embodiment is the same as the conventional example shown in FIG. 3, except that the infrared reflective mirror 10 for reflecting light in the infrared region is formed on the surface of the transparent substrate 8 on the reading side. The spatial light modulator according to No. 1 has the same configuration. The infrared reflecting mirror 10 is manufactured as follows. First, a SiO 2 film having an optical film thickness of about λ / 12 is formed on the transparent substrate 8, and then a TiO 2 film having an optical film thickness of about 6λ / 19 is formed.
On top of this, an SiO 2 film with an optical film thickness of λ / 4 and an optical film thickness of λ / 4
10 layers of TiO 2 films are alternately laminated. Further, an SiO 2 film having an optical film thickness of about 2λ / 7 and a T film having an optical film thickness of about 3λ / 13
The SiO 2 film is laminated, and finally the optical film thickness of Si is about 3λ / 20.
An O 2 film is formed.

【0013】図2に、このようにして作製した赤外線反
射ミラー10の分光反射率特性を示す。540nm付近
では反射率は1%以下で、反射防止膜を付与したのと同
様の効果を示すと同時に、近赤外光に対しては、ほぼ1
00%の反射率を有していることがわかる。
FIG. 2 shows the spectral reflectance characteristics of the infrared reflecting mirror 10 thus manufactured. At around 540 nm, the reflectance is 1% or less, and the same effect as that of providing an antireflection film is exhibited, and at the same time, it is almost 1 for near infrared light.
It can be seen that it has a reflectance of 00%.

【0014】次に、このようにして得られた本発明の実
施例の空間光変調素子と従来例の空間光変調素子とを図
5に示す評価系で評価した結果を表1に示す。尚、図5
の評価系は、書込み光源としてのLEDアレイ20(波
長680nm)、書込みレンズ21、評価対象である空
間光変調素子22、偏光ビームスプリッタ23、投影レ
ンズ24、および読出し光源である150Wのキセノン
ランプ25、赤外カットフィルタ26、グリーン用ダイ
クロイックミラー27により大略構成されている。
Table 1 shows the results of evaluation of the thus obtained spatial light modulator of the embodiment of the present invention and the conventional spatial light modulator by the evaluation system shown in FIG. Incidentally, FIG.
The evaluation system is an LED array 20 (wavelength 680 nm) as a writing light source, a writing lens 21, a spatial light modulator 22 to be evaluated, a polarizing beam splitter 23, a projection lens 24, and a 150 W xenon lamp 25 as a reading light source. , An infrared cut filter 26, and a green dichroic mirror 27.

【表1】 表1より明らかなように、従来例1では、解像度は良い
ものの、読出し光の一部(近赤外光)が誘電体ミラー5
を透過して光導電体層3を感光させるためコントラスト
比が大幅に下がっていることがわかる。一方、従来例2
では、遮光膜4の効果により読出し光の光導電体層3へ
の漏れはなくなりコントラストは良好だが膜厚が厚くな
った影響で解像度が悪化している。これらに対し、本発
明の実施例の空間光変調素子では、コントラスト比、解
像度とも良好で、高解像度プロジェクタ等に好適である
ことがわかる。
[Table 1] As is clear from Table 1, in Conventional Example 1, although the resolution is good, a part of the read light (near infrared light) is emitted from the dielectric mirror 5.
It can be seen that the contrast ratio is drastically lowered because the photoconductor layer 3 is exposed to light and is exposed. On the other hand, Conventional Example 2
Then, due to the effect of the light-shielding film 4, the readout light does not leak to the photoconductor layer 3 and the contrast is good, but the resolution is deteriorated due to the influence of the thick film. On the other hand, the spatial light modulator according to the example of the present invention has good contrast ratio and resolution, and is suitable for a high-resolution projector or the like.

【0015】また、表2に、本発明の実施例の空間光変
調素子と従来例2の空間光変調素子について、図5の評
価系において動作中の素子の表面温度を測定した例を示
す。但し、ここでの測定値は、250Wのキセノンラン
プ25を用いると共に、キセノンランプ25の付近を強
制空冷した条件下でのものである。
Table 2 shows an example of measuring the surface temperature of the spatial light modulator of the embodiment of the present invention and the spatial light modulator of the conventional example 2 during operation in the evaluation system of FIG. However, the measured values here are under the conditions where the 250 W xenon lamp 25 is used and the vicinity of the xenon lamp 25 is forcibly air-cooled.

【表2】 表2から明らかなように、本発明の実施例の空間光変調
素子では、赤外線反射ミラー10を付与したことにより
空間光変調素子内部での赤外線の吸収が減少し、従来例
2の空間光変調素子に比べ素子の温度上昇が抑えられて
いることがわかる。
[Table 2] As is clear from Table 2, in the spatial light modulation element of the embodiment of the present invention, the infrared reflection mirror 10 is provided, so that the absorption of infrared rays inside the spatial light modulation element is reduced, and thus the spatial light modulation of the conventional example 2 is performed. It can be seen that the temperature rise of the element is suppressed as compared with the element.

【0016】[0016]

【発明の効果】以上述べたように本発明の空間光変調素
子によれば、波長選択性ミラーが、不要な光を素子の表
面で反射するため、この光を遮光するために遮光膜や厚
い誘電体ミラーを必ずしも設ける必要がなく、高解像
度、高コントラスト比の明るいプロジェクタ等をコンパ
クト且つ安価に製造することができるものである。
As described above, according to the spatial light modulator of the present invention, since the wavelength selective mirror reflects unnecessary light on the surface of the element, a light shielding film or a thick film is provided to shield this light. It is not always necessary to provide a dielectric mirror, and a bright projector with high resolution and a high contrast ratio can be manufactured compactly and inexpensively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の空間光変調素子の実施例の構成を示す
斜視図である。
FIG. 1 is a perspective view showing a configuration of an embodiment of a spatial light modulation element of the present invention.

【図2】本発明の空間光変調素子の波長選択性ミラーの
分光反射率特性を示す図である。
FIG. 2 is a diagram showing the spectral reflectance characteristics of the wavelength selective mirror of the spatial light modulator of the present invention.

【図3】従来の空間光変調素子の構成を示す図である。FIG. 3 is a diagram showing a configuration of a conventional spatial light modulator.

【図4】従来の空間光変調素子の構成を示す図である。FIG. 4 is a diagram showing a configuration of a conventional spatial light modulator.

【図5】空間光変調素子の評価系の概略構成図である。FIG. 5 is a schematic configuration diagram of an evaluation system of a spatial light modulator.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 光導電体層 4 遮光層 5 誘電体ミラー 6 光変調層 7 透明電極 8 ガラス基板 9 駆動用電源 10 赤外線反射ミラー 20 LEDアレイ 21 書込みレンズ 22 空間光変調素子 23 偏光ビームスプリッタ 24 投影レンズ 25 キセノンランプ 26 赤外線カットフィルタ 27 ダイクロイックミラー 1 Glass Substrate 2 Transparent Electrode 3 Photoconductive Layer 4 Light-Shielding Layer 5 Dielectric Mirror 6 Light Modulating Layer 7 Transparent Electrode 8 Glass Substrate 9 Driving Power Supply 10 Infrared Reflecting Mirror 20 LED Array 21 Writing Lens 22 Spatial Light Modulating Element 23 Polarized Beam Splitter 24 Projection lens 25 Xenon lamp 26 Infrared cut filter 27 Dichroic mirror

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】読出し側透明基板と、該透明基板上に順次
積層して設けられた読出し側透明電極と、光変調層と、
読出し光反射層と、光導電体層と、書込み側透明電極と
から少なくとも構成された空間光変調素子において、 該透明基板の読出し光入射面に読出し光として不要な波
長域の光を反射する波長選択性ミラーを形成したことを
特徴とする空間光変調素子。
1. A readout-side transparent substrate, a readout-side transparent electrode which is sequentially laminated on the transparent substrate, and a light modulation layer,
In a spatial light modulator including at least a read light reflection layer, a photoconductor layer, and a write side transparent electrode, a wavelength that reflects light in an unnecessary wavelength range as read light on the read light incident surface of the transparent substrate. A spatial light modulator comprising a selective mirror.
【請求項2】該光導電体層を水素化アモルファスシリコ
ンで形成するとともに該波長選択性ミラーを赤外線反射
ミラーとしたことを特徴とする請求項1記載の空間光変
調素子。
2. The spatial light modulator according to claim 1, wherein the photoconductor layer is made of hydrogenated amorphous silicon and the wavelength selective mirror is an infrared reflecting mirror.
JP6352793A 1993-02-26 1993-02-26 Spatial optical modulation element Pending JPH06250204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6352793A JPH06250204A (en) 1993-02-26 1993-02-26 Spatial optical modulation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6352793A JPH06250204A (en) 1993-02-26 1993-02-26 Spatial optical modulation element

Publications (1)

Publication Number Publication Date
JPH06250204A true JPH06250204A (en) 1994-09-09

Family

ID=13231784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6352793A Pending JPH06250204A (en) 1993-02-26 1993-02-26 Spatial optical modulation element

Country Status (1)

Country Link
JP (1) JPH06250204A (en)

Similar Documents

Publication Publication Date Title
EP0518111B1 (en) Projection image display system
US5453859A (en) Polarization beam splitter and projection display apparatus
WO1991002429A1 (en) Optically writing projection-type display
EP0292330B1 (en) Transparent laser-addressed liquid crystal light modulator cell
US5467216A (en) Spatial light modulation device
JP4289597B2 (en) Substrate for liquid crystal element, liquid crystal element, and liquid crystal projector
JP2004245871A (en) Electrooptical modulating device and method for manufacturing the same, and projector
JPH05323118A (en) Polarizing device and projection type display device using same
JPH06250204A (en) Spatial optical modulation element
JPH03217825A (en) Space optical modulating element
JP3643658B2 (en) Optical writing reflective spatial light modulator
JP2658747B2 (en) Dielectric mirror and method of manufacturing the same
JP2001215491A (en) Polarized beam splitter and reflection type liquid crystal projector using the same
JP3783117B2 (en) Image recording device
JPH0713186A (en) Spatial optical modulation element
JPH09243986A (en) Spatial optical modulation device and display device formed by using the same
JPH07294956A (en) Photoconductive liquid crystal light valve
JPH03289625A (en) Spatial optical modulating element
JP2001100643A (en) Electro-optic device and projection type display device
JP2980372B2 (en) Optical writing type projection display
JP3274276B2 (en) Photoconductive liquid crystal light valve
JPH08338991A (en) Liquid crystal panel, projector and liquid crystal display device
JPH03107824A (en) Optical writing type liquid crystal light valve
JPH08211403A (en) Space optical modulation element
JPH05107537A (en) Reflection type liquid crystal display element