JPH0624955B2 - Steering force control device for power steering device - Google Patents

Steering force control device for power steering device

Info

Publication number
JPH0624955B2
JPH0624955B2 JP59274165A JP27416584A JPH0624955B2 JP H0624955 B2 JPH0624955 B2 JP H0624955B2 JP 59274165 A JP59274165 A JP 59274165A JP 27416584 A JP27416584 A JP 27416584A JP H0624955 B2 JPH0624955 B2 JP H0624955B2
Authority
JP
Japan
Prior art keywords
flow
flow rate
control valve
steering
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59274165A
Other languages
Japanese (ja)
Other versions
JPS61155062A (en
Inventor
幹夫 鈴木
郁夫 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP59274165A priority Critical patent/JPH0624955B2/en
Publication of JPS61155062A publication Critical patent/JPS61155062A/en
Publication of JPH0624955B2 publication Critical patent/JPH0624955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、車速に応じてハンドルトルクを変化させる反
力機構を備えた動力舵取装置の操舵力制御装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steering force control device for a power steering system including a reaction force mechanism that changes a steering wheel torque according to a vehicle speed.

<従来の技術> 車速等に比例した油圧力を反力機構に加え、動力舵取装
置の操舵力を車速等に応じて制御するものは公知であ
る。この種の従来装置は、反力機構に加える油圧力を動
力舵取装置と供給ポンプとを結ぶ高圧ラインの圧油を制
御するものである。
<Prior Art> It is known that a hydraulic force proportional to a vehicle speed or the like is applied to a reaction mechanism to control a steering force of a power steering device according to a vehicle speed or the like. In this type of conventional device, the hydraulic pressure applied to the reaction mechanism controls the hydraulic oil in a high pressure line connecting the power steering device and the supply pump.

<発明が解決しようとすう問題点> 一般にこの種の制御装置は、操舵圧を必要とする低速走
行時には反力機構に加える油圧力を低くし、逆に操舵圧
をほとんど必要としない高速走行時には反力機構に加え
る油圧力を高くする必要があるため、上記したような構
成のものでは、操舵圧と反力油圧とを互いに干渉しない
ように制御するための構成が複雑となる問題がある。
<Problems to be Solved by the Invention> Generally, this type of control device lowers the oil pressure applied to the reaction mechanism during low-speed traveling that requires steering pressure, and conversely during high-speed traveling that requires almost no steering pressure. Since it is necessary to increase the hydraulic pressure applied to the reaction force mechanism, the configuration as described above has a problem that the configuration for controlling the steering pressure and the reaction force hydraulic pressure so as not to interfere with each other becomes complicated.

本発明は、反力機構に加える圧油を、ポンプの吐出流量
の余剰流を利用し、この余剰流の流量を制御することに
より、油圧反力を容易に制御できるようにしたものであ
る。
The present invention makes it possible to easily control the hydraulic reaction force by using the surplus flow of the discharge flow rate of the pump as the pressure oil applied to the reaction force mechanism and controlling the flow rate of this surplus flow.

<問題点を解決するための手段> 本発明は、自動車エンジンによって駆動される供給ポン
プと、入力軸と出力軸との相対回転に基づいて作動され
供給ポンプからパワーシリンダへの圧油の給排を制御す
るサーボ弁と、車速に応じてハンドルトルクを変化させ
る反力機構を備えた動力舵取装置の操舵力制御装置にお
いて、前記供給ポンプより吐出された圧油を一定流量に
制御して前記サーボ弁に供給し、余剰流をバイパスする
第1の流量制御弁と、第1の流量制御弁からの余剰流を
可変絞りの絞りの開度が大きくなるにつれて流量が増大
するように制御して前記反力機構に供給し、余剰流をタ
ンクに逃がす第2の流量制御弁と、反力機構に導入され
る圧油を絞ってタンクに逃すための逃し通路手段と、前
記可変絞りの絞りの開度を車速の上昇につれて大きくな
るように制御する制御手段とを備えた動力舵取装置の操
舵力制御装置である。
<Means for Solving Problems> The present invention relates to a supply pump driven by an automobile engine, and a supply / discharge of pressure oil from the supply pump to a power cylinder which is operated based on relative rotation between an input shaft and an output shaft. In the steering force control device of the power steering device, which includes a servo valve for controlling the control valve and a reaction force mechanism that changes the steering wheel torque according to the vehicle speed, the pressure oil discharged from the supply pump is controlled to a constant flow rate, and The first flow rate control valve that supplies the servo valve and bypasses the excess flow, and the excess flow from the first flow rate control valve are controlled so that the flow rate increases as the opening of the variable throttle increases. A second flow rate control valve that supplies the reaction force mechanism with the excess flow to the tank, a relief passage means for squeezing the pressure oil introduced into the reaction mechanism to the tank, and a throttle valve of the variable throttle. Opening degree to increase vehicle speed It is a steering force control device of a power steering device, comprising:

<作 用> 本発明は、流量制御弁により供給ポンプより吐出された
圧油を動力舵取装置に必要の所定流量に制御し、その余
剰流をバイパスさせ、このバイパス流量を可変絞りによ
つて車速等に応じた流量に制御して、これを逃し通路手
段から逃すことによって、前記流量に応じて圧力を反力
機構に作用させる。この結果、車速に応じた操舵力に制
御される。
<Operation> The present invention controls the pressure oil discharged from the supply pump by the flow control valve to a predetermined flow rate required for the power steering apparatus, bypasses the excess flow, and uses this variable flow rate by the variable throttle. By controlling the flow rate according to the vehicle speed or the like and letting it escape from the escape passage means, pressure is applied to the reaction force mechanism according to the flow rate. As a result, the steering force is controlled according to the vehicle speed.

<実施例> 以下本発明の実施例を図面に基づいて説明する。第1図
において、11は動力舵取装置の本体をなすハウジング本
体、12はハウジング本体11に固着されている弁ハウジン
グである。このハウジング本体11及び弁ハウジング12内
には一対の軸受13、14を介してピニオン軸(出力軸)21
が回転自在に軸承されており、このピニオン軸21にはこ
れと交差する方向に摺動可能なラツク軸22のラツク歯22
aが噛合している。このラツク軸22は、図示しないパワ
ーシリンダのピストンと連結され、その両端は所要の操
縦リンク機構を介して操向車輪に連結されている。
<Examples> Examples of the present invention will be described below with reference to the drawings. In FIG. 1, 11 is a housing main body which is the main body of the power steering apparatus, and 12 is a valve housing fixed to the housing main body 11. A pinion shaft (output shaft) 21 is provided in the housing body 11 and the valve housing 12 via a pair of bearings 13 and 14.
Is rotatably supported, and the pinion shaft 21 has a rack tooth 22 of a rack shaft 22 slidable in a direction intersecting with the pinion shaft 21.
a is in mesh. The rack shaft 22 is connected to a piston of a power cylinder (not shown), and both ends of the rack shaft 22 are connected to steering wheels via a required steering link mechanism.

弁ハウジング12の穴内にには、制御弁機構30が収納され
ている。制御弁機構(サーボ弁)30は操舵軸としての入
力軸23と一体的に形成したロータリ弁部材31と、このロ
ータリ弁部材31の外周に同心的かつ相対的回転可能に嵌
合したスリーブ弁部材32を主要構成部材としている。
ロータリ弁部材31は、これと一体の入力軸23に一端を連
結したトーションバー24を介してピニオン軸21に可撓的
に連結されている。また、ロータリ弁部材31の外周に
は、図示しないが、その軸方向に伸びる複数のランド部
と溝部とが等間隔にて形成されており、これの溝底部よ
り内周部に連通する連通路37が穿設されている。入力軸
23に前記内周部と弁ハウジング12内の低圧室38とを連通
する通路39が設けられている。一方スリーブ弁部材32の
内周にも、その軸方向に延びる複数のランド部と溝部が
等間隔にて形成され、各溝部よりスリーブ弁部材32の外
周に開口する分配穴40、41が設けられている。供給ポー
ト35より供給される圧力流体は、制御弁が中立状態であ
ればランド部両側の溝部に均等に流れ、連通路37及び通
路39を経て低圧室38より排出ポート36に流出する。この
場合、両分配ポート33、34は低圧で等しい圧力となつて
いるためパワーシリンダは作動されない。制御弁が中立
状態から変化すれば、一方の分配穴40又は41にはパワー
シリンダから排出された流体が流入し、連通路37、通路
39、低圧室38を経て排出ポート36に放出されるようにな
つている。
A control valve mechanism 30 is housed in the hole of the valve housing 12. The control valve mechanism (servo valve) 30 is a rotary valve member 31 formed integrally with the input shaft 23 as a steering shaft, and a sleeve valve member concentrically and relatively rotatably fitted to the outer periphery of the rotary valve member 31. 32 is a main component.
The rotary valve member 31 is flexibly connected to the pinion shaft 21 via a torsion bar 24, one end of which is connected to an input shaft 23 which is integral with the rotary valve member 31. Further, although not shown, a plurality of axially extending lands and grooves are formed on the outer periphery of the rotary valve member 31 at equal intervals, and a communication passage communicating from the groove bottom to the inner periphery. 37 has been drilled. Input shaft
A passage 39 that connects the inner peripheral portion and the low-pressure chamber 38 in the valve housing 12 is provided in 23. On the other hand, on the inner circumference of the sleeve valve member 32, a plurality of lands extending in the axial direction thereof and grooves are formed at equal intervals, and distribution holes 40, 41 opening from the respective grooves to the outer circumference of the sleeve valve member 32 are provided. ing. If the control valve is in the neutral state, the pressure fluid supplied from the supply port 35 flows evenly in the groove portions on both sides of the land portion, and then flows out from the low pressure chamber 38 to the discharge port 36 via the communication passage 37 and the passage 39. In this case, the power cylinders are not activated because both distribution ports 33, 34 are under low pressure and equal pressure. When the control valve changes from the neutral state, the fluid discharged from the power cylinder flows into one of the distribution holes 40 or 41, and the communication passage 37, the passage
39, and is discharged to the discharge port 36 through the low pressure chamber 38.

反力機構は次の通りである。第2図でも示すように、ロ
ータリ弁部材31のピニオン軸21側の端部に半径方向に両
側に突起した突起部50が形成されており、この突起部50
と対応するピニオン軸21には突起部50を入力軸23の軸線
回りに数角度旋回可能に遊嵌する嵌合溝51が形成されて
いる。突起部50の外周面にはテーパ状の係合溝52が形成
されており、制御弁の中立状態で、ピニオン軸21には係
合溝52と対応する位置で半径方向に挿通穴53が形成され
ている。挿通穴53にプランジヤ54が半径方向に摺動可能
に挿入され、プランジヤ54の後部へ作動油を導くべく環
状溝55が形成されている。この挿通穴53と環状溝55とで
反力室56が構成されている。58は車速等に応じて制御さ
れたポンプからの圧力流体を導入するポート、57は前記
ポート58と環状溝55を連通する通路である。尚前記プラ
ンジヤ54には、導入される圧力流体の一部を逃すための
逃し用絞り通路54aが形成されている。
The reaction force mechanism is as follows. As shown also in FIG. 2, the rotary valve member 31 has a protrusion 50 that is formed at the end on the pinion shaft 21 side and protrudes radially to both sides.
The pinion shaft 21 corresponding to the above is formed with a fitting groove 51 into which the protrusion 50 is loosely fitted so as to be rotatable about the axis of the input shaft 23 by several angles. A tapered engagement groove 52 is formed on the outer peripheral surface of the protrusion 50, and in a neutral state of the control valve, an insertion hole 53 is formed in the pinion shaft 21 at a position corresponding to the engagement groove 52 in the radial direction. Has been done. A plunger 54 is slidably inserted in the insertion hole 53 in the radial direction, and an annular groove 55 is formed to guide the hydraulic oil to the rear portion of the plunger 54. The insertion hole 53 and the annular groove 55 form a reaction force chamber 56. Reference numeral 58 is a port for introducing pressure fluid from a pump controlled according to vehicle speed and the like, and 57 is a passage for connecting the port 58 and the annular groove 55. The plunger 54 is formed with a relief throttle passage 54a for releasing a part of the introduced pressure fluid.

上記構成の反力機構は、いわゆるラジアル方式である
が、軸線方向に反力を作用させる構成のスラスト方式で
もよい。
The reaction mechanism having the above structure is a so-called radial system, but may be a thrust system having a structure in which a reaction force is applied in the axial direction.

60は自動車エンジンによつて駆動される供給ポンプを示
し、この供給ポンプ60から吐出される圧油の流量は自
動車エンジンを回転数、即ち車速に応じて増大する。供
給ポンプ60の吐出ポートは第1の流量制御弁61を介し
て前記供給ポート35に接続されている。かかる流量制御
弁61は、供給ポンプ60の吐出ポートと供給ポート35とを
接続する通路45中に設けられたメータリングオリフイス
62と、このメータリングオリフイス62の前後圧に応じて
作動されこの前後圧を常に一定に保持するようにバイパ
ス通路63を開口制御するバイパス弁64とによつて構成さ
れ、この流量制御弁61によつて供給ポート35には動力舵
取装置に必要な一定流量Q1が供給され、余剰流Q2がバイ
パス通路63にバイパスされる。第1の流量制御弁61のバ
イパス通路63は第2の流量制御弁65を介して前記反力室
56の導入ポート58に接続されている。かかる第2の流量
制御弁65は、前記バイパス通路63と、導入ポート58とを
接続する通路46中に設けられた可変絞り66と、この可変
絞り66の前後圧に応じて作動され、この前後圧を常に一
定に保持するように、リザーバに接続されたバイパス通
路67を開口制御するバイパス弁68とによつて構成され、
この第2の流量制御弁65によつて、前記導入ポート58に
導入する流量QRを車速等に応じて制御し、余剰流Q3をバ
イパス通路67を介してリザーバにバイパスする。
Reference numeral 60 denotes a supply pump driven by the automobile engine, and the flow rate of the pressure oil discharged from the supply pump 60 increases according to the number of revolutions of the automobile engine, that is, the vehicle speed. The discharge port of the supply pump 60 is connected to the supply port 35 via the first flow rate control valve 61. The flow rate control valve 61 is a metering orifice provided in the passage 45 connecting the discharge port of the supply pump 60 and the supply port 35.
62 and a bypass valve 64 that operates according to the front-rear pressure of the metering orifice 62 and controls the opening of the bypass passage 63 so as to always maintain the front-rear pressure constant. Therefore, the constant flow rate Q 1 required for the power steering apparatus is supplied to the supply port 35, and the surplus flow Q 2 is bypassed to the bypass passage 63. The bypass passage 63 of the first flow control valve 61 is connected to the reaction chamber through the second flow control valve 65.
Connected to 56 introductory ports 58. The second flow rate control valve 65 is operated in accordance with the variable throttle 66 provided in the passage 46 connecting the bypass passage 63 and the introduction port 58, and the front-rear pressure of the variable throttle 66. In order to keep the pressure always constant, it is constituted by a bypass valve 68 for controlling the opening of the bypass passage 67 connected to the reservoir,
The second flow rate control valve 65 controls the flow rate QR introduced into the introduction port 58 according to the vehicle speed or the like, and bypasses the surplus flow Q 3 to the reservoir via the bypass passage 67.

前記第2の流量制御弁65に構成されている可変絞り66の
構造について第3図により説明する。第2の流量制御弁
65の弁本体76に取付けられたソレノイド70と、前記弁本
体76内を摺動するスプール77と前記バイパス通路63と通
路46との間に設けられている可変絞り66の開度を調節す
る前記スプール77に固着された絞り弁棒71とからなり、
絞り弁棒71はスプール77と共に前記ソレノイド70による
吸引作用とスプリング74とによつて軸方向に変位するよ
うになつている。前記ソレノイド70にはコンピュータ
(制御手段)72によつて制御されるソレノイド駆動回
路73から車速信号V(あるいはハンドル操舵角の信号)
に応じた電流値が供給され、この電流値に応じて可変絞
り66の絞り開度が変化される。この絞り開度の変化に伴
いバイパス弁68の前後に作用する差圧が変化してバイパ
ス弁68が軸動してバイパス通路67の開度が変化し、その
結果反力室56へ供給される流量QRが変化する。前記可変
絞り66の絞り開度は、車速が大きくなるにつれて大き
くなるようにコンピュータ72、ソレノイド駆動回路7
3によって制御され、この結果、反力室56へ供給され
る圧油の流量は車速の上昇につれて増大する。
The structure of the variable throttle 66 included in the second flow control valve 65 will be described with reference to FIG. Second flow control valve
A solenoid 70 attached to the valve body 76 of the valve 65, a spool 77 sliding in the valve body 76, and the opening of a variable throttle 66 provided between the bypass passage 63 and the passage 46 are adjusted. It consists of the throttle valve rod 71 fixed to the spool 77,
The throttle valve rod 71 is displaced along with the spool 77 in the axial direction by the suction action of the solenoid 70 and the spring 74. A vehicle speed signal V (or a steering wheel steering angle signal) is supplied to the solenoid 70 from a solenoid drive circuit 73 controlled by a computer (control means) 72.
Is supplied, and the diaphragm opening of the variable diaphragm 66 is changed according to this current value. Along with this change in the throttle opening, the differential pressure acting on the front and rear of the bypass valve 68 changes, the bypass valve 68 axially moves, and the opening of the bypass passage 67 changes, and as a result, the reaction chamber 56 is supplied. The flow rate QR changes. The computer 72 and the solenoid drive circuit 7 are arranged so that the opening of the variable throttle 66 increases as the vehicle speed increases.
As a result, the flow rate of the pressure oil supplied to the reaction force chamber 56 increases as the vehicle speed increases.

次に上記構成の動作について説明する。供給ポンプ60よ
り吐出された圧油の流量Qは第1の流量制御弁61によつ
て所定の流量Q1に制御され動力舵取装置の供給ポート35
に供給される。同時に第1の流量制御弁61からの余剰流
Q2は第2の流量制御弁65に導き可変絞り66によつて第4
図で示すように車速等に応じた流量QRに制御され反力機
構の導入ポート58に供給され、さらにプランジヤ54の逃
し用絞り通路54aより嵌合溝51、通路39、低圧室38を介
してタンクに逃がされる。これにより反力室50には第5
図で示すように供給流量QRに比例した油圧反力圧力PRが
作用される。同時に第2の流量制御弁65からの余剰流Q3
はバイパス通路67より低圧側にバイパスされる。
Next, the operation of the above configuration will be described. The flow rate Q of the pressure oil discharged from the supply pump 60 is controlled to a predetermined flow rate Q 1 by the first flow rate control valve 61, and the supply port 35 of the power steering apparatus is provided.
Is supplied to. At the same time, excess flow from the first flow control valve 61
Q 2 is led to the second flow control valve 65 and the fourth by the variable throttle 66.
As shown in the figure, the flow rate QR is controlled according to the vehicle speed and the like and is supplied to the introduction port 58 of the reaction force mechanism, and further through the relief throttle passage 54a of the plunger 54 through the fitting groove 51, the passage 39, and the low pressure chamber 38. Escape to the tank. As a result, the reaction chamber 50 has a fifth
As shown in the figure, the hydraulic reaction force pressure PR proportional to the supply flow rate QR is applied. At the same time, the excess flow Q 3 from the second flow control valve 65
Is bypassed to the low pressure side of the bypass passage 67.

車速が低い状態では、可変絞り66を制御するソレノイド
70に供給される電流は低下され、制御流量QRは絞られ、
導入ポート58へ供給される油圧反力圧力PRは低くなる。
従つて、ハンドル操作により操舵軸24が回転されると、
プランジヤ54は容易に押し上げられ、これによりスリー
プ弁部材32とロータリ弁部材31とが相対回転され、第6
図の実線で示すギヤ発生圧力となり、通常の動力舵取作
用が得られる。
The solenoid that controls the variable aperture 66 when the vehicle speed is low
The current supplied to 70 is reduced, the control flow rate QR is throttled,
The hydraulic reaction force pressure PR supplied to the introduction port 58 becomes low.
Therefore, when the steering shaft 24 is rotated by operating the steering wheel,
The plunger 54 is easily pushed up, which causes the sleep valve member 32 and the rotary valve member 31 to rotate relative to each other, and
The pressure generated by the gear is shown by the solid line in the figure, and the normal power steering action is obtained.

車速が所定値を越えると、コンピュータ72に入力される
車速信号Vに応じてソレノイド駆動回路73が制御され、
可変絞り66のソレノイド70に供給される電流値が車速の
上昇に比例して上昇し、制御流量QRは第4図で示すよう
に、また油圧反力圧力PRは第5図で示すように車速の上
昇に応じて増大される。これによりプランジャ54は油圧
反力圧力PRに応じて力で係合溝52に押付けられ、スリー
プ弁部材32とロータリ弁部材31とを相対回転させるマニ
アルトルクを第6図の点線で示すように、低速時のギヤ
発生力のパターン状態で平行移動して増大させる。上述
した実施例は、自動車エンジンの回転数の増大、即ち、
車速の上昇につれて第1の流量制御弁61からの余剰流
が増大し、反力室56の必要とする流量も車速の上昇に
つれて増大するため、供給ポンプ60の消費動力が小さ
くて済む。また、第2の流量制御弁65で流量制御する
ことにより、反力室56に車速に応じた圧力を発生させ
ることができ、圧油の制御が簡単かつ確実に制御でき
る。尚、反力機構に導入される圧油は、この実施例にお
いてプランジヤ54に設けた絞り通路54aを介して低圧側
にレリーフされているため、反力室50内へのエアだまり
の発生が防止できる。またこのプランジヤ54に絞り通路
54aを形成する代わりに通路46より分岐してタンクに通
じる逃し通路を形成し、この通路内に絞り介挿してもよ
い。
When the vehicle speed exceeds a predetermined value, the solenoid drive circuit 73 is controlled according to the vehicle speed signal V input to the computer 72,
The current value supplied to the solenoid 70 of the variable throttle 66 increases in proportion to the increase in vehicle speed, the control flow rate QR is as shown in FIG. 4, and the hydraulic reaction force pressure PR is as shown in FIG. Is increased according to the rise of. As a result, the plunger 54 is pressed against the engagement groove 52 by a force according to the hydraulic reaction force pressure PR, and the manual torque for rotating the sleep valve member 32 and the rotary valve member 31 relative to each other is shown by the dotted line in FIG. In parallel with the pattern of the generated force at low speed, the force is increased by moving in parallel. The embodiment described above increases the rotational speed of the automobile engine, that is,
The surplus flow from the first flow rate control valve 61 increases as the vehicle speed increases, and the flow rate required by the reaction force chamber 56 also increases as the vehicle speed increases, so that the power consumption of the supply pump 60 can be small. Further, by controlling the flow rate with the second flow rate control valve 65, it is possible to generate a pressure according to the vehicle speed in the reaction force chamber 56, and it is possible to easily and reliably control the pressure oil. Since the pressure oil introduced into the reaction force mechanism is reliefed to the low pressure side via the throttle passage 54a provided in the plunger 54 in this embodiment, the occurrence of air accumulation in the reaction force chamber 50 is prevented. it can. In addition, this plunger 54 has a throttle passage
Instead of forming 54a, a relief passage may be formed that branches from the passage 46 and communicates with the tank, and the throttle passage may be inserted in this passage.

第7図は本発明の他の実施例を示す。この実施例は、第
1図の構成において、導入ポート58に接続されている制
御流量QRの通路46に油圧反力圧力PRを制御弁機構(サー
ボ弁)30に供給されるギヤ発生圧力(操舵圧)によつて
絞り開度を変化して低圧側にレリーフさせる流体を制御
する絞り制御弁80を設けたものである。
FIG. 7 shows another embodiment of the present invention. In this embodiment, in the configuration of FIG. 1, the hydraulic reaction pressure pressure PR is supplied to the control valve mechanism (servo valve) 30 through the passage 46 of the control flow rate QR connected to the introduction port 58. The throttle control valve 80 is provided to control the fluid to be relieved to the low pressure side by changing the throttle opening degree depending on the pressure.

上記他の実施例の場合においては、制御流量QRは第8図
で示すように前記第4図と同様に車速等に応じて上昇す
るが、油圧反力圧力PRは第9図で示すようにギヤ発生圧
力PGによつて絞り開度が変化される絞り制御弁80の作用
により、低速では点線のように低圧に制御され、高速で
は実線のようにゆるやかな傾斜曲線で昇圧される。すな
わち、反力機構による反力は低速状態ではゆるやかに増
大され、マニアルトルクTMの変化に対するギヤ発生圧力
PGは第10図の実線で示すように急上昇するため、軽快な
ハンドル操作が可能となり、また高速時には反力機構の
反力の傾きは大となるなめ、マニアルトルクTMの変化に
対するギヤ発生圧力PGは第10図点線に示すようにゆるや
かに上昇するようになり、それだけハンドル操作が重く
なり、手ごたえ感が得られる。
In the case of the other embodiment described above, the control flow rate QR increases in accordance with the vehicle speed and the like as shown in FIG. 4 as shown in FIG. 8, but the hydraulic reaction pressure PR is as shown in FIG. By the action of the throttle control valve 80 in which the throttle opening is changed by the gear generation pressure PG, the pressure is controlled to a low pressure as shown by the dotted line at low speed, and the pressure is increased with a gentle slope curve as shown by the solid line at high speed. That is, the reaction force generated by the reaction force mechanism is gradually increased in the low speed state, and the pressure generated by the gear changes with the change in the manual torque TM.
Since PG suddenly rises as shown by the solid line in Fig. 10, a light steering wheel operation is possible, and the reaction force of the reaction mechanism has a large inclination at high speeds. As shown by the dotted line in Fig. 10, it gradually rises, and the handle operation becomes heavier, which gives a feeling of resilience.

<発明の効果> 以上のように本発明は、供給ポンプからの吐出量が車速
の上昇につれて増大し、反力機構が必要とする圧油の流
量が車速の上昇につれて増大する特性を利用して、供給
ポンプより吐出された圧油を第1の流量制御弁により一
定流量に制御してサーボ弁に供給し、余剰流をバイパス
し、第1の流量制御弁からの余剰流を第2の流量制御弁
により車速の上昇につれて流量が増大するように制御し
て反力機構に供給するようにした構成であるので、第1
の流量制御弁からの余剰流で反力機構の圧油の流量をま
かなうことができ、供給ポンプの消費動力を小さくでき
る効果が得られる。また、第2の流量制御弁で車速に応
じた流量に制御し、この流量を逃し通路手段を介して逃
すことにより、前記流量に応じて圧力を反力機構に作用
させるようにした構成であるので、圧油の制御が簡単か
つ確実に行える効果が得られる。
<Effects of the Invention> As described above, the present invention utilizes the characteristics that the discharge amount from the supply pump increases as the vehicle speed increases, and the flow rate of the pressure oil required by the reaction mechanism increases as the vehicle speed increases. , The pressure oil discharged from the supply pump is controlled to a constant flow rate by the first flow rate control valve to be supplied to the servo valve, the surplus flow is bypassed, and the surplus flow from the first flow rate control valve is supplied to the second flow rate. Since the control valve controls the flow rate to increase as the vehicle speed increases and supplies the reaction force mechanism,
With the surplus flow from the flow control valve, the flow rate of the pressure oil of the reaction mechanism can be covered, and the power consumption of the supply pump can be reduced. Further, the second flow rate control valve controls the flow rate according to the vehicle speed, and the flow rate is released through the escape passage means so that the pressure acts on the reaction force mechanism according to the flow rate. Therefore, it is possible to obtain the effect that the pressure oil can be controlled easily and reliably.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す動力舵取装置の断面図に
油圧系統図を併図した図、第2図は第1図のII−II線拡
大断面図、第3図は第2の流量制御弁の要部断面図、第
4図は第2の流量制御弁による流量制御曲線図、第5図
は油圧反力の制御曲線図、第6図は操舵特性の曲線図、
第7図は本発明の他の実施例を示す動力舵取装置の断面
図に油圧系統図を併図した図、第8図は他の実施例によ
る第2の流量制御弁の流量制御曲線図、第9図は同油圧
反力の制御曲線図、第10図は同操舵特性の曲線図であ
る。 21……ピニオン軸、23……入力軸、56……反力室、60…
…供給ポンプ、61……第1の流量制御弁、65……第2の
流量制御弁、66……可変絞り、80……絞り制御弁。
FIG. 1 is a diagram showing a hydraulic steering system together with a sectional view of a power steering apparatus showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view taken along line II-II of FIG. 1, and FIG. FIG. 4 is a sectional view of an essential part of the flow control valve of FIG. 4, FIG. 4 is a flow control curve diagram by the second flow control valve, FIG. 5 is a hydraulic reaction force control curve diagram, FIG.
FIG. 7 is a sectional view of a power steering apparatus showing another embodiment of the present invention and a hydraulic system diagram is also shown. FIG. 8 is a flow control curve diagram of a second flow control valve according to another embodiment. FIG. 9 is a control curve diagram of the hydraulic reaction force, and FIG. 10 is a curve diagram of the steering characteristic. 21 …… Pinion shaft, 23 …… Input shaft, 56 …… Reaction chamber, 60…
… Supply pump, 61 …… first flow control valve, 65 …… second flow control valve, 66 …… variable throttle, 80 …… throttle control valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】自動車エンジンによって駆動される供給ポ
ンプと、入力軸と出力軸との相対回転に基づいて作動さ
れ供給ポンプからパワーシリンダへの圧油の給排を制御
するサーボ弁と、車速に応じてハンドルトルクを変化さ
せる反力機構を備えた動力舵取装置の操舵力制御装置に
おいて、前記供給ポンプより吐出された圧油を一定流量
に制御して前記サーボ弁に供給し、余剰流をバイパスす
る第1の流量制御弁と、第1の流量制御弁からの余剰流
を可変絞りの絞りの開度が大きくなるにつれて流量が増
大するように制御して前記反力機構に供給し、余剰流を
タンクに逃がす第2の流量制御弁と、反力機構に導入さ
れる圧油を絞ってタンクに逃すための逃し通路手段と、
前記可変絞りの絞りの開度を車速の上昇につれて大きく
なるように制御する制御手段とを備えた動力舵取装置の
操舵力制御装置。
1. A supply pump driven by an automobile engine, a servo valve which is operated based on relative rotation of an input shaft and an output shaft to control supply and discharge of pressure oil from the supply pump to a power cylinder, and a vehicle speed. In a steering force control device of a power steering device equipped with a reaction force mechanism that changes the steering wheel torque according to the above, the pressure oil discharged from the supply pump is controlled to a constant flow rate and is supplied to the servo valve, and an excess flow is generated. A surplus flow from the first flow control valve bypassing the first flow control valve is supplied to the reaction force mechanism by controlling the flow so that the flow rate increases as the opening of the throttle of the variable throttle increases. A second flow control valve for releasing the flow to the tank, an escape passage means for squeezing the pressure oil introduced into the reaction force mechanism and releasing it to the tank,
A steering force control device for a power steering device, comprising: a control means for controlling the opening of the variable throttle to increase as the vehicle speed increases.
JP59274165A 1984-12-27 1984-12-27 Steering force control device for power steering device Expired - Lifetime JPH0624955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59274165A JPH0624955B2 (en) 1984-12-27 1984-12-27 Steering force control device for power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274165A JPH0624955B2 (en) 1984-12-27 1984-12-27 Steering force control device for power steering device

Publications (2)

Publication Number Publication Date
JPS61155062A JPS61155062A (en) 1986-07-14
JPH0624955B2 true JPH0624955B2 (en) 1994-04-06

Family

ID=17537936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274165A Expired - Lifetime JPH0624955B2 (en) 1984-12-27 1984-12-27 Steering force control device for power steering device

Country Status (1)

Country Link
JP (1) JPH0624955B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216363A (en) * 1989-02-17 1990-08-29 Jidosha Kiki Co Ltd Steering power control device for power steering gear

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52106528A (en) * 1976-03-03 1977-09-07 Nissan Motor Co Ltd Steering power control apparatus for power steering system
JPS5814352B2 (en) * 1977-03-05 1983-03-18 自動車機器株式会社 Steering force control device for power steering device

Also Published As

Publication number Publication date
JPS61155062A (en) 1986-07-14

Similar Documents

Publication Publication Date Title
JPH0255262B2 (en)
US4676334A (en) Power steering system with hydraulic reaction
JPH0645343B2 (en) Steering force control device for power steering device
US4905784A (en) Power-assisted steering system for automotive vehicle
JPH0624955B2 (en) Steering force control device for power steering device
JPH0624957B2 (en) Steering force control device for power steering device
JPH07100452B2 (en) Steering force control device for power steering device
JPS61275062A (en) Steerability control device for power steering device
JPH0624301Y2 (en) Steering force control device for power steering device
JPH0624959B2 (en) Steering force control device for power steering device
JPH0628378Y2 (en) Steering force control device for power steering device
JPH0624956B2 (en) Steering force control device for power steering device
JPH0619426Y2 (en) Steering force control device for power steering device
JPS638073A (en) Steering force controlling unit of power steering device
JPH0624960B2 (en) Steering force control device for power steering device
JPH036546Y2 (en)
JPH0232543Y2 (en)
JPH0624302Y2 (en) Steering force control device for power steering device
JPS60226368A (en) Steering-force controller for power steering apparatus
JPS61191470A (en) Steering force control device of power steering gear
JPS61155061A (en) Steering power control unit for power steering device
JPS621672A (en) Steering force controller for power steering device
JPS62139755A (en) Steering force control device for power steering apparatus
JPH07121703B2 (en) Steering force control device for power steering device
JPS6299262A (en) Steering force control device of power steering device