JPS61191470A - Steering force control device of power steering gear - Google Patents

Steering force control device of power steering gear

Info

Publication number
JPS61191470A
JPS61191470A JP3153885A JP3153885A JPS61191470A JP S61191470 A JPS61191470 A JP S61191470A JP 3153885 A JP3153885 A JP 3153885A JP 3153885 A JP3153885 A JP 3153885A JP S61191470 A JPS61191470 A JP S61191470A
Authority
JP
Japan
Prior art keywords
pressure
valve
control
steering
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3153885A
Other languages
Japanese (ja)
Inventor
Kyoichi Nakamura
中村 京市
Mikio Suzuki
幹夫 鈴木
Shigeo Tanooka
田ノ岡 茂男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP3153885A priority Critical patent/JPS61191470A/en
Publication of JPS61191470A publication Critical patent/JPS61191470A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:To seek the expansion of the steering force of a power steering gear by dividing fixed quantity of pressure oil from a supply pump through a flow dividing valve into the servo valve side and the reaction mechanism side and controlling the flow volume channeled into the reaction side to produce such pressure as to match car speed, etc. CONSTITUTION:In the hole of a valve housing 12 by which a pinion shaft 21 engaging with a rack shaft 22 linked to steered wheels is supported in such a way that it can rotate freely, a servo valve 30 consisting of a rotary valve member 32 formed unitedly with an input shaft 23, which is a steering shaft, and a sleeve valve member 32 which is fitted into its periphery concentrically and in such a way as to allow its relative revolution is contained. At the right end of the rotary valve member 31, a protrusion part 50 designed to be loosely fitted into an engagement groove 51 formed in the confronting part of the pinion shaft 21 is formed, and by touching a plunger 54 on the external end of the protrusion part 50, a reaction mechanism is constituted. And pressure oil divided through a flow dividing valve 65 is led into a reaction chamber 56 behind the plunger 54 while its pressure is adjusted by means of an electromagnetic relief valve 70 that is controlled in accordance with car speed, etc.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、車速等に応じた制御圧を供給し、ハンドルト
ルクを車速等に応じて変化させる反力機構を備えた動力
舵取装置の操舵力制御装置に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a power steering device equipped with a reaction force mechanism that supplies control pressure according to vehicle speed, etc., and changes steering torque according to vehicle speed, etc. The present invention relates to a steering force control device.

〈従来の技術〉 車速等に比例した制御圧を反力機構に導入し、動力舵取
装置の操舵力を車速等に応じて制御するものは公知であ
る。この種の制御装置において従来では、反力機構に導
入する油圧力を、動力舵取装置と供給ポンプとを結ぶ高
圧ラインの圧油を利用して制御するものがあるが、一般
にこの種の制御装置においては、操舵圧を必要とする低
速走行時には反力機構に加える油圧力を低くし、逆に操
舵圧をほとんど必要としない高速走行時には反力機構に
加える油圧力を高くする必要があるため、操舵圧と反力
油圧とを互いに干渉しないように制御するための構成が
複雑となっている。
<Prior Art> It is known that a control pressure proportional to the vehicle speed or the like is introduced into a reaction force mechanism to control the steering force of the power steering device according to the vehicle speed or the like. Conventionally, this type of control device controls the hydraulic pressure introduced into the reaction force mechanism by using pressure oil in a high-pressure line connecting the power steering device and the supply pump; In terms of equipment, it is necessary to lower the hydraulic pressure applied to the reaction force mechanism when driving at low speeds that require steering pressure, and to increase the hydraulic pressure applied to the reaction force mechanism when driving at high speeds, which require little steering pressure. The configuration for controlling the steering pressure and the reaction oil pressure so as not to interfere with each other is complicated.

この間顆を解決した制御装置を本願出願人は特願昭59
−87221号によって特許出願している。この先願の
操舵力制御装置は、エンジンによって駆動される供給ポ
ンプから吐出された圧油を動力舵取装置に必要な所定流
量に制御し余剰流をバイパス通路にバイパスする第1の
流量制御弁と、この第1の流量制御弁によってバイパス
されたバイパス流量を一定流量に制御し余剰流を低圧側
にバイパスする第2の流量制御弁と、この第2の流量制
御弁によって制御された一定流量の圧油を車速等に応じ
た制御圧に制御する圧力制御弁と、この圧力制御弁にて
制御された制御圧を反力機構に導入する手段とによって
情成されたものである。
The applicant of the present application filed a patent application in 1983 for a control device that solved this problem.
A patent application has been filed under No.-87221. The steering force control device of this prior application includes a first flow control valve that controls the pressure oil discharged from the supply pump driven by the engine to a predetermined flow rate required for the power steering device, and bypasses the excess flow to a bypass passage. , a second flow control valve that controls the bypass flow bypassed by the first flow control valve to a constant flow rate and bypasses the surplus flow to the low pressure side, and a constant flow rate controlled by the second flow control valve. This is realized by a pressure control valve that controls the pressure oil to a control pressure according to vehicle speed, etc., and means for introducing the control pressure controlled by the pressure control valve into the reaction force mechanism.

〈発明が解決しようとする問題点〉 上記先願の操舵力制御装置は、供給ポンプの吐出流量を
制御する流量制御弁の余剰流を圧力制御弁によって制御
し、反力機構に加える制御圧を車速等に応じて制御する
ので操舵圧に関係なく油圧反力を容易に制御できる効果
を有している。しかしながらこのものは反力油圧の制御
範囲を大きくとることができないため、油圧反力を大き
くするためには反力室の受圧面積を大きくしなければな
らない等の技術的制約が生ずる問題がある。本発明は、
供給ポンプからの一定流量の圧油を分流制御弁によって
サーボ弁側と反力機構側に分流するとともに、圧力分離
を行い、反力油圧を自由に設定可能とし、受圧面積の小
さな反力室を用いて反力制御を行い得るようにしたもの
である。
<Problems to be Solved by the Invention> The steering force control device of the prior application controls the surplus flow of the flow rate control valve that controls the discharge flow rate of the supply pump using a pressure control valve, and controls the control pressure applied to the reaction force mechanism. Since it is controlled according to the vehicle speed, etc., it has the effect of easily controlling the hydraulic reaction force regardless of the steering pressure. However, this method does not allow a wide control range of the reaction hydraulic pressure, and therefore has the problem of technical constraints such as the need to increase the pressure receiving area of the reaction chamber in order to increase the hydraulic reaction force. The present invention
A constant flow of pressure oil from the supply pump is divided into the servo valve side and the reaction force mechanism side by a flow control valve, and the pressure is separated, making it possible to freely set the reaction oil pressure and creating a reaction chamber with a small pressure receiving area. This allows reaction force control to be performed using the

く問題点を解決するための手段〉 本発明は、入力軸と出力軸との相対回転に基づいて作動
されパワーシリンダへの圧油の給排を制御するサーボ弁
と、車速等に応じてハンドルトルクを変化させる反力機
構を備えた動力舵取装置の操舵力制御装置において、供
給ポンプより吐出された一定流量の圧油をサーボ弁側に
通ずる第1制御穴と反力機構側に通ずる第2制御穴とに
一定の流量配分で分流する分流制御弁を備え、前記反力
機構に供給される圧油を車速  ゛等に応じた圧力に制
御する電磁制御弁を設けたものである。
Means for Solving the Problems The present invention provides a servo valve that is operated based on the relative rotation between an input shaft and an output shaft to control supply and discharge of pressure oil to a power cylinder, and a handle that is operated based on relative rotation between an input shaft and an output shaft, and a handle that controls supply and discharge of pressure oil to and from a power cylinder. In a steering force control device for a power steering device equipped with a reaction force mechanism that changes torque, a first control hole that communicates a constant flow of pressure oil discharged from a supply pump to the servo valve side and a first control hole that communicates to the reaction force mechanism side. The system is equipped with a diversion control valve that divides the flow into the two control holes at a constant flow rate distribution, and an electromagnetic control valve that controls the pressure oil supplied to the reaction force mechanism to a pressure that corresponds to the vehicle speed, etc.

く作   用〉 本発明は、供給ポンプから吐出された一定流量の圧油を
分流制御弁の制御絞りによって反力機構流量を一定に制
御し、残りの一定流量をサーボ弁側に供給するよう分流
する。この分流された圧油は制御弁の第1制御穴よりサ
ーボ弁に供給され、第2制御穴より反力機構に供給され
る。そして反力油圧あるいはギヤ発生圧力の上昇に応じ
て前記1.2制御穴が絞り作用されることにより、低速
時にはサーボ弁のギヤ発生圧力に拘わらす反力機構への
供給圧油を低圧に制御し、また、高速時には反力機構へ
の供給圧油を高圧に制御して操舵力制御を行うものであ
る。
Function> The present invention controls the reaction force flow rate of a constant flow rate of pressure oil discharged from a supply pump to a constant level using a control throttle of a flow control valve, and divides the flow rate so that the remaining constant flow rate is supplied to the servo valve side. do. This divided pressure oil is supplied to the servo valve through the first control hole of the control valve, and is supplied to the reaction force mechanism through the second control hole. The control hole 1.2 is throttled in response to an increase in reaction oil pressure or gear generation pressure, thereby controlling the pressure oil supplied to the reaction mechanism to a low pressure at low speeds, regardless of the gear generation pressure of the servo valve. Furthermore, at high speeds, the pressure oil supplied to the reaction force mechanism is controlled to a high pressure to control the steering force.

く実 施 例〉 以下本発明の実施例を図面に基づいて説明する。第1図
乃至第3図は第1実施例である。第1図において、11
は動力舵取装置の本体をなすハウシング本体、12はハ
ウジング本体11に固着されている弁ハウシングである
。このハウジング本体11及び弁ハウジング12内には
一対の軸受13.14を介してピニオン軸(出力軸)2
1が回転自在に軸承されており、このピニオン軸21に
はこれと交差する方向に摺動可能なラック軸22のラッ
ク歯22aが噛合している。このラック軸22は、図示
しないパワーシリンダのピストンと連結され、その両端
は所要の操縦リンク機構を介して操向車輪に連結されて
いる。
Embodiments Hereinafter, embodiments of the present invention will be described based on the drawings. 1 to 3 show a first embodiment. In Figure 1, 11
1 is a housing main body forming the main body of the power steering device, and 12 is a valve housing fixed to the housing main body 11. A pinion shaft (output shaft) 2 is inserted into the housing body 11 and the valve housing 12 via a pair of bearings 13 and 14.
1 is rotatably supported on a shaft, and rack teeth 22a of a rack shaft 22 that is slidable in a direction intersecting the pinion shaft 21 are engaged with the pinion shaft 21. This rack shaft 22 is connected to a piston of a power cylinder (not shown), and both ends thereof are connected to steering wheels via a required steering link mechanism.

弁ハウジング12の穴内には、制御弁機構30が収納さ
れている。制御弁機構(サーボ弁)30は、操舵軸とし
ての入力軸23と一体的に形成したロータリ弁部材31
と、このロータリ弁部材31の外周に同心的かつ相対的
回転可能に嵌合したスリーブ弁部材32を主要構成部材
としている。
A control valve mechanism 30 is housed within the hole of the valve housing 12. The control valve mechanism (servo valve) 30 includes a rotary valve member 31 integrally formed with an input shaft 23 as a steering shaft.
The main component is a sleeve valve member 32 that is fitted around the outer periphery of the rotary valve member 31 so as to be concentric and relatively rotatable.

ロータリ弁部材31は、これと一体の入力軸23に一端
を連結したトーションバー24を介してピニオン軸21
に可撓的に連結されている。また、ロータリ弁部材31
の外周には、図示しないが、その軸方向に伸びる複数の
ランド部と溝部とが等間隔にて形成されており、これの
溝底部より内周部に連通ずる連通路37が穿設されてい
る。入力軸23に前記内周部と弁ハウジング12内の低
圧室38とを連通ずる通路39が設けられている。−方
スリーブ弁部材32の内周にも、その軸方向に延びる複
数のランド部と溝部が等間隔にて形成され、各溝部より
スリーブ弁部材32の外周に開口する分配穴40.41
が設けられている。供給ボート35より供給される圧力
流体は、制御弁が中立状態であればランド部両側の溝部
に均等に流れ、連通路37及び通路39を経て低圧室3
8より排出ボート36に流出する。この場合、両分配ボ
ー)33,34は低圧で等しい圧力となっているためパ
ワーシリンダは作動されない。制御弁が中立状態から偏
位すれば、一方の分配穴40又は41には供給ボート3
5より圧油が供給され、他方の分配穴41又は40にパ
ワーシリンダから排出された流体が流入し、連通路37
9通路39、低圧室38を経て排出ボート36に放出さ
れるようになっている。
The rotary valve member 31 is connected to the pinion shaft 21 via a torsion bar 24 whose one end is connected to an input shaft 23 integral with the rotary valve member 31.
flexibly connected to. In addition, the rotary valve member 31
Although not shown, a plurality of lands and grooves extending in the axial direction are formed at equal intervals on the outer periphery of the holder, and a communication path 37 is bored through the bottom of the groove to communicate with the inner periphery. There is. The input shaft 23 is provided with a passage 39 that communicates the inner peripheral portion with the low pressure chamber 38 within the valve housing 12 . A plurality of lands and grooves extending in the axial direction are also formed at equal intervals on the inner circumference of the sleeve valve member 32, and distribution holes 40, 41 open from each groove to the outer circumference of the sleeve valve member 32.
is provided. When the control valve is in the neutral state, the pressure fluid supplied from the supply boat 35 flows evenly into the grooves on both sides of the land portion, and flows through the communication passage 37 and the passage 39 to the low pressure chamber 3.
8 and flows out to the discharge boat 36. In this case, the power cylinder is not operated because both distribution bows 33 and 34 are at low and equal pressures. If the control valve deviates from its neutral state, one distribution hole 40 or 41 will be filled with the supply boat 3.
Pressure oil is supplied from 5, and fluid discharged from the power cylinder flows into the other distribution hole 41 or 40, and the communication path 37
It is designed to be discharged into a discharge boat 36 through a nine passage 39 and a low pressure chamber 38.

反力機構は次の通りである。第2図でも示すように、ロ
ータリ弁部材31のビニオン軸21側の端部に半径方向
に両側に突起した突起部50が形成されており、この突
起部50と対応するピニオン軸21には突起部50を入
力軸23の軸線回りに数角度旋回可能に遊嵌する嵌合溝
51が形成されている。突起部50の外周面にはテーパ
状の係合溝52が形成されており、制御弁の中立状態で
、ピニオン軸21には係合溝52と対応する位置で半径
方向に挿通穴53が形成されている。挿通穴53に、プ
ランジャ54が半径方向に摺動可能に挿入され、プラン
ジャ54の後部へ作動油を導(べく環状溝55が形成さ
れている。この挿通穴53と環状溝55とで反力室56
が構成されている。58は車速等に応じて制御されたポ
ンプからの圧力流体を導入するボート、57は前記ボー
ト58と環状溝55を連通ずる通路である。
The reaction force mechanism is as follows. As shown in FIG. 2, a protrusion 50 that protrudes on both sides in the radial direction is formed at the end of the rotary valve member 31 on the pinion shaft 21 side. A fitting groove 51 is formed into which the part 50 is loosely fitted so as to be rotatable through several angles around the axis of the input shaft 23. A tapered engagement groove 52 is formed on the outer peripheral surface of the protrusion 50, and an insertion hole 53 is formed in the pinion shaft 21 in the radial direction at a position corresponding to the engagement groove 52 when the control valve is in a neutral state. has been done. A plunger 54 is slidably inserted in the insertion hole 53 in the radial direction, and an annular groove 55 is formed to guide hydraulic oil to the rear part of the plunger 54. Room 56
is configured. Reference numeral 58 is a boat that introduces pressure fluid from a pump controlled according to the vehicle speed, etc., and 57 is a passage that communicates the boat 58 with the annular groove 55.

上記構成の反力機構は、いわゆるラジアル方式であるが
軸線方向に反力を作用させる構成のスラスト方式でもよ
い。
The reaction force mechanism configured as described above is a so-called radial type, but may also be a thrust type configured to apply a reaction force in the axial direction.

61は自動車エンジンによって駆動される供給ポンプか
らの吐出圧油の流量QOを一定流量Qに制御する流量制
御弁である。この流量制御弁61は、メータリングオリ
フィス62と、このメータリングオリフィス62の前後
圧に応じて作動され、この前後圧を常に一定に保持する
ように低圧側に通じたバイパス通路63を開口制御する
バイパス弁64によって構成されている。尚、供給ポン
プが定速モータ駆動式の一定流量を吐出するものである
場合には前記流量制御弁61は不要である。
Reference numeral 61 denotes a flow control valve that controls the flow rate QO of pressure oil discharged from a supply pump driven by the automobile engine to a constant flow rate Q. The flow rate control valve 61 is operated according to the metering orifice 62 and the longitudinal pressure of the metering orifice 62, and controls the opening of the bypass passage 63 leading to the low pressure side so as to keep the longitudinal pressure constant. It is constituted by a bypass valve 64. Incidentally, if the supply pump is of a constant speed motor-driven type and discharges a constant flow rate, the flow rate control valve 61 is not necessary.

65は前記流量制御弁61の高圧側と接続する分流制御
弁(フローデバイダ)である。この分流制御弁65は、
サーボ弁の供給ボート35に通路45を介して連通ずる
第1制御穴68と、反力室56に通じる導入ボート58
に通路46を介して連通ずる第2制御穴69と、前記一
定流量Qの圧油を前記第1制御穴68と第2制御穴69
に一定の流量QG。
Reference numeral 65 denotes a flow divider that is connected to the high pressure side of the flow rate control valve 61. This branch control valve 65 is
a first control hole 68 communicating with the supply boat 35 of the servo valve via passage 45; and an introduction boat 58 communicating with the reaction force chamber 56.
A second control hole 69 communicates with the first control hole 68 and the second control hole 69 through a passage 46, and the pressure oil at the constant flow rate Q is communicated with the first control hole 68 and the second control hole 69.
at a constant flow rate QG.

ORに分流する制御絞り66および制御スプール67を
有し、この制御スプール67は制御絞り66の前後圧を
一定に維持するように前記第1制御穴68と第2制御穴
69の開口面積を絞り制御する。さらに、前記反力機構
側の通路46には反力油圧PRを車速等に応じて制御し
て反力室56に作用させるための電磁レリーフ弁70が
接続されている。
It has a control aperture 66 and a control spool 67 that separate the flow to the OR, and the control spool 67 reduces the opening area of the first control hole 68 and the second control hole 69 so as to maintain the front and rear pressure of the control aperture 66 constant. Control. Further, an electromagnetic relief valve 70 is connected to the passage 46 on the side of the reaction force mechanism to control the reaction oil pressure PR in accordance with the vehicle speed and the like so that it acts on the reaction force chamber 56.

この電磁レリーフ弁70は第3図で示すように、コンピ
ュータ80によって制御されるソレノイド駆動回路81
から車速信号Vに応じた電流値が供給されるソレノイド
71と、このソレノイド71の作用によってバネ荷重が
変化されるレリーフ圧設定用スプリング74と、このス
プリング74にて押付けられレリーフ通路72を介して
反力油圧PRを低圧側に逃すボール弁73とから構成さ
れている。尚、電磁レリーフ弁70に代えて電磁絞り弁
でもよい。
As shown in FIG. 3, this electromagnetic relief valve 70 is operated by a solenoid drive circuit 81 controlled by a computer 80.
a solenoid 71 to which a current value corresponding to the vehicle speed signal V is supplied from the solenoid 71; a relief pressure setting spring 74 whose spring load is changed by the action of the solenoid 71; It is composed of a ball valve 73 that releases the reaction force hydraulic pressure PR to the low pressure side. Note that the electromagnetic relief valve 70 may be replaced with an electromagnetic throttle valve.

前記反力機構側の通路46には前記電磁レリー  ′”
フ弁70の最高圧より若干高い圧力で作動する安全レリ
ーフ弁101が接続されている。
In the passage 46 on the side of the reaction force mechanism, the electromagnetic relay ′”
A safety relief valve 101 that operates at a pressure slightly higher than the maximum pressure of the safety relief valve 70 is connected.

次に上記構成の動作について説明する。供給ポンプより
吐出された圧油の流量QOを流量制御弁61にて一定流
量Qに制御する。この一定流量Qに制御された圧油は分
流制御弁65によってサーボ弁側と反力機構側に一定の
流量配分で分流される。すなわち、制御絞り66によっ
て反力機横側流量QRを一定に制御し、残りの一定流Q
Gをサーボ弁側に供給するものである。
Next, the operation of the above configuration will be explained. The flow rate QO of the pressure oil discharged from the supply pump is controlled to a constant flow rate Q by a flow rate control valve 61. The pressure oil controlled to have a constant flow rate Q is divided into the servo valve side and the reaction force mechanism side by a flow control valve 65 at a constant flow rate distribution. That is, the control throttle 66 controls the reaction force machine side flow rate QR to a constant value, and the remaining constant flow rate Q
G is supplied to the servo valve side.

車速が低い状態では電磁レリーフ弁70のソレノイド7
1に最大電流が供給され、これによりレリーフ圧設定用
スプリング74のバネ荷重は実質的にOとなり、反力油
圧PRはリザーバにドレーンされる。この場合にハンド
ル操作に伴いサーボ弁側のギヤ発生圧力PGが上昇する
と、分流制御弁65のスプール67は、第1図において
右方に軸動し、第2制御穴69の開口面積を絞り、サー
ボ弁側と反力機構側とを油圧的に分離する。これにより
ギヤ発生圧力PGの上昇に拘らず、サーボ弁側及び反力
機構側への流量配分を変化させることなく、反力機構側
の反力油圧PRはOに保持される。従って、ハンドル操
作により操舵軸24が回転されると、プランジャ54は
容易に押し上げられ、これによりスリーブ弁部材32と
ロータ弁部材31とが相対回転され、マニアルトルクに
対するギヤ発生圧力PGの変化は第5図の低速の曲線で
示す特性となり、軽快なハンドル操作ができる。
When the vehicle speed is low, the solenoid 7 of the electromagnetic relief valve 70
1, the spring load of the relief pressure setting spring 74 becomes substantially O, and the reaction oil pressure PR is drained to the reservoir. In this case, when the gear generated pressure PG on the servo valve side rises due to handle operation, the spool 67 of the branch control valve 65 pivots to the right in FIG. 1, narrows the opening area of the second control hole 69, and The servo valve side and the reaction force mechanism side are hydraulically separated. As a result, the reaction oil pressure PR on the reaction force mechanism side is maintained at O without changing the flow distribution to the servo valve side and the reaction force mechanism side, regardless of the increase in the gear generation pressure PG. Therefore, when the steering shaft 24 is rotated by operating the handle, the plunger 54 is easily pushed up, thereby causing the sleeve valve member 32 and the rotor valve member 31 to rotate relative to each other. The characteristics shown in the low-speed curve in Figure 5 are obtained, allowing for light steering operation.

また、車速か所定値を越えると、コンピュータ80に入
力される車速信号Vに応じてソレノイド駆動回路81が
制御され、電磁レリーフ弁70のソレノイド73に供給
される電流値が車速の上昇に応じて低下される。これに
よりレリーフ圧設定用スプリング74のバネ荷重が車速
の上昇に応じて増大され、反力油圧PRが高められる。
Furthermore, when the vehicle speed exceeds a predetermined value, the solenoid drive circuit 81 is controlled according to the vehicle speed signal V input to the computer 80, and the current value supplied to the solenoid 73 of the electromagnetic relief valve 70 is adjusted according to the increase in vehicle speed. lowered. As a result, the spring load of the relief pressure setting spring 74 is increased as the vehicle speed increases, and the reaction oil pressure PR is increased.

これに基づいて分流制御弁65のスプール67は第1図
において左方に軸動し、高速時には第1制御穴68の開
口面積を絞り、反力機構側とサーボ弁側とを油圧的に分
離する。これにより反力機構側の反力油圧PRは高圧に
制御され、この圧力は最高ポンプレリーフ圧まで設定可
能である。従って、車速の上昇に応じてプランジャ54
は反力油圧PRに応じた力で係合溝52に押付けられ、
スリーブ弁部材32とロータリ弁部材31とを相対回転
させるマニアルトルクに対するギヤ発生圧力PGの変化
は前記低速時のギヤ発生圧力のパターンをそのまま平行
移動させた特性となり、ハンドル操作は重くなる。
Based on this, the spool 67 of the diversion control valve 65 pivots to the left in Fig. 1, and at high speeds, the opening area of the first control hole 68 is reduced, hydraulically separating the reaction mechanism side and the servo valve side. do. As a result, the reaction oil pressure PR on the reaction mechanism side is controlled to a high pressure, and this pressure can be set up to the maximum pump relief pressure. Therefore, as the vehicle speed increases, the plunger 54
is pressed against the engagement groove 52 with a force corresponding to the reaction oil pressure PR,
The change in the gear generated pressure PG with respect to the manual torque that causes the sleeve valve member 32 and the rotary valve member 31 to rotate relative to each other has a characteristic that is a parallel shift of the pattern of the gear generated pressure at low speed, making the steering wheel operation difficult.

また、反力機構側の通路に接続されている安全レリーフ
弁101は、万一電磁レリーフ弁70に至る反力油圧P
Rのライン間で目詰まりし、流れが止められたとき、分
流制御弁65の制御絞り66の前後差圧がな(なって、
スプール67がばね力で左エンドまで戻され、サーボ弁
側への流量QGがシャットし、供給ポンプ圧がポンプレ
リーフ圧まで上昇し、この圧力が反力機構にもかかって
操舵力が重くなるため、反力油圧PRがポンプレリーフ
圧まで上昇しないように低圧側にレリーフして安全を確
保するものである。
In addition, the safety relief valve 101 connected to the passage on the side of the reaction force mechanism prevents the reaction force hydraulic pressure P from reaching the electromagnetic relief valve 70 by any chance.
When the line R is clogged and the flow is stopped, the differential pressure across the control throttle 66 of the diverter control valve 65 is reduced.
The spool 67 is returned to the left end by the spring force, the flow rate QG to the servo valve side is shut off, and the supply pump pressure rises to the pump relief pressure, and this pressure is also applied to the reaction force mechanism, increasing the steering force. , to ensure safety by providing relief to the low pressure side so that the reaction hydraulic pressure PR does not rise to the pump relief pressure.

第4図は本発明の第2実施例である。この第2実施例は
、第1実施例における電磁レリーフ弁70のドレン側に
リザーバに通じる可変絞り弁90を設け、この可変絞り
弁90を可変絞り作用させるための信号圧力としてギヤ
発生圧力PGを導入するようにし、このギヤ発生圧力P
Gを高速時に導入するよう反力油圧PRが高いときに、
その圧力によって切替えられる切替弁91を設けたもの
である。尚、この切替弁91は、車速センサの信号に基
づいて切替えられる電磁切替弁であってもよい。
FIG. 4 shows a second embodiment of the invention. In the second embodiment, a variable throttle valve 90 communicating with the reservoir is provided on the drain side of the electromagnetic relief valve 70 in the first embodiment, and a gear generation pressure PG is used as a signal pressure for causing the variable throttle valve 90 to perform a variable throttle action. This gear generated pressure P
When the reaction oil pressure PR is high to introduce G at high speed,
A switching valve 91 is provided which can be switched depending on the pressure. Note that this switching valve 91 may be an electromagnetic switching valve that is switched based on a signal from a vehicle speed sensor.

この第2実施例の場合は、車速の上昇に基づいて可変絞
り弁90に導入されるギヤ発生圧力PGに応じて絞り面
積を小さくし、電磁レリーフ弁70のドレン圧を制御す
ることにより、第5図の中速、高速曲線の八で示すよう
にギヤ発生圧力に応じてマニアルトルク特性の傾きを大
きく変え、ハンドルを切込んだときの手ごたえ感を明確
にするものである。なお、可変絞り弁90は電磁レリー
フ70と通路46との間の圧力側に設けても、第2実施
例の場合と同様な効果が期待できる。
In the case of the second embodiment, the throttle area is reduced in accordance with the gear generation pressure PG introduced into the variable throttle valve 90 based on an increase in vehicle speed, and the drain pressure of the electromagnetic relief valve 70 is controlled. As shown by 8 in the medium-speed and high-speed curves in Figure 5, the slope of the manual torque characteristic changes greatly depending on the gear generation pressure, thereby clarifying the feeling of response when turning the steering wheel. Note that even if the variable throttle valve 90 is provided on the pressure side between the electromagnetic relief 70 and the passage 46, the same effect as in the second embodiment can be expected.

〈発明の効果〉 以上のように本発明は、供給ポンプからの一定流量の圧
油を分流制御弁によってサーボ弁側と反力機構側とに一
定の流量配分で分流し、かつ反力機構側に分流された供
給流量を車速等に応じた圧力に制御する構成であるから
、反力油圧が最高ポンプレリーフ圧まで設定できる自由
度が得られ、殊に受圧面積が小さい油圧反力機構で操舵
力の制御範囲を大きくできる効果がある。
<Effects of the Invention> As described above, the present invention allows a constant flow rate of pressure oil from a supply pump to be divided into a servo valve side and a reaction mechanism side with a constant flow rate distribution using a distribution control valve, and also to divide a constant flow rate of pressure oil from a supply pump into a reaction force mechanism side Since the configuration controls the supply flow divided into two parts to a pressure according to vehicle speed, etc., there is a degree of freedom in which the reaction oil pressure can be set up to the maximum pump relief pressure, and it is especially useful for steering with a hydraulic reaction force mechanism with a small pressure receiving area. This has the effect of increasing the control range of force.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す動力舵取装置の断面
図に油圧系統図を供回した図、第2図は第1図Tl−1
1線断面図、第3図は電磁レリーフ弁の要部断面図、第
4図は本発明の第2実施例を示す油圧系統図、第5図は
操舵特性の曲線図である。 21・・・ビニオン軸、23・・・入力軸、56・・・
反力室、65・・・分流制御弁、66・・・制御紋り、
67・・・スプール、68・・・第1制御穴、69・・
・第2制御穴、70・・・電磁レリーフ弁。 特 許 出 願 人豊田工機株式会社 代     理     人 平   井   二  
 部第2図 第3図
Fig. 1 is a sectional view of a power steering device showing a first embodiment of the present invention with a hydraulic system diagram, and Fig. 2 is Fig. 1 Tl-1.
3 is a cross-sectional view of a main part of an electromagnetic relief valve, FIG. 4 is a hydraulic system diagram showing a second embodiment of the present invention, and FIG. 5 is a curve diagram of steering characteristics. 21... Binion shaft, 23... Input shaft, 56...
Reaction force chamber, 65... Diversion control valve, 66... Control crest,
67... Spool, 68... First control hole, 69...
-Second control hole, 70...electromagnetic relief valve. Patent application: Toyoda Machine Tool Co., Ltd. Agent: Mr. Hirai
Part 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 入力軸と出力軸との相対回転に基づいて作動されパワー
シリンダへの圧油の給排を制御するサーボ弁と、車速等
に応じてハンドルトルクを変化させる反力機構を備えた
動力舵取装置の操舵力制御装置において、供給ポンプよ
り吐出された一定流量の圧油をサーボ弁側に通ずる第1
制御穴と反力機構側に通ずる第2制御穴とに一定の流量
配分で分流する分流制御弁を備え、前記反力機構に供給
される圧油を車速等に応じた圧力に制御する電磁制御弁
を設けてなる動力舵取装置の操舵力制御装置。
A power steering device equipped with a servo valve that is operated based on the relative rotation of the input shaft and output shaft and controls the supply and discharge of pressure oil to the power cylinder, and a reaction force mechanism that changes the steering torque according to vehicle speed, etc. In the steering force control device of
Electromagnetic control that includes a flow control valve that divides the flow at a constant flow rate between a control hole and a second control hole that communicates with the reaction force mechanism, and controls the pressure oil supplied to the reaction force mechanism to a pressure that corresponds to the vehicle speed, etc. A steering force control device for a power steering device equipped with a valve.
JP3153885A 1985-02-21 1985-02-21 Steering force control device of power steering gear Pending JPS61191470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3153885A JPS61191470A (en) 1985-02-21 1985-02-21 Steering force control device of power steering gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3153885A JPS61191470A (en) 1985-02-21 1985-02-21 Steering force control device of power steering gear

Publications (1)

Publication Number Publication Date
JPS61191470A true JPS61191470A (en) 1986-08-26

Family

ID=12333967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3153885A Pending JPS61191470A (en) 1985-02-21 1985-02-21 Steering force control device of power steering gear

Country Status (1)

Country Link
JP (1) JPS61191470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144172U (en) * 1988-03-08 1989-10-03

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929569A (en) * 1982-08-13 1984-02-16 Kayaba Ind Co Ltd Power steeering gear
JPS59179456A (en) * 1983-03-30 1984-10-12 Hino Motors Ltd Control valve of power steering device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929569A (en) * 1982-08-13 1984-02-16 Kayaba Ind Co Ltd Power steeering gear
JPS59179456A (en) * 1983-03-30 1984-10-12 Hino Motors Ltd Control valve of power steering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144172U (en) * 1988-03-08 1989-10-03

Similar Documents

Publication Publication Date Title
US4676334A (en) Power steering system with hydraulic reaction
US4805714A (en) Power steering system with hydraulic reaction
JPS61191470A (en) Steering force control device of power steering gear
JPS61275062A (en) Steerability control device for power steering device
JPH0619426Y2 (en) Steering force control device for power steering device
JPS61191471A (en) Steering force control device of power steering gear
JPS61218481A (en) Steering force controller for power steering
JPS6299262A (en) Steering force control device of power steering device
JPS638073A (en) Steering force controlling unit of power steering device
JPH0624301Y2 (en) Steering force control device for power steering device
JPH036546Y2 (en)
JPS61155062A (en) Steering power control unit for power steering device
JPS61102382A (en) Steering force controller of power steering unit
JPS60226368A (en) Steering-force controller for power steering apparatus
JPH0232543Y2 (en)
JPH0624302Y2 (en) Steering force control device for power steering device
JPS62184973A (en) Device for controlling steering force for power steering device
JPH0624959B2 (en) Steering force control device for power steering device
JPH07100452B2 (en) Steering force control device for power steering device
JPS62225465A (en) Steering force control device of power steering device
JPS6325176A (en) Steering force control device for power steering device
JPS61218482A (en) Steering force controller for power steering
JPS61155063A (en) Steering power control unit for power steering device
JPH0624957B2 (en) Steering force control device for power steering device
JPH0624960B2 (en) Steering force control device for power steering device