JPH0624878A - Plating method for ceramic - Google Patents

Plating method for ceramic

Info

Publication number
JPH0624878A
JPH0624878A JP20719592A JP20719592A JPH0624878A JP H0624878 A JPH0624878 A JP H0624878A JP 20719592 A JP20719592 A JP 20719592A JP 20719592 A JP20719592 A JP 20719592A JP H0624878 A JPH0624878 A JP H0624878A
Authority
JP
Japan
Prior art keywords
plating
ceramic
solution
ceramics
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20719592A
Other languages
Japanese (ja)
Inventor
Tetsuo Suga
哲生 菅
Masatomo Takabayashi
政友 高林
Yoshiki Nitta
佳樹 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP20719592A priority Critical patent/JPH0624878A/en
Publication of JPH0624878A publication Critical patent/JPH0624878A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching
    • C04B41/5353Wet etching, e.g. with etchants dissolved in organic solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To apply electroless plating to a machinable ceramic having fragile structure. CONSTITUTION:The surface of the machinable ceramic is etched by a low conc. ammonium fluoride solution, is sensitized and activated after the ceramic powder generated by etching is removed by ultrasonic cleaning and after that, is electroless plated with a low conc. plating solution to form an under plating layer having large adhesive strength, is cleaned and heat treated under a mild condition which does not generate the defect by mitigating thermal shock and after that, is electroless plated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス、特にマ
シナブルセラミックスの表面にメッキを施す方法に関す
る。
FIELD OF THE INVENTION The present invention relates to a method for plating the surface of ceramics, especially machinable ceramics.

【0002】[0002]

【従来の技術】セラミックスへ無電解メッキを行なう場
合には、一般に、セラミックス表面をエッチング処理し
てセラミックスとメッキ金属との密着力を高めた後、セ
ンシタイジング処理およびアクチベーション処理して、
無電解メッキすることが行なわれている。特開昭62−
265191号公報および同63−17278号公報に
は、このセラミックスへメッキを施す従来方法が記載さ
れている。
2. Description of the Related Art In general, when electroless plating is performed on ceramics, the surface of the ceramics is etched to increase the adhesion between the ceramics and the plated metal, and then sensitizing treatment and activation treatment are performed.
Electroless plating is performed. JP 62-
Japanese Patent Nos. 265191 and 63-17278 describe conventional methods for plating the ceramics.

【0003】特開昭62−265191号公報の方法
は、NH4 F30〜60重量%、(NH4 2 SO4
〜10重量%、H2 SO4 5〜20重量%、H2 O10
〜64重量%が混合されたエッチング液に液温30〜9
0℃でセラミックスを約1分以上浸漬した後、水洗し、
約600℃に加熱したNaOH融液に30秒以上浸漬
し、その後、中和,水洗している。また、特開昭63−
17278号公報の方法は、エッチングして無電解メッ
キした後、その表面に冷間静水圧を加圧してセラミック
スとメッキとの密着力を高めている。
According to the method disclosed in Japanese Patent Laid-Open No. 62-265191, 30 to 60% by weight of NH 4 F, (NH 4 ) 2 SO 4 1 is used.
10 wt%, H 2 SO 4 5~20 wt%, H 2 O10
Liquid temperature of 30 to 9 in the etching liquid mixed with 64 wt%
After immersing the ceramics at 0 ° C for about 1 minute or more, wash with water,
It is immersed in a NaOH melt heated to about 600 ° C. for 30 seconds or more, and then neutralized and washed with water. In addition, JP-A-63-
According to the method of Japanese Patent No. 17278, after etching and electroless plating, cold isostatic pressure is applied to the surface to increase the adhesion between the ceramic and the plating.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来方法では、マシナブルセラミックスへのメッキに
適用できない問題があった。すなわち、マシナブルセラ
ミックスは母材のSiO2 の中に雲母結晶が散在してお
り、このような構造のセラミックスを特開昭62−26
5191号公報のように、高濃度のNH4 F溶液でエッ
チングすると、セラミックス表面の腐食が急速に進行す
ると共に、この腐食が雲母結晶の粒界を介して内部に進
行する。そして、この腐食が内部まで進行すると、強度
が低下して、メッキ時の応力で亀裂が生じるためであ
る。また、エッチング後の水洗だけでは、エッチングで
生成したアンカー部分に詰まっているセラミックス粉が
除去できないため、メッキの密着強度も低下している。
However, the above-mentioned conventional method has a problem that it cannot be applied to plating on machinable ceramics. That is, in machinable ceramics, mica crystals are scattered in SiO 2 as a base material, and a ceramic having such a structure is disclosed in JP-A-62-26.
When etching is performed with a high-concentration NH 4 F solution as in Japanese Patent No. 5191, the corrosion of the ceramic surface rapidly progresses, and this corrosion progresses inward through the grain boundary of the mica crystal. Then, when this corrosion progresses to the inside, the strength is reduced and cracks are generated due to the stress during plating. In addition, since the ceramic powder clogged in the anchor portion generated by etching cannot be removed only by washing with water after etching, the adhesion strength of plating is also reduced.

【0005】一方、特開昭62−17278号公報の方
法においても、マシナブルセラミックスの強度が低いた
め、冷間静水圧によってエッジ部分が欠ける問題があ
り、マシナブルセラミックスには適用が不可能となって
いる。
On the other hand, the method disclosed in Japanese Laid-Open Patent Publication No. 62-17278 has a problem that the edge portion is chipped due to cold hydrostatic pressure because the strength of the machinable ceramic is low, and it cannot be applied to the machinable ceramic. Has become.

【0006】本発明は、このような問題点に鑑みてなさ
れたものであり、マシナブルセラミックス自身に欠陥を
発生させることなく、極めて密着強度の強いメッキを施
すことのできるセラミックスのメッキ方法を提供するこ
とを目的とする。
The present invention has been made in view of the above problems, and provides a ceramic plating method capable of performing plating with extremely strong adhesion strength without causing defects in the machinable ceramics themselves. The purpose is to do.

【0007】[0007]

【課題を解決するための手段および作用】本発明のメッ
キ方法は、マシナブルセラミックスの表面を低濃度のフ
ッ化アンモニウム溶液でエッチングし、このエッチング
により生じたセラミックス粉を超音波洗浄で除去した
後、センシタイジング処理およびアクチベーション処理
を行い、その後、低濃度のメッキ液で無電解メッキして
下地メッキ層を形成し、緩慢な条件で洗浄および熱処理
して無電解メッキを行なうことを特徴とするものであ
る。
According to the plating method of the present invention, the surface of machinable ceramics is etched with a low-concentration ammonium fluoride solution, and the ceramic powder generated by this etching is removed by ultrasonic cleaning. Characterized by performing sensitizing treatment and activation treatment, and then performing electroless plating with a low concentration plating solution to form a base plating layer, and performing washing and heat treatment under mild conditions to perform electroless plating. It is a thing.

【0008】上記エッチング処理においては、マシナブ
ルセラミックスをアルカリ溶液に浸漬後に、NH4 F溶
液に浸漬する。NH4 F溶液は10重量%程度の低濃度
の溶液が使用され、この溶液にマシナブルセラミックス
を例えば3分間、浸漬してエッチングする。かかるNH
4 F溶液は低濃度のため、緩やかなエッチングが行なわ
れ、これによりセラミックスの強度の低下がなく、亀裂
発生もない状態で、その表面が均一にエッチングされ
る。
In the above etching process, the machinable ceramics are dipped in an alkaline solution and then dipped in an NH 4 F solution. As the NH 4 F solution, a solution having a low concentration of about 10% by weight is used, and the machinable ceramics is immersed in this solution for 3 minutes for etching. Such NH
Since the 4 F solution has a low concentration, it is gently etched, whereby the surface of the ceramic is uniformly etched without the strength of the ceramics being reduced and cracks not being generated.

【0009】このエッチング後における超音波洗浄で
は、エッチングによって生じたセラミックス粉を除去す
る。すなわち、エッチング後のマシナブルセラミックス
を水洗後、セラミックス粉が出なくなるまで超音波洗浄
器内で5分間程度洗浄する。このとき、セラミックス粉
で洗浄液が濁った場合は、新しい洗浄液に交換し、セラ
ミックス粉が完全に除去されたことを確認する。かかる
セラミックス粉の除去により、表面が清浄となるため、
セラミックス粉の上にメッキが覆うことがなくなり、メ
ッキの密着強度が増大する。
In the ultrasonic cleaning after the etching, the ceramic powder generated by the etching is removed. That is, the machinable ceramics after etching are washed with water and then washed in an ultrasonic cleaner for about 5 minutes until no ceramic powder comes out. At this time, if the cleaning liquid becomes cloudy with the ceramic powder, the cleaning liquid is replaced with a new cleaning liquid to confirm that the ceramic powder has been completely removed. By removing the ceramic powder, the surface becomes clean,
The plating does not cover the ceramic powder, and the adhesion strength of the plating increases.

【0010】センシタイジング処理においては、通常の
センシタイジングに用いる濃度の半分程度の濃度の塩化
スズ水溶液に浸漬することで行なう。このセンシタイジ
ング処理の後、水洗してアクチベーション処理を行な
う。このアクチベーション処理においても、通常の半分
程度の濃度の塩化パラジウム水溶液に浸漬して行なう。
そして、水洗後、センシタイジング処理およびアクチベ
ーション処理を数回繰り返す。かかるセンシタイジング
処理およびアクチベーション処理を、通常の濃度で実施
する場合には、メッキの核(パラジウム)がエッチング
されたセラミックス表面の凹部よりも凸部に多く付着
し、この状態でメッキするとセラミックス表面の凹部に
メッキが付着しにくくなり投錨効果が得られずに、メッ
キの密着強度が低くなるが、半分程度の濃度の半分程度
でしかも複数回実施するため、セラミックス表面の凹部
にもメッキの核(パラジウム)が均一に付着する。
The sensitizing treatment is carried out by immersing in a tin chloride aqueous solution having a concentration about half that used for ordinary sensitizing. After this sensitizing process, the product is washed with water and an activation process is performed. This activation process is also performed by immersing in an aqueous palladium chloride solution having a concentration of about half that of a normal one.
Then, after washing with water, the sensitizing treatment and the activation treatment are repeated several times. When such a sensitizing treatment and an activation treatment are carried out at a normal concentration, the plating nuclei (palladium) adhere to the protrusions more than to the recesses on the etched ceramic surface, and when the plating is performed in this state, the ceramic surface The plating is less likely to adhere to the recesses and the anchoring effect is not obtained, and the adhesion strength of the plating is low. (Palladium) adheres uniformly.

【0011】下地メッキ層の形成においては、低濃度の
メッキ液に浸漬して行い、数μmのメッキ膜を付着させ
る。メッキ液を低濃度とすることにより緩速度でメッキ
が発生するため、セラミックス表面の微細な凹部に対し
ても無電解メッキ層を形成することができる。図1およ
び図2は低濃度および高濃度のメッキ液により、下地メ
ッキ層3を形成した断面を示し、高濃度メッキ液を使用
した図2においては、セラミックス1の凹部2(アンカ
ー部)内にメッキ層3が充満していないのに比べ、低濃
度メッキ液を使用した図1においては、セラミックス1
の凹部2内をメッキ層3が充満している。このように凹
部2内にメッキ層が充満することにより、確実な投錨効
果が得られるため、メッキ層の密着強度が大きくなる。
The underlying plating layer is formed by immersing it in a low-concentration plating solution to deposit a plating film of several μm. Since the plating solution is made to have a low concentration to cause plating at a slow rate, the electroless plating layer can be formed even on the fine recesses on the ceramic surface. 1 and 2 show a cross section in which a base plating layer 3 is formed by a low-concentration and high-concentration plating solution, and in FIG. 2 using a high-concentration plating solution, the recess 2 (anchor part) of the ceramic 1 is In contrast to the case where the plating layer 3 is not filled, in FIG.
The plating layer 3 fills the inside of the concave portion 2. By thus filling the plating layer in the concave portion 2, a reliable anchoring effect can be obtained, so that the adhesion strength of the plating layer increases.

【0012】この下地メッキ層形成の後において行う洗
浄および熱処理は、緩慢な条件の下で実施する。すなわ
ち、洗浄においては水洗ではなく湯洗とする。マシナブ
ルセラミックスは熱衝撃に対して脆弱であるため、高温
のメッキ槽から引き出し後、湯洗するものである。熱処
理においても同様で、低温(例えば、200℃前後)で
長時間(例えば、2時間程度)、加熱することでマシナ
ブルセラミックスへの熱応力を軽減させる。これらの工
程以外の工程においても、高温から低温にする場合に
は、同様な目的で徐冷を行なう。なお熱処理の前には、
乾燥を行なっても良く、この乾燥によりセラミックス内
部に侵入した水分を除去できるため、熱処理時における
セラミックスの割れを防止できる。
The cleaning and heat treatment performed after forming the base plating layer are carried out under slow conditions. That is, washing is performed with hot water, not with water. Since machinable ceramics are vulnerable to thermal shock, they are washed with hot water after being taken out from a high temperature plating bath. The same applies to the heat treatment, and the thermal stress to the machinable ceramics is reduced by heating at a low temperature (for example, around 200 ° C.) for a long time (for example, about 2 hours). Also in steps other than these steps, when the temperature is changed from high temperature to low temperature, slow cooling is performed for the same purpose. Before the heat treatment,
Drying may be performed, and since moisture that has penetrated into the interior of the ceramics can be removed by this drying, cracking of the ceramics during heat treatment can be prevented.

【0013】熱処理後における無電解メッキは、マシナ
ブルセラミックス表面にメッキを施す本来の処理工程で
あり、通常の条件でメッキ処理する。このメッキ処理に
おいては、下地メッキ層と母材のセラミックスとの密着
性が強いため、50〜300μmの厚い膜厚でメッキ層
を形成できる。
The electroless plating after the heat treatment is an original process for plating the surface of the machinable ceramics, and the plating process is performed under normal conditions. In this plating process, since the adhesion between the base plating layer and the ceramic of the base material is strong, the plating layer can be formed with a thick film thickness of 50 to 300 μm.

【0014】[0014]

【実施例1】マシナブルセラミックスとして商品名ホレ
ベール(ホトンセラミックス(株)製)および商品名マ
コール(石原薬品(株)製)を使用し、このマシナブル
セラミックスを20重量%のカセイカリウム溶液に30
秒浸漬して、アルカリ処理した後、10重量%のNH4
F溶液に3分間浸漬して、エッチング処理した。図3
は、ホトベールの表面をエッチング処理した図を示す。
このエッチングの後、水洗し、さらに超音波洗浄器で約
10分間洗浄した。この洗浄の途中では、エッチングで
生じたセラミックス粉により溶液が濁るので、2回程新
しい溶液に代えて洗浄し、セラミックス粉が出なくなっ
たことでセラミックス粉が十分に除去されたことを確認
した。
Example 1 As the machinable ceramics, trade name Holaver (manufactured by Photon Ceramics Co., Ltd.) and trade name Macor (manufactured by Ishihara Yakuhin Co., Ltd.) were used, and the machinable ceramics were added to 20% by weight caustic potassium solution at 30%.
After 10 seconds of dipping and alkali treatment, 10% by weight of NH 4
It was immersed in the F solution for 3 minutes to perform etching treatment. Figure 3
Shows a diagram in which the surface of the photovale is etched.
After this etching, it was washed with water and further washed with an ultrasonic cleaner for about 10 minutes. During this cleaning, the solution became turbid due to the ceramic powder generated by etching, so the solution was washed twice with a new solution, and it was confirmed that the ceramic powder was not removed and the ceramic powder was sufficiently removed.

【0015】次に、SnCl2 を5g/l,36%HC
lを5ml/l溶解した液温30℃の塩化スズ水溶液に
5分間、浸漬してセンシタイジング処理し、水洗後、P
dCl2 を0.2g/l,36%HClを2ml/l溶
解した液温35℃の塩化パラジウム水溶液に3分間浸漬
してアクチベーション処理した。そして、水洗後、上記
処理を数回実施した。これらセンシタイジング処理およ
びアクチベーション処理の各処理液は、通常の処理液の
半分程度の濃度である。
Next, SnCl 2 was added at 5 g / l and 36% HC
1 ml was dissolved in 5 ml / l of an aqueous solution of tin chloride at a liquid temperature of 30 ° C. for 5 minutes for sensitizing treatment, and after washing with water, P
Activation was carried out by immersing dCl 2 in 0.2 g / l and 36% HCl in 2 ml / l for 3 minutes in a palladium chloride aqueous solution at a liquid temperature of 35 ° C. Then, after washing with water, the above treatment was carried out several times. Each of the treatment liquids for the sensitizing treatment and the activation treatment has a concentration about half that of a normal treatment liquid.

【0016】この処理の後、セラミックスを水洗し、N
iが3g/l,Pが7%に調整された低濃度の無電解P
Niメッキ液に、液温85℃で15分間浸漬して、数μ
mの下地メッキ層を形成した。このメッキ後、湯洗し、
乾燥した。この場合において、温度変化が大きい工程で
は、適宜、徐冷した。乾燥後、約200℃の炉内で2時
間熱処理し、その後徐冷し、無電解メッキ処理した。
After this treatment, the ceramics are washed with water and N
Low concentration of electroless P with i adjusted to 3 g / l and P adjusted to 7%
Immerse in Ni plating solution at 85 ℃ for 15 minutes,
m base plating layer was formed. After this plating, wash with hot water,
Dried. In this case, in the step where the temperature change was large, the material was gradually cooled. After drying, it was heat-treated in a furnace at about 200 ° C. for 2 hours, then gradually cooled and subjected to electroless plating.

【0017】この無電解メッキ処理は、Niが5g/
l,Pが12%に調整された濃度の無電解PNiメッキ
液に一定時間浸漬することで行なった。本実施例におけ
るメッキの析出速度は5〜6μm/時間であるため、必
要なメッキ厚に応じて浸漬時間を設定し、例えば150
μmの厚さにメッキする場合は、27時間浸漬した。か
かる無電解メッキにより50〜300μmの厚膜のメッ
キ層を付着させることができた。
In this electroless plating treatment, Ni is 5 g /
It was carried out by immersing in an electroless PNi plating solution having a concentration in which 1 and P were adjusted to 12% for a certain period of time. Since the deposition rate of the plating in this example is 5 to 6 μm / hour, the immersion time is set according to the required plating thickness, for example 150.
When plating to a thickness of μm, it was immersed for 27 hours. By such electroless plating, it was possible to deposit a plating layer having a thick film of 50 to 300 μm.

【0018】このような本実施例では、マシナブルセラ
ミックスに欠陥を生じさせることがなく、しかも下地メ
ッキ層が強固に密着するため、内部応力の大きな無電解
PNiメッキでも、50〜300μmの厚いメッキが可
能となった。
In this embodiment, since the machinable ceramics do not cause defects and the undercoating layer adheres firmly, even electroless PNi plating with a large internal stress causes a thick plating of 50 to 300 μm. Became possible.

【0019】[0019]

【実施例2】商品名ホトベールをマシナブルセラミック
スとして使用し、このセラミックスに対し、熱処理工程
まで実施例1と同様な手順で行なった。この熱処理後、
硫酸銅7g/lに調整された液温60℃の無電解Cuメ
ッキ液に浸漬し、Cuメッキ層を付着させた。これによ
り密着強度が大きな状態で良好なメッキ層を形成でき
た。
Example 2 Photovale under the trade name was used as a machinable ceramic, and this ceramic was subjected to a heat treatment process in the same procedure as in Example 1. After this heat treatment,
It was dipped in an electroless Cu plating solution having a liquid temperature of 60 ° C. adjusted to 7 g / l of copper sulfate to deposit a Cu plating layer. As a result, a good plating layer could be formed with a high adhesion strength.

【0020】[0020]

【実施例3】マシナブルセラミックスに対し、熱処理工
程まで実施例1と同様に行い、その後、電気ニッケルメ
ッキを100〜200μmの厚さで付着させた。そし
て、表面を所定形状に機械加工した後、Niが5g/
l,Pが12%に調整された液温90℃の無電解PNi
メッキ液に浸漬して、無電解メッキを施した。
[Example 3] The machinable ceramics were subjected to the heat treatment process in the same manner as in Example 1, and thereafter, electro nickel plating was applied to a thickness of 100 to 200 µm. After the surface was machined into a predetermined shape, Ni was 5 g /
Electroless PNi with liquid temperature of 90 ° C in which l and P are adjusted to 12%
It was immersed in a plating solution and electroless plated.

【0021】本実施例では、PNiメッキとは内部応力
の異なる電気ニッケルメッキを中間に施すことにより、
温度変化が大きい環境でもメッキの剥離や割れが起こら
ないメッキが可能となっている。これは無電解PNiは
圧縮応力であるのに対し、電気ニッケルメッキはこれよ
りも小さな引張応力であり、これらの応力が相殺される
ためである。
In the present embodiment, by electroplating nickel having an internal stress different from that of PNi plating in the middle,
It is possible to perform plating without peeling or cracking of the plating even in environments with large temperature changes. This is because electroless PNi has a compressive stress, whereas electro-nickel plating has a smaller tensile stress, and these stresses cancel each other out.

【0022】[0022]

【発明の効果】以上のとおり本発明によれば、マシナブ
ルセラミックスであっても、欠陥を発生させることな
く、しかも下地メッキ層と母材のセラミックスとの強固
な密着ができるため、内部応力が大きな無電解メッキで
も50〜300μmの厚いメッキを施すことができる。
As described above, according to the present invention, even in the case of machinable ceramics, a strong adhesion can be achieved between the base plating layer and the ceramics of the base material without causing defects, so that internal stress can be reduced. Even with large electroless plating, thick plating of 50 to 300 μm can be applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】低濃度で形成した下地メッキ層の断面図であ
る。
FIG. 1 is a cross-sectional view of a base plating layer formed with a low concentration.

【図2】高濃度で形成した下地メッキ層の断面図であ
る。
FIG. 2 is a cross-sectional view of a base plating layer formed with high concentration.

【図3】エッチング処理したセラミックスの表面図であ
る。
FIG. 3 is a surface view of ceramics subjected to etching treatment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マシナブルセラミックスの表面を低濃度
のフッ化アンモニウム溶液でエッチングし、このエッチ
ングにより生じたセラミックス粉を超音波洗浄で除去し
た後、センシタイジング処理およびアクチベーション処
理を行い、その後、低濃度のメッキ液で無電解メッキし
て下地メッキ層を形成し、緩慢な条件で洗浄および熱処
理して無電解メッキを行なうことを特徴とするセラミッ
クスのメッキ方法。
1. The surface of a machinable ceramic is etched with a low-concentration ammonium fluoride solution, and the ceramic powder generated by this etching is removed by ultrasonic cleaning, followed by sensitizing treatment and activation treatment, and thereafter. A ceramics plating method, characterized in that electroless plating is performed with a low-concentration plating solution to form a base plating layer, and electroless plating is performed by washing and heat treatment under mild conditions.
JP20719592A 1992-07-10 1992-07-10 Plating method for ceramic Pending JPH0624878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20719592A JPH0624878A (en) 1992-07-10 1992-07-10 Plating method for ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20719592A JPH0624878A (en) 1992-07-10 1992-07-10 Plating method for ceramic

Publications (1)

Publication Number Publication Date
JPH0624878A true JPH0624878A (en) 1994-02-01

Family

ID=16535820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20719592A Pending JPH0624878A (en) 1992-07-10 1992-07-10 Plating method for ceramic

Country Status (1)

Country Link
JP (1) JPH0624878A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057647A1 (en) * 2001-12-21 2003-07-17 Applied Materials, Inc. Methods of roughening a ceramic surface
JP2014195000A (en) * 2013-03-29 2014-10-09 Ngk Insulators Ltd Laminate and piezoelectric/electrostrictive element
US11821090B2 (en) 2016-04-26 2023-11-21 Murata Manufacturing Co., Ltd. Method of manufacturing ceramic electronic component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057647A1 (en) * 2001-12-21 2003-07-17 Applied Materials, Inc. Methods of roughening a ceramic surface
US6899798B2 (en) 2001-12-21 2005-05-31 Applied Materials, Inc. Reusable ceramic-comprising component which includes a scrificial surface layer
CN100343200C (en) * 2001-12-21 2007-10-17 应用材料有限公司 Methods of roughening ceramic surface
KR100978763B1 (en) * 2001-12-21 2010-08-30 어플라이드 머티어리얼즈 인코포레이티드 Methods of fabricating a reusable ceramic-comprising component with mechanical interlocks and an overlying sacrificial layer
JP2014195000A (en) * 2013-03-29 2014-10-09 Ngk Insulators Ltd Laminate and piezoelectric/electrostrictive element
US11821090B2 (en) 2016-04-26 2023-11-21 Murata Manufacturing Co., Ltd. Method of manufacturing ceramic electronic component

Similar Documents

Publication Publication Date Title
US4346128A (en) Tank process for plating aluminum substrates including porous aluminum castings
US4588480A (en) Method of producing wear-protection layers on surfaces of structural parts of titanium or titanium-base alloys
US5074970A (en) Method for applying an abrasive layer to titanium alloy compressor airfoils
US3666529A (en) Method of conditioning aluminous surfaces for the reception of electroless nickel plating
US3672964A (en) Plating on aluminum,magnesium or zinc
US4511614A (en) Substrate having high absorptance and emittance black electroless nickel coating and a process for producing the same
EP0494579B1 (en) Method for electroplating nickel onto titanium alloys
JP3093219B2 (en) Nickel electroless plating method
US4670312A (en) Method for preparing aluminum for plating
JPH0624878A (en) Plating method for ceramic
US20040173465A1 (en) Method of surface treating titanium-containing metals followed by plating in the same electrolyte bath and parts made in accordance therewith
US2801213A (en) Method of electroplating on titanium
US3472742A (en) Plating nickel on aluminum castings
JP3247517B2 (en) Plating method of titanium material
CA2513691A1 (en) Pre-plating surface treatments for enhanced galvanic-corrosion resistance
JP2000038682A (en) Nickel plating method and semiconductor device
US7147896B2 (en) Electroless nickel plating method for the preparation of zirconia ceramic
US4154869A (en) Electroless plating method with inspection for an unbroken layer of water prior to plating
NO165116B (en) DEVICE FOR CONTINUOUS ELECTROLYTIC TREATMENT OF METAL BANDS.
EP0114930B1 (en) Palladium activation of silicon iron prior to electroless nickel plating
US4948674A (en) Method of applying a metal layer of large adhesive strength on enamels
JPH0154438B2 (en)
NO169353B (en) PROCEDURE FOR PRE-TREATMENT OF A TITAN SURFACE PRESENTS ELECTROLYTIC APPLICATION OF METAL ON THE SURFACE
JP3173074B2 (en) Method of forming solder film
FR2498873A1 (en) Printed circuit mfr. using thick film track - subsequently thickened by chemical-and electro-deposition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020806