JPH06243862A - Forming method for lead-acid battery negative electrode plate using copper lattice - Google Patents

Forming method for lead-acid battery negative electrode plate using copper lattice

Info

Publication number
JPH06243862A
JPH06243862A JP5047529A JP4752993A JPH06243862A JP H06243862 A JPH06243862 A JP H06243862A JP 5047529 A JP5047529 A JP 5047529A JP 4752993 A JP4752993 A JP 4752993A JP H06243862 A JPH06243862 A JP H06243862A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
copper
conductive frame
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5047529A
Other languages
Japanese (ja)
Other versions
JP2762889B2 (en
Inventor
Kunio Yonezu
邦雄 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP5047529A priority Critical patent/JP2762889B2/en
Publication of JPH06243862A publication Critical patent/JPH06243862A/en
Application granted granted Critical
Publication of JP2762889B2 publication Critical patent/JP2762889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent the occurrence of self-discharge with the elution of copper restrained to forming solution by electrically connecting a negative electrode plate for polarization to the conductive frame body of the cathode, and thereby keeping its potential lower than OV at all times. CONSTITUTION:A negative electrode plate having been formed using spongy lead as active material, is connected to a conductive frame body made of copper as a cathode plate for polarization so as to be immersed in forming solution. Next, the lug of an unformed negative electrode plate is brought into contact with the conductive frame body so as to be formed with main current fed. By this constitution, the potential of the conductive frame body of a negative electrode is kept lower than that of reference hydrogen and an electrode, the electrode plate is put into a forming tank, simultaneously copper is restrained from being eluted with potential kept low. Therefor, no hydrogen overvoltage of the negative electrode is lowered, negative electrode plate less in self- discharge can thereby be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は銅格子を用いた鉛蓄電池
用負極板の化成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a negative electrode plate for a lead storage battery using a copper grid.

【0002】[0002]

【従来の技術とその課題】鉛蓄電池の負極格子には通常
は鉛合金を使用しているが、電気抵抗が大きいので大電
流放電での電圧損失が大きく、特に大型電池では問題と
なる。そこで電気抵抗の小さな銅や銅合金を負極格子に
用いる例がある。
2. Description of the Related Art Lead alloys are usually made of a lead alloy in the negative electrode grid of a lead-acid battery. However, since the electric resistance is large, the voltage loss during large current discharge is large, which is a problem especially in large batteries. Therefore, there is an example in which copper or copper alloy having a low electric resistance is used for the negative electrode grid.

【0003】銅の標準電極電位は標準水素電極基準で
0.34ボルト(V)であり、海綿状鉛を活物質とする
負極板の電位−0.35Vよりも約0.7V貴である。
したがって、銅格子を負極板に用いても、通常の使用条
件下では銅の溶解は生じない。銅が電解液に溶出する
と、負極板の電位が卑であるから、容易に負極板上に析
出する。周知のように銅の水素過電圧は鉛よりも小さい
ので、負極板上に銅が析出すると Pb +H2 SO4 → Pb SO4 +H2 ↑ というう水素ガス発生を伴なう自己放電が大きくなる。
したがって、銅格子はメッキなどでその表面を被覆する
ことが多いが、完全に被覆することは難しい。
The standard electrode potential of copper is 0.34 V (V) based on the standard hydrogen electrode, which is about 0.7 V higher than the potential of -0.35 V of the negative electrode plate using spongy lead as the active material.
Therefore, even if the copper grid is used for the negative electrode plate, dissolution of copper does not occur under normal use conditions. When copper is eluted in the electrolytic solution, the potential of the negative electrode plate is base, so that copper easily deposits on the negative electrode plate. As is well known, since the hydrogen overvoltage of copper is smaller than that of lead, when copper is deposited on the negative electrode plate, Pb + H 2 SO 4 → Pb SO 4 + H 2 ↑ self-discharge accompanied by hydrogen gas generation becomes large.
Therefore, the surface of the copper grid is often covered by plating or the like, but it is difficult to completely cover it.

【0004】鉛メッキした銅格子を用いる負極板での問
題は、製造工程での銅の溶解と析出とを防ぐことであ
る。上述のように、銅の電位は鉛よりも約0.7V貴で
あるから、化成工程での通電中および化成済みの状態で
は銅は溶出しない。
A problem with negative plates that use lead-plated copper grids is that they prevent copper dissolution and deposition during the manufacturing process. As described above, since the electric potential of copper is about 0.7 V more noble than that of lead, copper does not elute during energization in the chemical conversion step and in the already-formed state.

【0005】従来から、化成工程は、希硫酸を入れた化
成槽を準備し、ここに生ペーストを充填し熟成,乾燥し
た未化成の負極板を挿入した後、極板耳または化成用耳
に通電導体を接触,接続し、その後通電を開始する。こ
のとき負極板は化成用希硫酸中に浸漬しているが、化成
槽に多くの負極板を挿入するので時間がかかり、化成の
ための通電までは開回路で放置される。
Conventionally, in the chemical conversion process, a chemical conversion tank containing dilute sulfuric acid is prepared, and an unformed negative electrode plate, which has been aged and dried, is filled with a raw paste, and then the electrode plate ear or the chemical conversion ear is inserted. Contact and connect the current-carrying conductors, and then start the current-carrying. At this time, the negative electrode plate is immersed in dilute sulfuric acid for chemical conversion, but since many negative electrode plates are inserted in the chemical conversion tank, it takes time, and it is left in an open circuit until energization for chemical conversion.

【0006】負極板の未化成活物質の組成は一塩基性硫
酸鉛(Pb O・Pb SO4 )、三塩基性硫酸鉛(3Pb
O・Pb SO4 ・H2 O)および酸化鉛(Pb O)が主
成分である。これらの標準電極電位はそれぞれ−0.1
0V、−0.04Vおよび0.26Vであって、鉛の電
位−0.35Vよりかなり貴であり、銅の電位0.34
Vに近い。したがって、銅格子の露出部から、少量の銅
が化成液中に溶解し、この銅は化成電流を通電すると負
極板が鉛の電位よりさらに卑になるため、直ちに負極板
上に析出する。
[0006] Negative electrode plate of unformed active material composition monobasic lead sulfate (Pb O · Pb SO 4) , tribasic lead sulfate (3Pb
O.Pb SO 4 .H 2 O) and lead oxide (Pb O) are the main components. These standard electrode potentials are -0.1 respectively.
0V, -0.04V, and 0.26V, which are considerably nobler than lead potential -0.35V, and copper potential 0.34.
Close to V. Therefore, from the exposed portion of the copper grid, a small amount of copper is dissolved in the chemical conversion liquid, and when the chemical conversion current is passed, the negative electrode plate becomes more base than the lead potential, and this copper is immediately deposited on the negative electrode plate.

【0007】この現象は、未化成の負極活物質の組成、
銅格子の鉛メッキの完全さ、化成液の温度、未化成の負
極板を化成槽に入れてから通電するまでの放置時間など
種々の要因によってその程度に差を生じる。これらの要
因の組合せによっては、負極板の自己放電が著しく大き
くなる問題があった。
This phenomenon is caused by the composition of the unformed negative electrode active material,
The degree depends on various factors such as the completeness of lead plating on the copper grid, the temperature of the chemical conversion solution, and the time period for leaving the unformed negative electrode plate in the chemical conversion tank until it is energized. There is a problem that the self-discharge of the negative electrode plate is significantly increased depending on the combination of these factors.

【0008】[0008]

【課題を解決するための手段】本発明は、銅格子を用い
た負極板の化成方法を、化成槽の負極の導電枠体の電位
を標準水素電極の電位よりも卑に保つ工程、未化成の負
極板を導電枠体と電気的に接触または接続する工程、負
極板に化成のための主電流を供給する工程とすること、
特に導電枠体に海綿状鉛を有する分極用負極板を常時電
気的に接続しておくことによって、前記の課題を解決し
たものである。
The present invention provides a method of forming a negative electrode plate using a copper grid, in which the potential of the conductive frame body of the negative electrode of the formation tank is kept lower than the potential of the standard hydrogen electrode. A step of electrically contacting or connecting the negative electrode plate with a conductive frame, a step of supplying a main current for formation to the negative electrode plate,
In particular, the above problem is solved by constantly electrically connecting a negative electrode plate for polarization having spongy lead to the conductive frame.

【0009】[0009]

【作用】希硫酸中での銅イオンの濃度(活量、acu++)
と電位Eとの関係は25℃において次式で表わすことが
できる。
[Function] Copper ion concentration in dilute sulfuric acid (activity, a cu ++)
The relation between V and potential E can be expressed by the following equation at 25 ° C.

【0010】E=0.337+0.0295log acu++ このEの値が0.2Vであれば銅イオンは希硫酸中に1
-4モル/l 溶解するが、このEを0Vにすればその溶
解量は10-11 モル/l で零に近く無視することができ
る。したがって、化成中に未化成の負極板を浸漬したら
直ちに負極板の電位を0V程度以下に、卑に保つことが
必要である。本発明では、負極の導電枠体の電位が0V
よりも卑に保たれているので、負極板は化成槽に入れる
と同時に卑の電位に保たれて、銅は溶出しない。
E = 0.337 + 0.0295log a cu ++ If the value of E is 0.2 V, copper ion is 1 in dilute sulfuric acid.
It dissolves 0 -4 mol / l, but when this E is set to 0 V, the amount of dissolution is 10 -11 mol / l, which can be neglected close to zero. Therefore, it is necessary to keep the potential of the negative electrode plate at about 0 V or less immediately after the unformed negative electrode plate is dipped during the formation. In the present invention, the potential of the negative electrode conductive frame is 0V.
Since it is kept more base than that, the negative electrode plate is kept in the base potential at the same time when it is placed in the chemical conversion tank, and copper is not eluted.

【0011】[0011]

【実施例】海綿状鉛を活物質とする、常法による化成済
みの負極板を分極用の負極板として、化成槽の導電枠体
に溶接して接続し、その全体が化成液に浸漬するように
固定した。次に常法にしたがって製造した未化成の負極
板を化成槽にいれ、その耳と導電枠体とを接触させた。
つぎに化成のための主電流を供給するための通電導体を
極板の耳に溶接した。負極板を化成液に浸漬してから2
時間後に通電導体から化成の主電流を供給し、常法にし
たがって化成を完了させた。
[Example] A negative electrode plate, which has been spongy lead as an active material and has been formed by a conventional method, is used as a negative electrode plate for polarization by welding and connecting it to a conductive frame of a chemical forming tank, and the whole is immersed in a forming liquid. Fixed as. Next, the unformed negative electrode plate manufactured according to a conventional method was put in a forming tank, and the ears thereof were brought into contact with the conductive frame.
Next, a current-carrying conductor for supplying the main current for formation was welded to the ears of the electrode plate. 2 after immersing the negative electrode plate in the chemical conversion solution
After a lapse of time, the main current for chemical conversion was supplied from the current-carrying conductor, and the chemical conversion was completed according to the usual method.

【0012】この負極板5枚と、従来の方法による負極
板5枚、すなわち未化成の負極板を化成液に浸漬してか
ら化成のための通電までの2時間を、その負極板の自然
な電位のままで放置した負極板とを1.240(60
℃)の希硫酸中で1ケ月間放置して自己放電量を調べ
た。生成した硫酸鉛量の平均値は本発明になるものが2
3%、従来の方法によるものが29%であり、両者の性
能には有意差があった。
This negative electrode plate and the negative electrode plate by the conventional method, that is, the unformed negative electrode plate is immersed in the chemical conversion liquid for 2 hours from electrification for chemical conversion to the negative electrode plate. The negative electrode plate left at the potential is 1.240 (60
It was left in dilute sulfuric acid (° C.) for 1 month to examine the self-discharge amount. The average amount of lead sulfate produced is 2 according to the present invention.
3%, 29% by the conventional method, and there was a significant difference in performance between the two.

【0013】この実施例では、分極用負極板を導電枠体
に接続固定しているが、導電枠体を卑に分極させるには
他の方法もある。例えば適当な対極を化成槽内に入れ
て、それと導電枠体との間で微小電流を通電するか、定
電圧を保っておいてもよい。
In this embodiment, the negative electrode plate for polarization is connected and fixed to the conductive frame body, but there is another method to polarize the conductive frame body. For example, a suitable counter electrode may be placed in the chemical conversion tank and a minute current may be passed between it and the conductive frame, or a constant voltage may be maintained.

【0014】また、負極の導電枠体と、化成のための主
電流を供給する通電導体とを同じものとすることも可能
である。
It is also possible to make the negative electrode conductive frame and the current-carrying conductor that supplies the main current for chemical formation the same.

【0015】[0015]

【発明の効果】以上詳述したように、本発明は、原料鉛
粉、未化成の活物質組成、ハンドリング、化成作業など
の種々な要因が関係して、化成工程で格子の銅が化成液
に溶出し、これが析出することを防ぐものである。した
がって、負極板の水素過電圧が低下せず、自己放電の少
ない良好な負極板を得ることが可能となった。
As described above in detail, the present invention relates to various factors such as the raw material lead powder, the composition of the unformed active material, the handling, the forming work, etc. It is to elute into the water and prevent it from precipitating. Therefore, the hydrogen overvoltage of the negative electrode plate did not decrease, and it was possible to obtain a good negative electrode plate with less self-discharge.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化成槽の負極の導電枠体の電位を標準水
素電極の電位よりも卑に保つ工程、未化成の負極板を前
記導電枠体と電気的に接触または接続する工程、負極板
に化成のための主電流を供給する工程からなる銅格子を
用いた鉛蓄電池用負極板の化成方法。
1. A step of keeping a potential of a conductive frame body of a negative electrode of a chemical conversion tank lower than a potential of a standard hydrogen electrode, a step of electrically contacting or connecting an unformed negative electrode plate with the conductive frame body, a negative electrode plate A method for forming a negative electrode plate for a lead storage battery using a copper grid, which comprises a step of supplying a main current for forming the metal.
【請求項2】 導電枠体に海綿状鉛を有する分極用負極
板を常時電気的に接続しておくことを特徴とする請求項
1記載の銅格子を用いた鉛蓄電池用負極板の化成方法。
2. A method of forming a negative electrode plate for a lead storage battery using a copper grid according to claim 1, wherein a negative electrode plate for polarization having spongy lead is always electrically connected to the conductive frame. .
JP5047529A 1993-02-13 1993-02-13 Method of forming negative electrode plate for lead-acid battery using copper grid Expired - Lifetime JP2762889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5047529A JP2762889B2 (en) 1993-02-13 1993-02-13 Method of forming negative electrode plate for lead-acid battery using copper grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5047529A JP2762889B2 (en) 1993-02-13 1993-02-13 Method of forming negative electrode plate for lead-acid battery using copper grid

Publications (2)

Publication Number Publication Date
JPH06243862A true JPH06243862A (en) 1994-09-02
JP2762889B2 JP2762889B2 (en) 1998-06-04

Family

ID=12777654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5047529A Expired - Lifetime JP2762889B2 (en) 1993-02-13 1993-02-13 Method of forming negative electrode plate for lead-acid battery using copper grid

Country Status (1)

Country Link
JP (1) JP2762889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923084A (en) * 2018-08-16 2018-11-30 超威电源有限公司 A kind of test method of pole group pole plate current distribution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923084A (en) * 2018-08-16 2018-11-30 超威电源有限公司 A kind of test method of pole group pole plate current distribution
CN108923084B (en) * 2018-08-16 2023-08-29 超威电源集团有限公司 Method for testing current distribution of polar plate of polar group

Also Published As

Publication number Publication date
JP2762889B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
US4507372A (en) Positive battery plate
JP3410534B2 (en) Metal-hydrogen secondary battery
JP2762889B2 (en) Method of forming negative electrode plate for lead-acid battery using copper grid
EP0381157B1 (en) Secondary battery
JP2001118611A (en) Regeneration method of lead accumulator battery by electric treatment
Danilov et al. Electrocatalytic processes on Pb/PbO2 electrodes at high anodic potential
Maja et al. Ac behaviour of the lead dioxide electrode: antimony effect
US4136235A (en) Secondary batteries
JPS63244568A (en) Lead-acid battery
JP4515046B2 (en) Lead acid battery conversion method
Iliev et al. Self‐Discharge and Passivation Phenomena in Lead‐Acid Batteries during Storage
JP2610565B2 (en) Manufacturing method of sealed alkaline storage battery using paste-type nickel positive electrode
JPH0569263B2 (en)
JPS586275B2 (en) lead acid battery
KR950004457B1 (en) Lead battery
Bushrod et al. Stress in anodically formed lead dioxide
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPH10275618A (en) Positive plate for lead-acid battery
Curtis et al. Effect of electrolyte impurity on the electrochemical performance of the lead/tetrafluoroboric acid/lead dioxide cell
Wales Charging the Silver Oxide Electrode with Periodically Varying Current: II. Repeated Open‐Circuit Periods
JPH10208735A (en) Immediately usable lead-acid battery
JPH10308214A (en) Manufacture of positive electrode plate for instant lead-acid battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JP2913482B2 (en) Lead storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery