JPH06240035A - Electromagnetic-wave-shielding molded plastic article - Google Patents

Electromagnetic-wave-shielding molded plastic article

Info

Publication number
JPH06240035A
JPH06240035A JP2921793A JP2921793A JPH06240035A JP H06240035 A JPH06240035 A JP H06240035A JP 2921793 A JP2921793 A JP 2921793A JP 2921793 A JP2921793 A JP 2921793A JP H06240035 A JPH06240035 A JP H06240035A
Authority
JP
Japan
Prior art keywords
film
plasma
electromagnetic
plastic molded
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2921793A
Other languages
Japanese (ja)
Inventor
Akira Motoki
詮 元木
Yoichi Murayama
洋一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO INGUSU KK
Original Assignee
TOKYO INGUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO INGUSU KK filed Critical TOKYO INGUSU KK
Priority to JP2921793A priority Critical patent/JPH06240035A/en
Priority to DE69317035T priority patent/DE69317035T2/en
Priority to US08/149,533 priority patent/US5462771A/en
Priority to EP93308934A priority patent/EP0597670B1/en
Publication of JPH06240035A publication Critical patent/JPH06240035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To provide a plastic particle which is excellent on electromagnetic- wave-shielding effect, adhesive strength, mechanical strength, and flexibility and has good resistances to corrosion and heat shock without wasting raw materials while utilizing advantages of vapor-phase deposition. CONSTITUTION:This plastic article is obtd. by forming, on the surface of a molded plastic article, a 0.7-5.0mum-thick copper layer and then a 0.05-2.0mum-thick metal or metal alloy layer using a high-frequency excitation plasma in an org. gas atmosphere in the same vacuum vessel without precleaning nor priming.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電磁波シールドプラ
スチック成形品に関するものである。さらに詳しくは、
電気機器、計算機、計測機器等の電磁波シールド効果に
優れ、しかも簡便で、低コスト生産が可能な、耐久性耐
食性、強度等の良好な高性能電磁波シールドプラスチッ
ク成形品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave shielding plastic molded product. For more details,
The present invention relates to a high-performance electromagnetic shielding plastic molded article which has excellent electromagnetic wave shielding effect for electric equipment, calculators, measuring instruments, etc., is simple, and can be produced at low cost, has good durability, corrosion resistance, strength and the like.

【0002】[0002]

【従来の技術とその課題】従来より、各種の電気・電子
機器、通信機器等には、様々な電磁波シールド構造が採
用されてきており、このような構造の一つとして、プラ
スチック成形品の表面に銅、ニッケル、アルミニウム等
の金属薄膜を無電解メッキや真空成膜等により配設した
ものが知られている。
2. Description of the Related Art Conventionally, various electromagnetic wave shield structures have been adopted for various electric / electronic devices, communication devices, etc. One of such structures is the surface of a plastic molded product. It is known that a metal thin film of copper, nickel, aluminum or the like is provided by electroless plating or vacuum film formation.

【0003】なかでも真空蒸着によるものは、アルミニ
ウム成膜法が知られており、気相成膜としての特徴を有
し、今後の発展が期待されている。しかしながら、電気
回路の小型化、高密度化が進む今日、無電解メッキによ
るものと同等のシールド特性を得るためには3〜4μm
の膜厚のアルミニウムの成膜が必要とされている。しか
しながら、このアルミニウムの真空蒸着によるシールド
構造においては、3μm厚以上の膜厚にすると柱状構造
が著しく成長し、実際には、鉛筆硬度2H以上の強度が
必要とされるにもかかわらず、この水準の強度を実現す
ることは極めて困難な状況にある。
Among them, the vacuum evaporation method is known as an aluminum film forming method and has a characteristic as a vapor phase film forming, and is expected to be further developed. However, in order to miniaturize and increase the density of electric circuits, 3-4 μm is required to obtain the same shield characteristics as those obtained by electroless plating.
It is necessary to form a film of aluminum having a thickness of. However, in this shield structure formed by vacuum evaporation of aluminum, the columnar structure grows remarkably when the film thickness is 3 μm or more, and in reality, this level is required even though the pencil hardness is 2H or more. It is extremely difficult to achieve the strength of.

【0004】また、環境信頼性試験、たとえば耐湿試験
(65℃×95%RH、168時間)、耐塩水噴霧(J
IS Z2371に準拠:5%NaCl溶液、35℃、
8時間噴霧、16時間休止のサイクルを4サイクル実
施)に耐えられない状況にあり、密着性試験(ASTM
D3559−78)においてもクラス3以下になって
しまう。
Environmental reliability tests such as humidity resistance test (65 ° C. × 95% RH, 168 hours), salt spray resistance (J
According to IS Z2371: 5% NaCl solution, 35 ° C,
We are unable to withstand 8 cycles of spraying for 8 hours and 16 cycles of rest for 4 cycles), and the adhesion test (ASTM
Even in D3559-78), it will be class 3 or lower.

【0005】しかも、アルミニウム真空蒸着膜の場合に
は、空気中で酸化皮膜(不動態層)が形成され、この皮
膜には絶縁性があるためにシールドに必要な他の金属と
の接点の導通が不充分になるという欠点がある。さら
に、従来のアルミ真空蒸着膜は、連続して水分濃度の高
い環境にさらされると、MIL−F−15072A(E
L)1969Kで示されるように、他の金属、たとえば
Cu,Niとの接点をとる場合には電池作用により腐食
を促進することがある。
Moreover, in the case of the aluminum vacuum-deposited film, an oxide film (passive layer) is formed in the air, and since this film has an insulating property, conduction of a contact with other metal necessary for shielding is established. Has the drawback that it becomes insufficient. Furthermore, the conventional aluminum vacuum-deposited film, when continuously exposed to an environment with a high water content, has a MIL-F-15072A (E
L) As shown by 1969K, when a contact is made with another metal, for example, Cu or Ni, corrosion may be promoted by the cell action.

【0006】もちろん、真空蒸着の蒸発材料としては、
シールド特性を考慮するとアルミニウム以外にも、金、
銀、銅、ニッケル、クロム等が考えられる。しかし、
金、銀は高価であって現実的ではない。一方、銅は、導
電性に優れており、コスト的にも使用可能であるが、高
温多湿の環境テストで酸化が著しく、シールド効果を急
速に失う。すなわち、銅は、アルミニウムのような不動
態層としての酸化皮膜を形成しないため、酸化腐食が著
しい。
Of course, as the evaporation material for vacuum deposition,
Considering the shield characteristics, in addition to aluminum, gold,
Silver, copper, nickel, chromium, etc. are considered. But,
Gold and silver are expensive and unrealistic. On the other hand, copper has excellent conductivity and can be used in terms of cost, but it is significantly oxidized in a high-temperature and high-humidity environmental test, and the shielding effect is rapidly lost. That is, copper does not form an oxide film as a passivation layer like aluminum, so that oxidative corrosion is remarkable.

【0007】そこで、この銅の酸化防止策として、ニッ
ケル(Ni)、金(Au)、銀(Ag)、クロム(C
r)等の被覆が考えられるが、実際に真空蒸着によって
銅膜の上に成膜してみると、初期密着性は良好であるも
のの、耐湿試験(60℃×95%×240hr)後の密
着性は悪く、実用化することはできない。このような密
着性の悪いことの欠点を解消する手段の一つとして、真
空蒸着に変えてプラズマ蒸着を行うことが考えられる。
つまり、低圧グロー放電プラズマ成膜である。
Therefore, as a measure for preventing the oxidation of copper, nickel (Ni), gold (Au), silver (Ag), chromium (C
r) etc. can be considered, but when actually deposited on the copper film by vacuum evaporation, the initial adhesion is good, but the adhesion after the humidity resistance test (60 ° C × 95% × 240 hr) It is not very practical and cannot be put to practical use. As one of means for solving such a defect of poor adhesion, plasma deposition may be performed instead of vacuum deposition.
That is, low pressure glow discharge plasma film formation.

【0008】このプラズマ成膜により、真空蒸着に比べ
て、密着性は大きく向上するが、さらにサーマルショッ
クに強い成膜や、耐食性をより向上することが望まれて
いた。さらには、近年、電磁シールドは、ノートパソコ
ン、形態電話等への応用が進み、軽量化が図られ、成形
品の薄肉化が進んでいる。このような薄肉化とともに、
強度および柔軟性が成膜にも要求されるようになってき
ている。しかしながら、これまでの成膜品の場合には、
このような強度と柔軟性とを兼備えることは充分ではな
かった。
By this plasma film formation, the adhesion is greatly improved as compared with the vacuum deposition, but it has been desired to further improve the film formation resistant to thermal shock and the corrosion resistance. Furthermore, in recent years, the electromagnetic shield has been increasingly applied to notebook computers, portable telephones, etc., and has been reduced in weight, and the thickness of molded products has been reduced. With such thinning,
Strength and flexibility are also required for film formation. However, in the case of conventional film-formed products,
It was not sufficient to combine such strength and flexibility.

【0009】この発明は、以上の通りの事情に鑑みてな
されたものであって、従来の電磁波シールド構造体の欠
点を解消し、気相成膜の特徴を生かしつつ、しかも、そ
の付着強度や耐久性、耐食性耐サーマルショック等の特
性に優れ、かつ、生産性も良好で、廃液、廃ガス等の処
理負荷も小さい新規な電磁波シールドプラスチック成形
品を提供することを目的としている。
The present invention has been made in view of the circumstances as described above, and eliminates the drawbacks of the conventional electromagnetic wave shield structure, while making the best use of the characteristics of vapor phase film formation, and further, its adhesion strength and It is an object of the present invention to provide a new electromagnetic wave shielding plastic molded product which has excellent characteristics such as durability, corrosion resistance and thermal shock resistance, good productivity, and a small processing load on waste liquid, waste gas and the like.

【0010】[0010]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、あらかじめ洗浄することなく、
プライマーコート層を配設せずにプラスチック成形品表
面に同じ真空槽内であらかじめ高周波励起プラズマによ
る0.7 〜5.0 μmの膜厚の銅膜を配設し、次いで高周波
励起プラズマにより0.05〜2.0 μm厚の金属または合金
膜を有機ガス雰囲気中で配設してなる電磁波シールドプ
ラスチック成形品を提供する。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems, without washing in advance,
Without a primer coat layer, a copper film with a thickness of 0.7 to 5.0 μm was preliminarily placed on the surface of the plastic molded product in the same vacuum chamber by high frequency excitation plasma, and then 0.05 to 2.0 μm thick by high frequency excitation plasma. Provided is an electromagnetic wave shielding plastic molded product in which a metal or alloy film is arranged in an organic gas atmosphere.

【0011】この発明の電磁波シールドプラスチック成
形品は、各種のプラスチックの射出成形、押出成形、注
型成形、あるいはそれらの表面成形したものを含み、そ
の目的、用途に応じて、表面に配設する高周波励起プラ
ズマによる銅の厚みを0.7 〜5.0 μmの適宜なものとす
る。たとえば、16ビットノートパソコン用の成形品の
場合には、0.7 μmでよく、32ビットパソコンの場合
には3μm以上とすることなどがある。
The electromagnetic wave shielding plastic molded product of the present invention includes various plastics which are injection molded, extrusion molded, cast molded, or surface-molded thereof, and are disposed on the surface according to the purpose and application. The thickness of copper by the high frequency excitation plasma is set to an appropriate value of 0.7 to 5.0 μm. For example, in the case of a molded product for a 16-bit notebook personal computer, 0.7 μm is sufficient, and in the case of a 32-bit personal computer, it may be 3 μm or more.

【0012】プラスチック成形品は、この発明の場合に
は、従来のようにフロン洗浄をあらかじめ行う必要は全
くないという特徴もある。高周波励起プラズマによる表
面ボンバード効果により、成形品に付着している金型
油、たとえば摺動油等の洗浄も容易に行われるからであ
る。オゾン層破壊の問題によって、その使用が禁止され
るフロン、あるいはその代替品に依存する必要は全くな
い。
In the case of the present invention, the plastic molded article is also characterized in that it is not necessary to previously carry out fluorocarbon cleaning. This is because the surface bombarding effect of the high frequency excitation plasma facilitates cleaning of the mold oil adhering to the molded product, such as sliding oil. There is no need to rely on CFCs whose use is banned, or their substitutes, due to ozone depletion issues.

【0013】さらに、従来は真空蒸着に先立って必須と
されていたプラスチック成形品表面へのプライマーコー
ト層の配設も必要がない。このプライマーコート層は、
プラスチック成形品表面と銅成膜との密着性の向上のた
めに欠かせないものであったが、この発明の電磁波シー
ルドプラスチック成形品の場合には、高周波励起プラズ
マによるボンバード粗面化効果、および励起イオン種に
よる活性化堆積作用によって、銅の密着強度は充分とな
る。3μm以上の膜厚においても、プライマーコート層
の配設は必要がない。
Further, it is not necessary to dispose a primer coat layer on the surface of a plastic molded article which has been conventionally required prior to vacuum vapor deposition. This primer coat layer is
It was indispensable for improving the adhesion between the surface of the plastic molded product and the copper film, but in the case of the electromagnetic wave shielded plastic molded product of the present invention, a bombarded surface roughening effect by high frequency excitation plasma, and The adhesion strength of copper is sufficient due to the activated deposition action by the excited ion species. Even if the film thickness is 3 μm or more, it is not necessary to dispose the primer coat layer.

【0014】高周波励起プラズマによる成膜は、たとえ
ば1×10-4〜1×10-5Torr水準の真空度とした真空
室において、高周波電源からの電圧引火によって1×1
-4〜1×10-3程度の分圧のアルゴン、ヘリウム等の
不活性ガス導入にともなうプラズマ励起によって可能と
なる。低圧グロー放電プラズマである。成膜材料として
の銅は、抵抗加熱、誘導加熱、電子ビーム照射、さらに
はホロカソード放電等による適宜な手段で蒸発させるこ
とができる。これらの蒸発粒子を高周波励起し、イオン
化してプラスチック成形品表面に付着成膜させることに
なる。
Film formation by high-frequency excited plasma is performed in a vacuum chamber having a vacuum degree of, for example, 1 × 10 −4 to 1 × 10 −5 Torr by 1 × 1 by voltage ignition from a high-frequency power source.
This can be achieved by plasma excitation accompanied by the introduction of an inert gas such as argon or helium with a partial pressure of about 0 −4 to 1 × 10 −3 . It is a low-pressure glow discharge plasma. Copper as a film-forming material can be evaporated by an appropriate means such as resistance heating, induction heating, electron beam irradiation, and hollow cathode discharge. These vaporized particles are excited by high frequency, ionized, and adhered to the surface of the plastic molded product to form a film.

【0015】銅膜の形成に続いて、この発明では、同様
に高周波励起プラズマにより、0.05〜2.0 μmの金属ま
たは合金膜を有機ガス雰囲気中で蒸着する。この場合に
も、上記とほぼ同様の条件を採用することができる。蒸
着する金属または合金としては、Au,Ag,Ni,C
r,W,Zr,Sn,Co等の各種の金属またはそれら
の合金が使用できる。そして、これらの金属または合金
の高周波励起蒸着は、有機ガスの雰囲気中において行う
が、この際のガスは、炭化水素、たとえばメタン、エタ
ン、エチレン、プロピレン等の飽和もしくは不飽和の炭
化水素、そのヒドロキシ、アルコキシ、ガルボニル等の
置換体化合物から適宜に選択される。
Following the formation of the copper film, in the present invention, a metal or alloy film having a thickness of 0.05 to 2.0 μm is vapor-deposited in an organic gas atmosphere similarly by high frequency excitation plasma. Also in this case, the conditions similar to the above can be adopted. As the metal or alloy to be deposited, Au, Ag, Ni, C
Various metals such as r, W, Zr, Sn and Co or alloys thereof can be used. Then, the high frequency excitation vapor deposition of these metals or alloys is performed in an atmosphere of an organic gas, and the gas at this time is a hydrocarbon, for example, a saturated or unsaturated hydrocarbon such as methane, ethane, ethylene, propylene, or the like. It is appropriately selected from substituted compounds such as hydroxy, alkoxy and galbonyl.

【0016】これらの有機ガスの使用によって、金属ま
たは合金と有機ガス化合物とは組織的に複雑な混合膜を
形成し、耐食性、耐ヒートショック性をより大きく向上
させることになる。有機ガス成分は、通常1×10-4
1×10-2Torr程度の分圧として導入することができ
る。その割合は、金属または合金の組成割合に応じて選
択することがでるき。
By using these organic gases, the metal or alloy and the organic gas compound form a systematically complicated mixed film, and the corrosion resistance and heat shock resistance are further improved. The organic gas component is usually 1 × 10 -4 ~
It can be introduced as a partial pressure of about 1 × 10 -2 Torr. The ratio can be selected according to the composition ratio of the metal or alloy.

【0017】従来では、前記の通り、環境試験において
銅膜の上のニッケル等の膜は剥離したが、この発明の高
周波励起プラズマ方法による場合には、プラズマによっ
て銅表面が活性化され、密着性が大きく向上し、付着強
度の増大が図られる。しかも、この発明の場合には、塩
水噴霧、亜硫酸ガス中で著しく耐食性まが向上する。サ
ーマルショックに強い成膜が得られる。そして、強度と
ともに柔軟性も良好な成膜が可能となる。
Conventionally, as described above, the film of nickel or the like on the copper film was peeled off in the environmental test, but in the case of the high-frequency excited plasma method of the present invention, the copper surface is activated by the plasma, and the adhesion is improved. Is greatly improved, and the adhesion strength is increased. Moreover, in the case of the present invention, the corrosion resistance and the like are remarkably improved in salt spray and sulfur dioxide. A film that is resistant to thermal shock can be obtained. Further, it is possible to form a film having good strength and flexibility.

【0018】もちろんこのような高周波励起プラズマに
ついては、これまで公知の技術知識を踏まえつつ、適宜
に実施することができる。成膜はバッチ方式、あるいは
連続方式のいずれでも可能である。さらにまた、この発
明では、必要に応じて混合膜の上に、さらに金属、無機
物、ポリマー等の保護膜を配設することもできる。電解
メッキ、気相蒸着、いずれの方法によって形成してもよ
い。
Of course, such a high-frequency excited plasma can be appropriately implemented while taking into consideration known technical knowledge. The film formation can be performed by either a batch method or a continuous method. Furthermore, in the present invention, a protective film of a metal, an inorganic substance, a polymer, or the like can be further provided on the mixed film, if necessary. It may be formed by any of electrolytic plating and vapor deposition.

【0019】以下、実施例を示し、さらに詳しくこの発
明について説明する。
The present invention will be described in more detail below with reference to examples.

【0020】[0020]

【実施例】実施例1 150×150×3.0mm ABSシートに、フロン洗浄お
よびプライマーコート層の配設を行うことなく、直接高
周波励起プラズマによる銅およびニッケルの成膜を行っ
た。
EXAMPLES Example 1 A 150 × 150 × 3.0 mm ABS sheet was directly deposited with high-frequency excited plasma to form copper and nickel without performing CFC cleaning and arranging a primer coat layer.

【0021】すなわち、同一の真空室において、その到
達真空度を3×10-5Torrとし、アルゴンを1×10-3
Torrの分圧として導入し、コイル状高周波励起(13.56
MHz)電極によって生成させたグロープラズマを10
分間放置し、直ちに1×10 -4Torrで0.6 μm厚の銅を
成膜した。次いで2分間プラズマを放置し、直ちにエチ
レン1.5 ×10-4Torrの雰囲気中で、0.2 μm厚の錫を
成膜した。
That is, in the same vacuum chamber,
Ultimate vacuum 3 × 10-FiveTorr and Argon 1 × 10-3
Introduced as a partial pressure of Torr, coiled high frequency excitation (13.56
MHz plasma generated by the electrode 10
Leave for 1 minute and immediately 1 x 10 -Four0.6 μm thick copper with Torr
A film was formed. Then leave the plasma for 2 minutes and immediately
Len 1.5 x 10-FourAdd 0.2 μm thick tin in a Torr atmosphere.
A film was formed.

【0022】得られた電磁波シールドプラスチック成形
品の特性は、次の表1の通りであり、非常に良好であっ
た。また、得られたプラスチック成形品100×100
×1mmの板体を鉄板の上に置き、上方1mの距離より、
1ポンドの重さの鋼球を落下させたところ、成膜にはク
ラック発生は全く認められなかった。
The characteristics of the obtained electromagnetic wave shielding plastic molded product are shown in Table 1 below and were very good. Also, the obtained plastic molded product 100 × 100
Place a plate of × 1 mm on the iron plate, and from the distance of 1 m above,
When a steel ball weighing 1 pound was dropped, no cracking was observed in the film formation.

【0023】一方、エチレンを導入せずに成膜したもの
には、同様のテストの結果、多数のクラックの発生が認
められた。また、アドバンテストによる電界波測定の結
果、無電解メッキ(Cu)1.3 μm厚の場合と同等のシ
ールド効果を示していた。
On the other hand, in the film formed without introducing ethylene, the same test showed that many cracks were generated. In addition, as a result of the electric field wave measurement by the Advantest, the same shield effect as that in the case of electroless plating (Cu) 1.3 μm thick was shown.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例2 ABS/PC(50/50)樹脂による150×150
mmの大きさで、厚み3mmの射出成形試料に対し、フロン
洗浄、プライマーコート層の配設を行うことなく、直
接、真空室において高周波励起プラズマ(13.56 MH
z)によって成膜した。
Example 2 150 × 150 with ABS / PC (50/50) resin
The injection-molded sample with a size of 3 mm and a thickness of 3 mm was directly subjected to high-frequency excitation plasma (13.56 MH) in a vacuum chamber without CFC cleaning and provision of a primer coat layer.
The film was formed according to z).

【0026】この場合、到達真空度は3×10-5Torrと
し、アルゴンを1×10-4Torrとなるように導入した。
プラズマを10分間放置し、直ちに1×10-4Torrで銅
膜を1.0 μm厚まで成膜した。さらにプラズマを2分間
放置し、1.5 ×10-4Torrエチレンガス雰囲気中で、0.
2 μm厚のNi60:Cr40のニッケル−クロム合金
膜を成膜した。
In this case, the ultimate vacuum was 3 × 10 -5 Torr, and argon was introduced so as to be 1 × 10 -4 Torr.
The plasma was left for 10 minutes, and a copper film was immediately formed to a thickness of 1.0 μm at 1 × 10 −4 Torr. Further, the plasma was left for 2 minutes, and then, in an ethylene gas atmosphere of 1.5 × 10 −4 Torr, the plasma was reduced to 0.1
A 2 μm thick Ni60: Cr40 nickel-chromium alloy film was formed.

【0027】実施例1と同様にして、優れた特性の電磁
波シールドプラスチック成形品が得られた。
In the same manner as in Example 1, an electromagnetic wave shielding plastic molded product having excellent characteristics was obtained.

【0028】[0028]

【発明の効果】この発明によって、気相成膜の特徴を生
かしつつ、(1)電磁気シールド効果に優れ、(2)省
資源の薄膜で、(3)付着膜強度が大きく、(4)耐食
性、耐ヒートショック性に優れ、(5)強度とともに柔
軟性も良好な、(6)フロン洗浄を行うことなく、プラ
イマーコート層の配設を必要とすることなく、廃液、廃
気による汚染を心配することのない電磁気シールドプラ
スチック成形品が提供される。
According to the present invention, while making the best use of the characteristics of vapor phase film formation, (1) excellent electromagnetic shielding effect, (2) resource-saving thin film, (3) large adhesion film strength, and (4) corrosion resistance , Excellent heat shock resistance, (5) good strength and flexibility, (6) no need for fluorocarbon cleaning, no need to arrange primer coat layer, and worry about contamination by waste liquid or waste air There is provided an electromagnetic shield plastic molded article that does not.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 あらかじめ洗浄することなく、しかもプ
ライマーコート層を配設せずにプラスチック成形品表面
に同じ真空槽内であらかじめ高周波励起プラズマによる
0.7 〜5.0 μmの膜厚の銅膜を配設し、次いで高周波励
起プラズマにより0.05〜2.0 μm厚の金属または合金膜
を有機ガス雰囲気中で配設してなる電磁波シールドプラ
スチック成形品。
1. A high-frequency excited plasma is used in advance in the same vacuum chamber on the surface of a plastic molded product without cleaning in advance and without providing a primer coat layer.
An electromagnetic wave shielding plastic molded product in which a copper film having a film thickness of 0.7 to 5.0 μm is provided, and then a metal or alloy film having a thickness of 0.05 to 2.0 μm is provided in an organic gas atmosphere by high frequency excitation plasma.
JP2921793A 1992-11-09 1993-02-18 Electromagnetic-wave-shielding molded plastic article Pending JPH06240035A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2921793A JPH06240035A (en) 1993-02-18 1993-02-18 Electromagnetic-wave-shielding molded plastic article
DE69317035T DE69317035T2 (en) 1992-11-09 1993-11-09 Manufacturing process of a molded plastic body with electromagnetic shielding
US08/149,533 US5462771A (en) 1992-11-09 1993-11-09 Method of manufacturing electromagnetic wave shielding plastic molding
EP93308934A EP0597670B1 (en) 1992-11-09 1993-11-09 Method of manufacturing electromagnetic wave shielding plastic molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2921793A JPH06240035A (en) 1993-02-18 1993-02-18 Electromagnetic-wave-shielding molded plastic article

Publications (1)

Publication Number Publication Date
JPH06240035A true JPH06240035A (en) 1994-08-30

Family

ID=12270035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2921793A Pending JPH06240035A (en) 1992-11-09 1993-02-18 Electromagnetic-wave-shielding molded plastic article

Country Status (1)

Country Link
JP (1) JPH06240035A (en)

Similar Documents

Publication Publication Date Title
US5462771A (en) Method of manufacturing electromagnetic wave shielding plastic molding
Liao et al. A facile method for preparing highly conductive and reflective surface-silvered polyimide films
JPH0770345A (en) Electromagnetic shielded plastic molding
JPH07504944A (en) Pretreatment method for the surface of plastic products
US8715810B2 (en) Coated article and method for making the same
JP3290389B2 (en) Surface coatings for insulating materials, methods of obtaining them, and applications in the protection of insulating containers
Luo et al. Improving interfacial adhesion between copper foil and resin using amino acid in printed circuit board industry
JPH06240035A (en) Electromagnetic-wave-shielding molded plastic article
JP2561992B2 (en) Electromagnetic wave shield plastic molding
JP3775273B2 (en) Electromagnetic shielding film
JP2817891B2 (en) Manufacturing method of electromagnetic wave shielding plastic molded products
JP2561993B2 (en) Electromagnetic wave shield plastic molding
JPH06240027A (en) Electromagnetic-wave-shielding plastic molding
JPH06240034A (en) Electromagnetic-wave-shielding molded plastic article
JP3826756B2 (en) Electromagnetic shielding film
Zhang et al. Effect of vacuum degree on adhesion strength and corrosion resistance of magnetron sputtered aluminum coating on NdFeB magnet
KR100395794B1 (en) LAYERED STRUCTURE OF THIN FILMS INCLUDING Ag FILM FOR PROVIDING HIGH RELIABILITY ON INSULATING SUBSTRATE AND METHOD FOR FABRICATING THEREOF
JP2688148B2 (en) Electromagnetic wave shield plastic molding
Fessmann et al. Adherent metallization of carbon-fibre-reinforced plastic composites using a combined vacuum/electrochemical deposition process
KR101646717B1 (en) Touch screen substrate and manufacturing method of the same
JP2000144374A (en) Surface treatment of plastic substrate and coated plastic article
JPH08236976A (en) Electromagnetic shield plastic molded item
CN1533235A (en) Electromagnetic wave shielding assembly and its producing method
US20120070653A1 (en) Coated article and method for making the same
JP2000045062A (en) Electromagnetic preventing molding