JPH06239536A - Bobbin for winding optical fiber - Google Patents

Bobbin for winding optical fiber

Info

Publication number
JPH06239536A
JPH06239536A JP5048805A JP4880593A JPH06239536A JP H06239536 A JPH06239536 A JP H06239536A JP 5048805 A JP5048805 A JP 5048805A JP 4880593 A JP4880593 A JP 4880593A JP H06239536 A JPH06239536 A JP H06239536A
Authority
JP
Japan
Prior art keywords
winding
optical fiber
bobbin
linear body
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5048805A
Other languages
Japanese (ja)
Other versions
JP3290737B2 (en
Inventor
Toshio Koide
出 年 男 小
Ryoji Suzuki
木 亮 二 鈴
Koichi Takahashi
橋 浩 一 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP04880593A priority Critical patent/JP3290737B2/en
Publication of JPH06239536A publication Critical patent/JPH06239536A/en
Application granted granted Critical
Publication of JP3290737B2 publication Critical patent/JP3290737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/32Optical fibres or optical cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/50Storage means for webs, tapes, or filamentary material
    • B65H2701/51Cores or reels characterised by the material
    • B65H2701/514Elastic elements

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Storage Of Web-Like Or Filamentary Materials (AREA)

Abstract

PURPOSE:To reliably prevent collapse of winding of an optical fiber wound around a bobbin when a temperature change in a specified range allowable during conveyance is produced by covering the winding barrel of a bobbin with a resilient cylinder material having the coefficient thermal expansion by which a specified formula is satisfied. CONSTITUTION:A bobbin for winding an optical fiber used for winding of an optical fiber 12 for storage and conveyance has a winding barrel 10 covered with a resilient cylinder material 12 having the coefficient of thermal expansion satisfying an undermenthioned formula. The formula is r (1-10k1)+d(1-10k2)> {R/(1+T/SE3)}(1-10k3). In the formula, R is equal {(r+d)+[(r+d)<2>-4T/aX(r/E1+ d/E2)]<1/2>} 2 and r, k1, and E1 are the radius, the coefficient of thermal expansion, the Young's modulus, respectively, of the winding barrel 10, and (a), k3, E3, S and T are the width the coefficient of thermal expansion, the Young's modulus, the sectional area, and the winding tension, respectively, of the optical fiber 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ファバを巻取って保
管、搬送するために用いられるボビンに関するものであ
り、保管、搬送中に許容される一定の範囲での温度変化
に対して、ボビンに巻かれた光ファイバの巻き崩れを確
実に防止することができるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bobbin used for winding and storing and transporting an optical fiber, and a bobbin against a temperature change within a certain range allowed during storage and transportation. It is possible to reliably prevent the collapse of the optical fiber wound around.

【0002】[0002]

【従来の技術】光ファイバ巻取用ボビンの巻胴は通常プ
ラスチック製、或いは金属製であり、これらに比して熱
膨張率が極めて小さい光ファイバが所定の巻付け力で巻
取られる。光ファイバの巻取り時に光ファイバに掛けら
れる張力は弱過ぎると保管、搬送時の温度変化による巻
緩み及び搬送時の振動によって巻崩れを生じ、反対に上
記張力が強いほどボビンに巻いたままで行なわれる光フ
ァイバの伝送損失試験の測定値が光ファイバ本来の伝送
損失よりも大きい値になり、このために伝送損失試験に
よる不良品となる可能性が増大する。従来は相反する上
記の両面の兼ね合いを図るために、伝送損失試験結果を
可及的に本来の伝送損失結果に近付けるべく、巻崩れを
生じない限度においてできるだけ巻取り時の光ファイバ
の巻付け力(光ファイバに掛ける張力)を小さくしてい
る。しかし、温度変化に伴う巻胴と光ファイバの熱収縮
の差による巻緩みを考慮して、伝送損失試験の結果をあ
る程度犠牲にしながら上記の巻緩みを見込んだ強さの巻
付け力をもって巻取らざるを得ない。この巻緩みは巻取
り時の温度に比して使用時(搬送時、伝送損失試験時
等)の温度が低く、光ファイバの収縮に比べて巻胴が大
きく収縮して巻胴による光ファイバに対する半径方向外
方への支持力が失われることによって生じるものである
から、これを防止するためには巻胴による上記支持力の
消減を他の手段によって補う外はない。
2. Description of the Related Art The winding barrel of an optical fiber winding bobbin is usually made of plastic or metal, and an optical fiber having a coefficient of thermal expansion extremely smaller than that of these is wound by a predetermined winding force. If the tension applied to the optical fiber at the time of winding the optical fiber is too weak, winding loosens due to temperature changes during storage and transportation, and collapse of the fiber occurs due to vibration during transportation. Conversely, the higher the above tension, the more the fiber is wound on the bobbin. The measured value of the transmission loss test of the optical fiber becomes larger than the original transmission loss of the optical fiber, which increases the possibility of a defective product due to the transmission loss test. In order to strike a balance between the above two contradictory conditions, the transmission loss test result should be as close as possible to the original transmission loss result. (Tension applied to the optical fiber) is reduced. However, considering the looseness due to the difference in thermal contraction between the winding cylinder and the optical fiber due to the temperature change, the winding force of the strength that allows for the above looseness is taken into consideration while sacrificing the transmission loss test results to some extent. I have no choice. This looseness has a lower temperature during use (during transport, transmission loss test, etc.) than the temperature during winding, and the winding cylinder contracts more than the contraction of the optical fiber, and Since it is caused by the loss of the supporting force in the radially outward direction, in order to prevent this, the extinction of the supporting force by the winding cylinder cannot be compensated by other means.

【0003】[0003]

【発明が解決しようとする課題】本発明は温度変化を考
慮することによる巻取り時の光ファイバの巻付け力の増
分を小さくして可及的に伝送損失試験における伝送損失
を小さくすることを目的とし、温度変化による光ファイ
バの巻緩みを可及的に小さくすることをその課題とする
ものである。
SUMMARY OF THE INVENTION The present invention aims to minimize the transmission loss in the transmission loss test by reducing the increment of the winding force of the optical fiber at the time of winding by considering the temperature change. The purpose is to reduce the loosening of the optical fiber due to temperature change as much as possible.

【0004】[0004]

【課題を解決するための手段】上記課題解決のために講
じた手段は次の要素(イ)、(ロ)によって構成される
ものである。 (イ)ボビンの巻胴を弾性円筒材で被覆させたこと、
(ロ)上記弾性円筒材の材料をその熱膨張率k2が次の
式を満足するものとしたこと。
[Means for Solving the Problems] The measures taken to solve the above problems are constituted by the following elements (a) and (b). (A) The bobbin winding cylinder is covered with an elastic cylindrical material,
(B) The coefficient of thermal expansion k 2 of the elastic cylindrical material should satisfy the following equation.

【数 3】 ただし、上記Rは次の式を満足する値とする。[Equation 3] However, R is a value that satisfies the following formula.

【数 4】 上記式の各記号はそれぞれ次のとおりである。 r :巻胴の半径(mm)、k1:巻胴の熱膨張率(1/
℃)、E1:巻胴のヤング率(g/mm2)、d :ボビ
ンに巻かれた弾性円筒材の厚さ(mm)、k2:ボビン
に巻かれた弾性円筒材の熱膨張率(1/℃)、E2:ボ
ビンに巻かれた弾性円筒材のヤング率(g/mm2)、
a :線状体(光ファイバ素線)の幅(mm)、k3:線
状体の熱膨張率(1/℃)、E3:線状体のヤング率
(g/mm2)、S :線状体の断面積(mm2)、T :
線状体の巻き張力(g)、
[Equation 4] The symbols in the above formula are as follows. r: radius of the winding drum (mm), k 1 : coefficient of thermal expansion of the winding drum (1 /
C), E 1 : Young's modulus of the winding cylinder (g / mm 2 ), d: Thickness of the elastic cylindrical material wound on the bobbin (mm), k 2 : Thermal expansion coefficient of the elastic cylindrical material wound on the bobbin (1 / ° C.), E 2 : Young's modulus (g / mm 2 ) of the elastic cylindrical material wound on the bobbin,
a: width (mm) of linear body (optical fiber element), k 3 : coefficient of thermal expansion of linear body (1 / ° C.), E 3 : Young's modulus of linear body (g / mm 2 ), S : Cross-sectional area of linear body (mm 2 ), T:
Winding tension of linear body (g),

【0005】[0005]

【作 用】以上の条件の計算式には、温度変化に関係す
る全てのものの巻取り時の温度及び巻付け力、温度変化
による直径や長さの変化、巻付け力による弾性変形量の
変化、内部応力の変化等、線状体の巻の堅さに影響する
全ての要件が織り込まれているので、巻取り時の温度、
使用時(例えば伝送損失試験時)の温度が10度低下し
た場合にも弾性円筒材による線状体(光ファイバ素線)
の円筒状の束に対する半径方向外方への支持力が零にな
ることはない。すなわち、巻胴の温度変化に伴う外径の
縮小分を弾性円筒材が補償して巻胴に対する線状体の巻
付け力が零になることを防止する。したがって温度低下
が10度以下では、温度変化に伴う巻胴の外径の縮小に
関わらず巻緩みによる巻崩れを生じることはない。上記
の作用の詳細を図1を参照しつつ現象的に説明すると、
次のとおりである。線状体に張力を掛けてスポンジ等の
弾性円筒材の外周2が点線で示す2′まで圧縮される。
この時巻胴の外周1も線状体の巻付け力によって圧縮さ
れるが巻胴のヤング率は弾性円筒材よりも極めて大きい
ので、その圧縮量は弾性円筒材の圧縮量に比べて極めて
小さい。巻取り時の温度に比して、搬送時等の温度が下
がると、巻胴と弾性円筒材と弾性円筒材に巻かれた線状
体はそれぞれの熱膨張率の割合で収縮する。線状体(光
ファイバ)の熱膨張率k3は巻胴、弾性円筒材の熱膨張
率k1、k2に比べて極めて小さいので、巻胴の外周が点
線1′で示す位置まで収縮すると、これと共に弾性円筒
材も熱収縮するが、線状体の締付け力によって大きく圧
縮されていた弾性円筒材の内周が半径方向内方に弾性復
元しながら巻胴外周の収縮に追従して、巻胴の熱収縮分
を補償する。この弾性円筒材の半径方向内方への弾性復
元によって弾性円筒材の線状体に対する支持力は減少す
るが、その熱膨張率k2が上記の式の関係を満たす限
り、上記温度低下が10度以下では支持力が零になるこ
とはない。次いで上記式の根拠を図2を参照しつつ念の
ために説明する。巻胴の径、巻胴に巻かれた線状体(光
ファイバ素線)の径の変化は、温度変化によるものと線
状体の巻張力の変化によるものとである。線状体を巻取
った時の巻胴の温度がt0からtに下がったとき、巻胴
は収縮し、この収縮量は(k1r+k2d)(t0−t)
である。温度t0′、巻張力T、巻き半径Rで巻取られ
た線状体の熱収縮の大きさはk3R(t0′−t)であ
る。また線状体は張力Tで巻取られているので、この張
力Tにより伸びた状態で巻取られている。巻胴が収縮す
ることにより線状体の張力が小さくなり、張力が零にな
った時の張力緩和による巻径の縮小量は、R{1−1/
(1+T/SE3)}となる。この式の根拠は次のとお
りである。巻胴に巻付けた状態での線状体の半径R、一
巻分の線状体の自由長さをL、張力T、伸びεとする
と、2πR=L(1+ε)。線状体の断面積をSとする
と、ε=σ/E=1/E×T/S。これから、L=2π
R/(1+T/SE3) T=0の時線状体は自由長さになるので、この時の半径
R′=L/2π。半径の変化量R−R′=R−L/2π
=R−R/(1+T/SE3)=R{1−1/(1+T
/SE3)}。次にRについて説明する。線状体が巻胴
に巻取られた状態での最内層の一層の巻半径が上記のR
に当たる。幅aの線状体が張力Tで巻胴に巻付けられた
時、巻胴の外周面に直接巻付けられた線状体によって巻
胴外周面に垂直にかかる応力はT/Raとなる(これは
従来よく知られた一般式であるので導きだされる根拠の
説明は省略する。この応力が弾性円筒材11の外周面に
かかり、さらに巻胴10の外周面にかかっているので、
この応力によって、巻胴10と弾性円筒材11はそれぞ
れ、r(1−T/RaE1)、d(1−T/RaE2)だ
け圧縮されている。ただし、このdは弾性円筒材の自由
状態での厚さである。自由状態でr+dの半径の弾性円
筒材の外周面に張力Tで線状体12を巻きつけたとき、
その半径がRになっているのであるから、
[Operation] The calculation formulas for the above conditions include the temperature and winding force at the time of winding all things related to temperature change, the change in diameter and length due to temperature change, and the change in elastic deformation amount due to winding force. Since all requirements that affect the hardness of the winding of the linear body, such as changes in internal stress, are woven in, the temperature during winding,
Even when the temperature drops during use (for example, during a transmission loss test) by 10 degrees, a linear body made of an elastic cylindrical material (optical fiber element wire)
The bearing force in the radial direction on the cylindrical bundle of is never zero. That is, it is possible to prevent the elastic cylindrical member from compensating for the reduction of the outer diameter due to the temperature change of the winding cylinder, so that the winding force of the linear body with respect to the winding cylinder becomes zero. Therefore, when the temperature decrease is 10 degrees or less, the collapse of the winding due to the loosening does not occur regardless of the reduction of the outer diameter of the winding cylinder due to the temperature change. The details of the above operation will be described in a phenomenological manner with reference to FIG.
It is as follows. By applying tension to the linear body, the outer circumference 2 of the elastic cylindrical material such as sponge is compressed to 2'shown by the dotted line.
At this time, the outer circumference 1 of the winding cylinder is also compressed by the winding force of the linear body, but since the Young's modulus of the winding cylinder is much larger than that of the elastic cylindrical material, the amount of compression is extremely smaller than the amount of compression of the elastic cylindrical material. . When the temperature during transportation or the like decreases as compared with the temperature during winding, the winding cylinder, the elastic cylindrical member, and the linear body wound around the elastic cylindrical member contract at the respective rates of thermal expansion. The coefficient of thermal expansion k 3 of the linear body (optical fiber) is extremely smaller than the coefficients of thermal expansion k 1 and k 2 of the winding cylinder and the elastic cylindrical member, so that if the outer circumference of the winding cylinder shrinks to the position indicated by the dotted line 1 ′. , With this, the elastic cylindrical material also thermally contracts, but following the contraction of the outer circumference of the winding cylinder while the inner circumference of the elastic cylindrical material, which was largely compressed by the tightening force of the linear body, elastically restores inward in the radial direction, Compensates for the heat shrinkage of the winding cylinder. The elastic restoring of the elastic cylindrical member inward in the radial direction reduces the supporting force of the elastic cylindrical member on the linear body, but as long as the coefficient of thermal expansion k 2 thereof satisfies the relationship of the above equation, the temperature decrease is 10 Below 0 degrees, the bearing capacity does not become zero. Next, the rationale for the above equation will be described with reference to FIG. 2 just in case. The change in the diameter of the winding cylinder and the diameter of the linear body (optical fiber wire) wound around the winding cylinder is due to the change in temperature and the change in the winding tension of the linear body. When the temperature of the winding drum when winding the linear body falls from t 0 to t, the winding drum shrinks, and the shrinkage amount is (k 1 r + k 2 d) (t 0 −t).
Is. The magnitude of heat shrinkage of the linear body wound at the temperature t 0 ′, the winding tension T, and the winding radius R is k 3 R (t 0 ′ −t). Further, since the linear body is wound with the tension T, the linear body is wound with being stretched by the tension T. The contraction of the winding cylinder reduces the tension of the linear body, and when the tension becomes zero, the reduction amount of the winding diameter due to the tension relaxation is R {1-1 /
(1 + T / SE 3 )}. The basis of this formula is as follows. 2πR = L (1 + ε), where R is the radius of the linear body wound around the winding cylinder, L is the free length of the linear body for one winding, T is the tension, and ε is the elongation. If the cross-sectional area of the linear body is S, then ε = σ / E = 1 / E × T / S. From this, L = 2π
R / (1 + T / SE 3 ) Since the linear body has a free length when T = 0, the radius at this time is R ′ = L / 2π. Radius change amount R−R ′ = R−L / 2π
= R-R / (1 + T / SE 3) = R {1-1 / (1 + T
/ SE 3 )}. Next, R will be described. When the linear body is wound on the winding cylinder, the winding radius of the innermost layer is R described above.
Hit When a linear body having a width a is wound around a winding drum with a tension T, the stress applied perpendicularly to the outer peripheral surface of the winding drum by the linear body directly wound around the outer peripheral surface of the winding drum is T / Ra ( Since this is a well-known general formula, the explanation of the basis derived is omitted, because this stress is applied to the outer peripheral surface of the elastic cylindrical member 11 and further to the outer peripheral surface of the winding cylinder 10.
This stress, respectively hoisting drum 10 and the elastic cylindrical member 11, r (1-T / RaE 1), is compressed by d (1-T / RaE 2 ). However, this d is the thickness of the elastic cylindrical material in the free state. When the linear body 12 is wound around the outer peripheral surface of the elastic cylindrical member having a radius of r + d with a tension T in a free state,
Since its radius is R,

【数 5】 となる。これはRについての2次方程式であるから、こ
れを解くと、
[Equation 5] Becomes Since this is a quadratic equation for R, solving it gives

【数 6】 となる。弾性円筒材の外周に巻取られた線状体が巻取り
後の温度低下によって極端な巻崩れを生じないために
は、熱収縮後の弾性円筒材の外周の半径が、熱収縮後の
線状体の張力が零になる線状体の巻径よりも大きいこと
が最低必要な条件である。この条件を式で表すと、
[Equation 6] Becomes In order for the linear body wound around the outer circumference of the elastic cylindrical material not to undergo extreme collapse due to the temperature drop after winding, the radius of the outer circumference of the elastic cylindrical material after heat shrinkage should be The minimum necessary condition is that the tension of the filamentous body is larger than the winding diameter of the filamentous body. Expressing this condition as an equation,

【数 7】 となる。なお、この式において、t :使用時温度
(℃)、t0 :線状体巻取り時の巻胴の温度(℃)、
0′:線状体巻取り時の線状体の温度(℃)、そこ
で、温度の低下を10度とすると、t0−t=10であ
るから、
[Equation 7] Becomes In this equation, t: temperature during use
(° C.), t 0 : Temperature (° C.) of the winding drum when winding the linear body,
t 0 ′: Temperature (° C.) of the linear body at the time of winding the linear body, where t 0 −t = 10 when the temperature decrease is 10 degrees.

【数 8】 となる。すなわち、弾性円筒材の熱膨張率k2が上記の
関係を満たすように、その材料を選択することによって
巻取り温度よりも10度降下しても、この温度低下によ
って線状体の巻付け力が零になることはない。
[Equation 8] Becomes That is, even if the material is selected so that the coefficient of thermal expansion k 2 of the elastic cylindrical material satisfies the above relationship and the temperature drops below the winding temperature by 10 degrees, the winding force of the linear body is reduced due to this temperature decrease. Will never be zero.

【0006】[0006]

【実 施 例】次いで、具体的な一実施例について説明
する。 巻胴について、ボビンの巻胴の半径150mm、材料:
合成樹脂(名称 ABS樹脂)、熱膨張係数k1=0.
0001/℃、ヤング率E1=200kg/mm2。弾性
円筒材について、厚さ5mmの帯状の弾性部材を巻胴に
軽く巻付けたもの、材料:発泡樹脂(名称 発泡ポリエ
チレン)。熱膨張係数k2=0.0002/℃、ヤング
率E2=30g/mm2、線状体について、光ファイバ素
線の幅a=1.1mm、実行断面積S=0.049mm
2、この光ファイバ素線の熱膨張係数k3=0.0000
005/℃、ヤング率E3=7300kg/mm2、巻取
り時の線状体の温度t0′=25℃。巻取り条件につい
て、巻取り時の巻胴の温度t0=25℃、巻取り張力T
=150g、巻取り長さ:10km。試験結果につい
て、以上の条件で巻取ったボビン10個用意し、これを
巻取り温度より10℃低い15℃まで下げて、振動試験
を行なった。その結果、巻崩れを生じたものは一つもな
かった。比較対象としたボビン、上記と全く同じボビン
の巻胴(弾性円筒材を巻付けないもの)に同じ線状体を
同じ条件で巻取ったものを10個用意し、これを巻取り
温度より10℃低い15℃まで下げて、振動試験を行な
った。その結果、巻崩れを生じたものは2個、巻崩れを
生じなかったものは8個であった。
[Example] Next, a specific example will be described. Regarding the winding cylinder, the bobbin winding cylinder radius 150 mm, material:
Synthetic resin (name ABS resin), coefficient of thermal expansion k 1 = 0.
0001 / ° C., Young's modulus E 1 = 200 kg / mm 2 . The elastic cylindrical material is obtained by lightly winding a band-shaped elastic member having a thickness of 5 mm on a winding cylinder, and the material: foamed resin (named foamed polyethylene). Thermal expansion coefficient k 2 = 0.0002 / ° C., Young's modulus E 2 = 30 g / mm 2 , width a of optical fiber element wire a = 1.1 mm, effective cross-sectional area S = 0.049 mm
2 、 The coefficient of thermal expansion of this optical fiber wire k 3 = 0.0000
005 / ° C., Young's modulus E 3 = 7300 kg / mm 2 , temperature of the linear body at the time of winding t 0 ′ = 25 ° C. Regarding the winding conditions, the temperature of the winding cylinder at the time of winding t 0 = 25 ° C., the winding tension T
= 150 g, winding length: 10 km. Regarding the test results, 10 bobbins wound under the above conditions were prepared, and the bobbin was lowered to 15 ° C., which is 10 ° C. lower than the winding temperature, and a vibration test was performed. As a result, none of them collapsed. As a bobbin for comparison, 10 bobbins having exactly the same bobbin as those described above (no elastic cylindrical member wound) and the same linear body wound under the same conditions were prepared. The vibration test was conducted by lowering the temperature to 15 ° C. lower. As a result, it was found that two were unrolled and eight were not rolled.

【0007】[0007]

【効 果】以上説明したとおり、搬送時、使用時の温度
の温度を予想することによってその温度条件での巻緩
み、巻崩れを確実に防止することができる。したがっ
て、必要最低限の張力で光ファイバを巻取ることがで
き、これによって光ファイバ本来の伝送損失を正確に測
定することができる等の効果を生じたものである。
[Effect] As described above, by predicting the temperature during transportation and during use, it is possible to reliably prevent loosening and collapse of the winding under those temperature conditions. Therefore, the optical fiber can be wound with the minimum necessary tension, and this brings about the effect that the transmission loss inherent in the optical fiber can be accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の作用を説明するための説明図であ
る。、
FIG. 1 is an explanatory diagram for explaining an operation of the present invention. ,

【図2】本発明の作用を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the operation of the present invention.

【符号の説明】[Explanation of symbols]

1・・・巻胴の外周 1´・・・巻胴の収縮したときの外周 2・・・弾性円筒材の外周 2´・・・弾性円筒材が圧縮されたときの外周 10・・・巻胴 11・・・弾性円筒材 12・・・線状体 1 ... Outer circumference of winding cylinder 1 '... Outer circumference when contracting winding cylinder 2 ... Outer circumference of elastic cylindrical material 2' ... Outer circumference when elastic cylindrical material is compressed 10 ... Winding Body 11 ... Elastic cylindrical material 12 ... Linear body

【数9】 [Equation 9]

【数10】 [Equation 10]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ボビンの巻胴を弾性円筒材で被覆し、 上記弾性円筒材の材料をその熱膨張率k2が次の式を満
足するものとした光ファイバ巻取用ボビン。 【数 1】 ただし、上記Rは次の式を満足する値とする。 【数 2】 また、上記式の各記号はそれぞれ次のとおりである。 r :巻胴の半径(mm)、 k1:巻胴の熱膨張率(1/℃)、 E1:巻胴のヤング率(g/mm2)、 d :ボビンに巻かれた弾性円筒材の厚さ(mm)、 k2:ボビンに巻かれた弾性円筒材の熱膨張率(1/
℃)、 E2:ボビンに巻かれた弾性円筒材のヤング率(g/m
2)、 a :線状体(光ファイバ素線)の幅(mm)、 k3:線状体の熱膨張率(1/℃)、 E3:線状体のヤング率(g/mm2)、 S :線状体の断面積(mm2)、 T :線状体の巻き張力(g)、
1. A bobbin for winding an optical fiber, wherein a winding cylinder of the bobbin is covered with an elastic cylindrical material, and the material of the elastic cylindrical material has a coefficient of thermal expansion k 2 satisfying the following expression. [Equation 1] However, R is a value that satisfies the following formula. [Equation 2] The symbols in the above formula are as follows. r: radius of winding cylinder (mm), k 1 : coefficient of thermal expansion of winding cylinder (1 / ° C.), E 1 : Young's modulus of winding cylinder (g / mm 2 ), d: elastic cylinder wound on bobbin Thickness (mm), k 2 : coefficient of thermal expansion of elastic cylindrical material wound on bobbin (1 /
℃), E 2 : Young's modulus (g / m) of the elastic cylindrical material wound around the bobbin
m 2 ), a: Width (mm) of linear body (optical fiber strand), k 3 : Thermal expansion coefficient (1 / ° C.) of linear body, E 3 : Young's modulus of linear body (g / mm) 2 ), S: cross-sectional area of the linear body (mm 2 ), T: winding tension of the linear body (g),
JP04880593A 1993-02-16 1993-02-16 Bobbin for winding optical fiber Expired - Lifetime JP3290737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04880593A JP3290737B2 (en) 1993-02-16 1993-02-16 Bobbin for winding optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04880593A JP3290737B2 (en) 1993-02-16 1993-02-16 Bobbin for winding optical fiber

Publications (2)

Publication Number Publication Date
JPH06239536A true JPH06239536A (en) 1994-08-30
JP3290737B2 JP3290737B2 (en) 2002-06-10

Family

ID=12813430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04880593A Expired - Lifetime JP3290737B2 (en) 1993-02-16 1993-02-16 Bobbin for winding optical fiber

Country Status (1)

Country Link
JP (1) JP3290737B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747741A2 (en) * 1995-06-07 1996-12-11 Hughes Missile Systems Company Optical fiber dispenser with thermal expansion accomodation layer
WO2005096042A1 (en) * 2004-03-31 2005-10-13 Fuji Photo Film Co., Ltd. Plastic optical fiber and method for manufacturing the same
JP2009161330A (en) * 2008-01-09 2009-07-23 Allied Material Corp Metal wire material storage body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10637321B1 (en) 2018-12-07 2020-04-28 GM Global Technology Operations LLC Motor housings and motor assemblies with controlled radial thermal expansion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747741A2 (en) * 1995-06-07 1996-12-11 Hughes Missile Systems Company Optical fiber dispenser with thermal expansion accomodation layer
EP0747741A3 (en) * 1995-06-07 1997-11-12 Hughes Missile Systems Company Optical fiber dispenser with thermal expansion accomodation layer
WO2005096042A1 (en) * 2004-03-31 2005-10-13 Fuji Photo Film Co., Ltd. Plastic optical fiber and method for manufacturing the same
CN100403073C (en) * 2004-03-31 2008-07-16 富士胶片株式会社 Plastic optical fiber and method for manufacturing the same
US7460756B2 (en) 2004-03-31 2008-12-02 Fujifilm Corporation Plastic optical fiber and method for manufacturing the same
JP2009161330A (en) * 2008-01-09 2009-07-23 Allied Material Corp Metal wire material storage body

Also Published As

Publication number Publication date
JP3290737B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
KR930009004B1 (en) Fiber optic canister having orthotropic controlled thermal expansion bobbin and method for producing canistor
US4740053A (en) Sheathed optical fiber cable
US8363994B2 (en) Fiber optic cable assembly
US5971316A (en) Optical fiber spool and spool cover
US4836639A (en) Optical fiber cable having a neutral axis defining a zero stress
US5205510A (en) Optical fiber bobbin with stress-reducing sleeve
US5245687A (en) Optical fiber coil unit for a fiber optic gyro
JPH06239536A (en) Bobbin for winding optical fiber
US5125590A (en) Compliant bobbin for an optical fiber wound pack
JPH1010378A (en) Coated optical fiber, optical fiber coil and production of coated optical fiber
US4182500A (en) Optical waveguide shipping spool
CA2176614C (en) Optical fiber dispenser with thermal expansion accommodation layer
CA1262833A (en) Optical fiber
US6496263B1 (en) System and method for providing an improved IFOG hub to coil thermal and mechanical slip interface
JP3566129B2 (en) Temperature compensated optical fiber Bragg grating
JPH0425685Y2 (en)
JPWO2020085443A1 (en) Winding bobbin for fiber optic cable
JP2004191663A (en) Dispersion compensation fiber module and reel for dispersion compensation fiber module
JPS6045210A (en) Optical fiber core wire
JPS60179538A (en) Gas charged spring
JPS6016891Y2 (en) optical fiber core
JP3144539B2 (en) Fishing rod
CA2126034A1 (en) Potted fiber optic gyro sensor coil for stringent vibration and thermal environments
JPS6299711A (en) Covered optical fiber core
JPH11137129A (en) Tip rod of fishing rod

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

EXPY Cancellation because of completion of term