JP3290737B2 - Bobbin for winding optical fiber - Google Patents

Bobbin for winding optical fiber

Info

Publication number
JP3290737B2
JP3290737B2 JP04880593A JP4880593A JP3290737B2 JP 3290737 B2 JP3290737 B2 JP 3290737B2 JP 04880593 A JP04880593 A JP 04880593A JP 4880593 A JP4880593 A JP 4880593A JP 3290737 B2 JP3290737 B2 JP 3290737B2
Authority
JP
Japan
Prior art keywords
winding
linear body
optical fiber
bobbin
elastic cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04880593A
Other languages
Japanese (ja)
Other versions
JPH06239536A (en
Inventor
出 年 男 小
木 亮 二 鈴
橋 浩 一 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP04880593A priority Critical patent/JP3290737B2/en
Publication of JPH06239536A publication Critical patent/JPH06239536A/en
Application granted granted Critical
Publication of JP3290737B2 publication Critical patent/JP3290737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/32Optical fibres or optical cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/50Storage means for webs, tapes, or filamentary material
    • B65H2701/51Cores or reels characterised by the material
    • B65H2701/514Elastic elements

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Storage Of Web-Like Or Filamentary Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光ファバ素線を巻取って
保管、搬送するために用いられるボビンに関するもので
あり、保管、搬送中に許容される一定の範囲での温度変
化に対して、ボビンに巻かれた光ファイバ素線の巻き崩
れを確実に防止することができるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bobbin used for winding and storing and transporting an optical fiber, and is capable of controlling a temperature change in a certain range allowed during storage and transport. In addition, it is possible to reliably prevent the optical fiber strand wound around the bobbin from being broken.

【0002】[0002]

【従来の技術】光ファイバ素線の巻取用ボビンの巻胴は
通常プラスチック製、或いは金属製であり、これらに比
して熱膨張率が極めて小さい光ファイバ素線が所定の巻
付け力で巻取られる。光ファイバ素線の巻取り時に光フ
ァイバ素線に掛けられる張力は弱過ぎると保管、搬送時
の温度変化による巻緩み及び搬送時の振動によって巻崩
れを生じ、反対に上記張力が強いほどボビンに巻いたま
まで行なわれる光ファイバ素線の伝送損失試験の測定値
が光ファイバ素線本来の伝送損失よりも大きい値にな
り、このために伝送損失試験による不良品となる可能性
が増大する。従来は相反する上記の両面の兼ね合いを図
るために、伝送損失試験結果を可及的に本来の伝送損失
結果に近付けるべく、巻崩れを生じない限度においてで
きるだけ巻取り時の光ファイバ素線の巻付け力(光ファ
イバ素線に掛ける張力)を小さくしている。しかし、温
度変化に伴う巻胴と光ファイバ素線の熱収縮の差による
巻緩みを考慮して、伝送損失試験の結果をある程度犠牲
にしながら上記の巻緩みを見込んだ強さの巻付け力をも
って巻取らざるを得ない。この巻緩みは巻取り時の温度
に比して使用時(搬送時、伝送損失試験時等)の温度が
低く、光ファイバ素線の収縮に比べて巻胴が大きく収縮
して巻胴による光ファイバ素線に対する半径方向外方へ
の支持力が失われることによって生じるものであるか
ら、これを防止するためには巻胴による上記支持力の消
減を他の手段によって補う外はない。
2. Description of the Related Art The winding drum of a bobbin for winding an optical fiber is usually made of plastic or metal, and an optical fiber having an extremely small coefficient of thermal expansion is formed with a predetermined winding force. It is wound up. If the tension applied to the optical fiber at the time of winding the optical fiber is too weak, the winding may be loosened due to temperature change during storage and transport, and the winding may collapse due to vibration during transport. The measured value of the transmission loss test of the optical fiber strand, which is performed while being wound, becomes a value larger than the original transmission loss of the optical fiber strand, thereby increasing the possibility of defective products due to the transmission loss test. Conventionally, in order to balance the above two contradictory sides, in order to make the transmission loss test result as close as possible to the original transmission loss result, the winding of the optical fiber at the time of winding as much as possible without causing collapse of the winding. The attachment force (tension applied to the optical fiber) is reduced. However, considering the loosening due to the difference in thermal contraction between the winding drum and the optical fiber due to the temperature change, with the winding force of the strength that allows for the above loosening while sacrificing the result of the transmission loss test to some extent I have to take it up. This loosened winding has a lower temperature during use (during transport, transmission loss test, etc.) than the temperature during winding, and the winding drum shrinks greatly compared to the shrinkage of the optical fiber, resulting in light from the winding drum. Since this is caused by the loss of the support force of the fiber strand in the radially outward direction, there is no other way than to compensate for the reduction of the support force by the winding drum by other means in order to prevent this.

【0003】[0003]

【発明が解決しようとする課題】本発明は温度変化を考
慮することによる巻取り時の光ファイバ素線の巻付け力
の増分を小さくして可及的に伝送損失試験における伝送
損失を小さくすることを目的とし、温度変化による光フ
ァイバ素線の巻緩みを可及的に小さくすることをその課
題とするものである。
SUMMARY OF THE INVENTION According to the present invention, the transmission loss in a transmission loss test is reduced as much as possible by reducing the increment of the winding force of the optical fiber at the time of winding by considering the temperature change. It is an object of the present invention to minimize the loosening of an optical fiber due to a temperature change.

【0004】[0004]

【課題を解決するための手段】上記課題解決のために講
じた手段は次の要素(イ)、(ロ)によって構成される
ものである。 (イ)ボビンを構成する合成樹脂製の巻胴を弾性円筒材
で被覆させたこと、 (ロ)上記弾性円筒材の材料をその熱膨張率k2が次の
式を満足するものとしたこと。
Means taken to solve the above problems are constituted by the following elements (a) and (b). (A) The synthetic resin winding drum constituting the bobbin is covered with an elastic cylindrical material. (B) The material of the elastic cylindrical material has a coefficient of thermal expansion k 2 satisfying the following expression. .

【数 3】 ただし、上記Rは次の式を満足する値とする。[Equation 3] Here, R is a value satisfying the following equation.

【数 4】 上記式の各記号はそれぞれ次のとおりである。 r :巻胴の半径(mm)、 k1:巻胴の熱膨張率(1/℃)、 E1:巻胴のヤング率(g/mm2)、 d :ボビンに巻かれた弾性円筒材の厚さ(mm)、 k2:ボビンに巻かれた弾性円筒材の熱膨張率(1/
℃)、 E2:ボビンに巻かれた弾性円筒材のヤング率(g/m
2)、 a :線状体(光ファイバ素線、以下同じ)の幅(m
m)、 k3:線状体の熱膨張率(1/℃)、 E3:線状体のヤング率(g/mm2)、 S :線状体の断面積(mm2)、 T :線状体の巻き張力(g)。
[Equation 4] The symbols in the above formula are as follows. r: radius of the winding drum (mm), k 1 : coefficient of thermal expansion of the winding drum (1 / ° C.), E 1 : Young's modulus of the winding drum (g / mm 2 ), d: elastic cylindrical material wound on the bobbin Thickness (mm), k 2 : coefficient of thermal expansion of elastic cylindrical material wound on bobbin (1 /
° C), E 2 : Young's modulus of elastic cylinder material wound on bobbin (g / m
m 2 ), a: Width (m) of linear body (optical fiber, same hereafter)
m), k 3 : coefficient of thermal expansion of the linear body (1 / ° C.), E 3 : Young's modulus of the linear body (g / mm 2 ), S: cross-sectional area of the linear body (mm 2 ), T: The winding tension of the linear body (g).

【0005】[0005]

【作 用】以上の条件の計算式には、温度変化に関係す
る全てのものの巻取り時の温度及び巻付け力、温度変化
による直径や長さの変化、巻付け力による弾性変形量の
変化、内部応力の変化等、光ファイバ素線の巻きの堅さ
に影響する全ての要件が織り込まれているので、巻取り
時の温度、使用時(例えば伝送損失試験時)の温度が1
0度低下した場合にも弾性円筒材による光ファイバ素線
の円筒状の束に対する半径方向外方への支持力が零にな
ることはない。すなわち、巻胴の温度変化に伴う外径の
縮小分を弾性円筒材が補償して巻胴に対する光ファイバ
素線の巻付け力が零になることを防止する。したがって
温度低下が10度以下では、温度変化に伴う巻胴の外径
の縮小に関わらず巻緩みによる巻崩れを生じることはな
い。図1を参照しつつ上記作用の詳細を現象的に説明す
ると、次のとおりである。光ファイバ素線(以下、線状
体という)に張力を掛けてスポンジ等の弾性円筒材の外
周2が点線で示す2′まで圧縮される。この時巻胴の外
周1も線状体の巻付け力によって圧縮されるが巻胴のヤ
ング率は弾性円筒材よりも極めて大きいので、その圧縮
量は弾性円筒材の圧縮量に比べて極めて小さい。巻取り
時の温度に比して、搬送時等の温度が下がると、巻胴と
弾性円筒材と弾性円筒材に巻かれた線状体はそれぞれの
熱膨張率の割合で収縮する。線状体の熱膨張率k3は巻
胴、弾性円筒材の熱膨張率k1、k2に比べて極めて小さ
いので、巻胴の外周が点線1′で示す位置まで収縮する
と、これと共に弾性円筒材も熱収縮するが、線状体の締
付け力によって大きく圧縮されていた弾性円筒材の内周
が半径方向内方に弾性復元しながら巻胴外周の収縮に追
従して、巻胴の熱収縮分を補償する。この弾性円筒材の
半径方向内方への弾性復元によって弾性円筒材の線状体
に対する支持力は減少するが、その熱膨張率k2が上記
の式の関係を満たす限り、上記温度低下が10度以下で
は支持力が零になることはない。次いで上記式の根拠を
図2を参照しつつ念のために説明する。巻胴の径、巻胴
に巻かれた線状体(光ファイバ素線)の径の変化は、温
度変化によるものと線状体の巻張力の変化によるものと
である。線状体を巻取った時の巻胴の温度がt0からt
に下がったとき、巻胴は収縮し、この収縮量は(k1
+k2d)(t0−t)である。温度t0′、巻張力T、
巻き半径Rで巻取られた線状体の熱収縮の大きさはk3
R(t0′−t)である。また線状体は張力Tで巻取ら
れているので、この張力Tにより伸びた状態で巻取られ
ている。巻胴が収縮することにより線状体の張力が小さ
くなり、張力が零になった時の張力緩和による巻径の縮
小量は、R{1−1/(1+T/SE3)}となる。こ
の式の根拠は次のとおりである。巻胴に巻付けた状態で
の線状体の半径R、一巻分の線状体の自由長さをL、張
力T、伸びεとすると、2πR=L(1+ε)。線状体
の断面積をSとすると、 ε=σ/E=1/E×T/S。これから、L=2πR/
(1+T/SE3) T=0の時線状体は自由長さになるので、この時の半径
R′=L/2π。 半径の変化量R−R′=R−L/2π=R−R/(1+
T/SE3)=R{1−1/(1+T/SE3)}。 次にRについて説明する。線状体が巻胴に巻取られた状
態での最内層の一層の巻半径が上記のRに当たる。幅a
の線状体が張力Tで巻胴に巻付けられた時、巻胴の外周
面に直接巻付けられた線状体によって巻胴外周面に垂直
にかかる応力はT/Raとなる(これは従来よく知られ
た一般式であるので導きだされる根拠の説明は省略す
る)。この応力が弾性円筒材11の外周面にかかり、さ
らに巻胴10の外周面にかかっているので、この応力に
よって、巻胴10と弾性円筒材11はそれぞれ、r(1
−T/RaE1)、d(1−T/RaE2)だけ圧縮され
ている。ただし、このdは弾性円筒材の自由状態での厚
さである。自由状態でr+dの半径の弾性円筒材の外周
面に張力Tで線状体12を巻きつけたとき、その半径が
Rになっているのであるから、
[Operation] The above formulas for calculating the conditions include the temperature and winding force at the time of winding of everything related to the temperature change, the change in diameter and length due to the temperature change, and the change in the amount of elastic deformation due to the winding force. Since all the requirements such as changes in internal stress and the like that affect the rigidity of the winding of the optical fiber are incorporated, the temperature at the time of winding and the temperature at the time of use (for example, at the time of transmission loss test) are 1
Even if the angle is reduced by 0 degrees, the support force of the elastic cylindrical member toward the outside in the radial direction with respect to the cylindrical bundle of the optical fiber wires does not become zero. That is, the elastic cylindrical member compensates for the reduction of the outer diameter due to the temperature change of the winding drum, thereby preventing the winding force of the optical fiber around the winding drum from becoming zero. Therefore, if the temperature drop is 10 degrees or less, the winding will not collapse due to loose winding regardless of the reduction in the outer diameter of the winding drum due to the temperature change. The details of the above operation will be described phenomenally with reference to FIG. 1 as follows. An outer periphery 2 of an elastic cylindrical material such as a sponge is compressed to 2 'shown by a dotted line by applying tension to an optical fiber (hereinafter referred to as a linear body). At this time, the outer circumference 1 of the winding cylinder is also compressed by the winding force of the linear body, but since the Young's modulus of the winding cylinder is much larger than that of the elastic cylindrical material, the compression amount is extremely smaller than the compression amount of the elastic cylindrical material. . When the temperature during transport or the like is lower than the temperature during winding, the winding drum, the elastic cylindrical member, and the linear body wound around the elastic cylindrical member contract at the respective rates of thermal expansion. Since the coefficient of thermal expansion k 3 of the linear body is extremely smaller than the coefficients of thermal expansion k 1 and k 2 of the winding cylinder and the elastic cylindrical material, when the outer periphery of the winding cylinder contracts to the position shown by the dotted line 1 ′, the elasticity is increased. Although the cylindrical material also thermally contracts, the inner circumference of the elastic cylindrical material, which has been greatly compressed by the tightening force of the linear body, elastically restores inward in the radial direction, following the contraction of the outer circumference of the winding drum, and the heat of the winding drum is reduced. Compensate for shrinkage. Although the elastic cylindrical material elastically rebounds inward in the radial direction, the supporting force of the elastic cylindrical material with respect to the linear body is reduced. However, as long as the coefficient of thermal expansion k 2 satisfies the relationship of the above equation, the temperature drop is 10 Below this degree, the bearing capacity does not become zero. Next, the basis of the above equation will be described with reference to FIG. The change in the diameter of the winding cylinder and the diameter of the linear body (optical fiber) wound on the winding cylinder are caused by a change in temperature and a change in the winding tension of the linear body. T temperature of the winding body at the time of winding the linear body is from t 0
When it is lowered, the winding cylinder contracts, and the amount of contraction becomes (k 1 r
+ K 2 d) (t 0 −t). Temperature t 0 ′, winding tension T,
The magnitude of the thermal contraction of the linear body wound with the winding radius R is k 3
Is R (t 0 '-t). Further, since the linear body is wound by the tension T, the linear body is wound in an extended state by the tension T. When the winding drum contracts, the tension of the linear body decreases, and when the tension becomes zero, the amount of reduction in the winding diameter due to the relaxation of the tension is R {1-1 / (1 + T / SE 3 )}. The basis for this equation is as follows. When the radius R of the linear body wound around the winding drum and the free length of the linear body for one winding are L, tension T, and elongation ε, 2πR = L (1 + ε). Assuming that the cross-sectional area of the linear body is S, ε = σ / E = 1 / E × T / S. From this, L = 2πR /
(1 + T / SE 3 ) When T = 0, the linear body has a free length, and the radius at this time is R ′ = L / 2π. Radius change amount RR ′ = RL−2π = RR− (1+
T / SE 3 ) = R {1-1 / (1 + T / SE 3 )}. Next, R will be described. The radius of one layer of the innermost layer in a state where the linear body is wound on the winding drum corresponds to the above R. Width a
Is wound around the winding drum with the tension T, the stress perpendicularly applied to the winding drum outer peripheral surface by the linear body wound directly on the winding drum outer peripheral surface becomes T / Ra (this is Since it is a well-known general formula, a description of the grounds derived will be omitted.) Since this stress is applied to the outer peripheral surface of the elastic cylindrical member 11 and further to the outer peripheral surface of the winding drum 10, the winding drum 10 and the elastic cylindrical member 11 are respectively r (1
−T / RaE 1 ) and d (1−T / RaE 2 ). Here, d is the thickness of the elastic cylindrical member in the free state. When the linear body 12 is wound around the outer peripheral surface of the elastic cylindrical member having a radius of r + d with a tension T in a free state, the radius is R, so that

【数 5】 となる。これはRについての2次方程式であるから、こ
れを解くと、
[Equation 5] Becomes Since this is a quadratic equation for R, solving this gives

【数 6】 となる。弾性円筒材の外周に巻取られた線状体が巻取り
後の温度低下によって極端な巻崩れを生じないために
は、熱収縮後の弾性円筒材の外周の半径が、熱収縮後の
線状体の張力が零になる線状体の巻径よりも大きいこと
が最低必要な条件である。この条件を式で表すと、
[Equation 6] Becomes In order to prevent the linear body wound on the outer periphery of the elastic cylindrical member from being extremely collapsed due to a temperature drop after the winding, the radius of the outer periphery of the elastic cylindrical member after the heat shrinkage is determined by the line after the heat shrinkage. The minimum necessary condition is that the tension is larger than the winding diameter of the linear body at which the tension of the body becomes zero. If this condition is expressed by an equation,

【数 7】 となる。なお、この式において、 t :使用時温度(℃)、 t0 :線状体巻取り時の巻胴の温度(℃)、 t0′:線状体巻取り時の線状体の温度(℃)、 そこで、温度の低下を10度とすると、t0−t=10
であるから、
[Equation 7] Becomes In this equation, t: temperature during use (° C.), t 0 : temperature of the winding drum at the time of winding the linear body (° C.), t 0 ′: temperature of the linear body at the time of winding the linear body ( ° C), and assuming that the temperature drop is 10 degrees, t 0 -t = 10
Because

【数 8】 となる。すなわち、弾性円筒材の熱膨張率k2が上記の
関係を満たすように、その材料を選択することによって
巻取り温度よりも10度降下しても、この温度低下によ
って線状体の巻付け力が零になることはない。
[Equation 8] Becomes That is, even if the material is selected so that the coefficient of thermal expansion k 2 of the elastic cylindrical material satisfies the above relationship, the temperature decreases by 10 degrees from the winding temperature. Never goes to zero.

【0006】[0006]

【実 施 例】次いで、具体的な一実施例について説明
する。 巻胴について、 ボビンの巻胴の半径150mm、 材料:合成樹脂(名称 ABS樹脂)、 熱膨張係数k1=0.0001/℃、 ヤング率E1=200kg/mm2。 弾性円筒材について、 厚さ5mmの帯状の弾性部材を巻胴に軽く巻付けたも
の、 材料:発泡樹脂(名称 発泡ポリエチレン)、 熱膨張係数k2=0.0002/℃、 ヤング率E2=30g/mm2。 線状体(光ファイバ素線)について、 線状体の幅a=1.1mm、 実行断面積S=0.049mm2、 この線状体の熱膨張係数k3=0.0000005/
℃、 ヤング率E3=7300kg/mm2、 巻取り時の線状体の温度t0′=25℃。 巻取り条件について、 巻取り時の巻胴の温度t0=25℃、 巻取り張力T=150g、 巻取り長さ:10km。 試験結果について、 以上の条件で巻取ったボビン10個用意し、これを巻取
り温度より10℃低い15℃まで下げて、振動試験を行
なった。その結果、巻崩れを生じたものは一つもなかっ
た。 比較対象としたボビン、 上記と全く同じボビンの巻胴(弾性円筒材を巻付けない
もの)に同じ線状体を同じ条件で巻取ったものを10個
用意し、これを巻取り温度より10℃低い15℃まで下
げて、振動試験を行なった。その結果、巻崩れを生じた
ものは2個、巻崩れを生じなかったものは8個であっ
た。
EXAMPLE Next, a specific example will be described. Regarding the winding drum, the radius of the bobbin winding drum was 150 mm, material: synthetic resin (name: ABS resin), thermal expansion coefficient k 1 = 0.0001 / ° C., Young's modulus E 1 = 200 kg / mm 2 . Elastic cylindrical material, a belt-shaped elastic member having a thickness of 5 mm lightly wound around a winding drum, Material: foamed resin (namely foamed polyethylene), coefficient of thermal expansion k 2 = 0.0002 / ° C., Young's modulus E 2 = 30 g / mm 2 . Regarding the linear body (optical fiber), the width a of the linear body is 1.1 mm, the effective sectional area S is 0.049 mm 2 , and the coefficient of thermal expansion k 3 of this linear body is 0.0000005 /
° C, Young's modulus E 3 = 7300 kg / mm 2 , temperature of the linear body during winding t 0 ′ = 25 ° C. Regarding the winding conditions, the winding drum temperature during winding t 0 = 25 ° C., the winding tension T = 150 g, and the winding length: 10 km. Regarding the test results, ten bobbins wound under the above conditions were prepared, and the bobbins were cooled to 15 ° C., which is 10 ° C. lower than the winding temperature, and a vibration test was performed. As a result, no one had collapsed. Ten bobbins to be compared were prepared by winding the same linear body on the same bobbin as above (with no elastic cylindrical material wound) under the same conditions, and this was set at 10 to the winding temperature. The vibration test was performed by lowering the temperature by 15 ° C. to 15 ° C. As a result, two pieces had a roll collapse, and eight pieces did not have a roll collapse.

【0007】[0007]

【効 果】以上説明したとおり、搬送時、使用時の温度
を予想することによってその温度条件での巻緩み、巻崩
れを確実に防止することができる。したがって、必要最
低限の張力で線条体(光ファイバ素線)を巻取ることが
でき、これによって線条体本来の伝送損失を正確に測定
することができる等の効果を生じたものである。
[Effect] As described above, by estimating the temperature at the time of transportation and use, it is possible to reliably prevent loosening and collapse of the winding under the temperature condition. Therefore, the filament (optical fiber) can be wound up with the minimum necessary tension, thereby producing an effect such that the inherent transmission loss of the filament can be accurately measured. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の作用を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining an operation of the present invention.

【図2】本発明の作用を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining an operation of the present invention.

【符号の説明】[Explanation of symbols]

1・・・巻胴の外周 1’・・・巻胴の収縮したときの外周 2・・・弾性円筒材の外周 2’・・・弾性円筒材が圧縮されたときの外周 10・・・巻胴 11・・・弾性円筒材 12・・・線状体(光ファイバ素線) DESCRIPTION OF SYMBOLS 1 ... Outer circumference of winding cylinder 1 '... Outer circumference when contraction of winding cylinder 2 ... Outer circumference of elastic cylindrical material 2' ... Outer circumference when elastic cylindrical material is compressed 10 ... Winding Body 11: Elastic cylindrical material 12: Linear body (optical fiber)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−117924(JP,A) 特開 平4−352107(JP,A) (58)調査した分野(Int.Cl.7,DB名) B65H 75/14 G02B 6/00 336 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-117924 (JP, A) JP-A-4-352107 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B65H 75/14 G02B 6/00 336

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ボビンを構成する合成樹脂製の巻胴を弾性
円筒材で被覆し、 上記弾性円筒材の材料をその熱膨張率k2が次の式を満
足するものとした光ファイバ素線の巻取用ボビン。 【数 1】 ただし、上記Rは次の式を満足する値とする。 【数 2】 また、上記式の各記号はそれぞれ次のとおりである。 r :巻胴の半径(mm)、 k1:巻胴の熱膨張率(1/℃)、 E1:巻胴のヤング率(g/mm2)、 d :ボビンに巻かれた弾性円筒材の厚さ(mm)、 k2:ボビンに巻かれた弾性円筒材の熱膨張率(1/
℃)、 E2:ボビンに巻かれた弾性円筒材のヤング率(g/m
2)、 a :線状体(光ファイバ素線、以下同じ)の幅(m
m)、 k3:線状体の熱膨張率(1/℃)、 E3:線状体のヤング率(g/mm2)、 S :線状体の断面積(mm2)、 T :線状体の巻き張力(g)。
1. An optical fiber in which a winding cylinder made of a synthetic resin constituting a bobbin is covered with an elastic cylindrical material, and the material of the elastic cylindrical material has a coefficient of thermal expansion k 2 satisfying the following expression. Bobbin for winding. [Equation 1] Here, R is a value satisfying the following equation. [Equation 2] The symbols in the above formula are as follows. r: radius of the winding drum (mm), k 1 : coefficient of thermal expansion of the winding drum (1 / ° C.), E 1 : Young's modulus of the winding drum (g / mm 2 ), d: elastic cylindrical material wound on the bobbin Thickness (mm), k 2 : coefficient of thermal expansion of elastic cylindrical material wound on bobbin (1 /
° C), E 2 : Young's modulus of elastic cylinder material wound on bobbin (g / m
m 2 ), a: Width (m) of linear body (optical fiber, same hereafter)
m), k 3 : coefficient of thermal expansion of the linear body (1 / ° C.), E 3 : Young's modulus of the linear body (g / mm 2 ), S: cross-sectional area of the linear body (mm 2 ), T: The winding tension of the linear body (g).
JP04880593A 1993-02-16 1993-02-16 Bobbin for winding optical fiber Expired - Lifetime JP3290737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04880593A JP3290737B2 (en) 1993-02-16 1993-02-16 Bobbin for winding optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04880593A JP3290737B2 (en) 1993-02-16 1993-02-16 Bobbin for winding optical fiber

Publications (2)

Publication Number Publication Date
JPH06239536A JPH06239536A (en) 1994-08-30
JP3290737B2 true JP3290737B2 (en) 2002-06-10

Family

ID=12813430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04880593A Expired - Lifetime JP3290737B2 (en) 1993-02-16 1993-02-16 Bobbin for winding optical fiber

Country Status (1)

Country Link
JP (1) JP3290737B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10637321B1 (en) 2018-12-07 2020-04-28 GM Global Technology Operations LLC Motor housings and motor assemblies with controlled radial thermal expansion

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594829A (en) * 1995-06-07 1997-01-14 Lostracco; Gregory Optical fiber dispenser with thermal expansion accommodation layer
JP2005292180A (en) 2004-03-31 2005-10-20 Fuji Photo Film Co Ltd Plastic optical fiber and its manufacturing method
JP5147418B2 (en) * 2008-01-09 2013-02-20 株式会社アライドマテリアル Metal wire storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10637321B1 (en) 2018-12-07 2020-04-28 GM Global Technology Operations LLC Motor housings and motor assemblies with controlled radial thermal expansion

Also Published As

Publication number Publication date
JPH06239536A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
AU2003251135B2 (en) Signal Transmitting Cable
US5971316A (en) Optical fiber spool and spool cover
JPS6087308A (en) Optical glass fiber having primary and secondary covers
JP2546543B2 (en) Optical fiber winding device
JP3290737B2 (en) Bobbin for winding optical fiber
US5915059A (en) Optical fiber cable and a method for manufacturing the same
US20060024015A1 (en) Optical fiber reel module and winding method therefor
US5205510A (en) Optical fiber bobbin with stress-reducing sleeve
JP2004502982A (en) Variable tension fiber winding
CA2176614C (en) Optical fiber dispenser with thermal expansion accommodation layer
JPS58160122A (en) Manufacture of film having uniform physical properties
JPH0425685Y2 (en)
GB2409909A (en) Signal transmitting cable
JP3566129B2 (en) Temperature compensated optical fiber Bragg grating
AU2007209831B2 (en) Signal Transmitting Cable
JPH0365787B2 (en)
JP3367324B2 (en) Drum for winding optical fiber
KR100496451B1 (en) Optical Fiber Guide Spool
JP2004191663A (en) Dispersion compensation fiber module and reel for dispersion compensation fiber module
JP3338615B2 (en) Optical fiber for components
JPH0761716A (en) Open reel
JPS6188210A (en) Dummy unit for optical fiber cable
JPS59166902A (en) Method and apparatus for manufacturing optical fiber cable element
KR19990018326A (en) Pancake Herbs With Magnetic Tape
JPH11208998A (en) Optical fiber winding method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

EXPY Cancellation because of completion of term