JPH06236758A - Positive electrode for nonaqueous electrolytic battery - Google Patents

Positive electrode for nonaqueous electrolytic battery

Info

Publication number
JPH06236758A
JPH06236758A JP5095592A JP9559293A JPH06236758A JP H06236758 A JPH06236758 A JP H06236758A JP 5095592 A JP5095592 A JP 5095592A JP 9559293 A JP9559293 A JP 9559293A JP H06236758 A JPH06236758 A JP H06236758A
Authority
JP
Japan
Prior art keywords
positive electrode
current collecting
active material
electrode active
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5095592A
Other languages
Japanese (ja)
Other versions
JP3355691B2 (en
Inventor
Hirohiko Saito
博彦 斉藤
Jun Hasegawa
順 長谷川
Satoru Suzuki
覚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP09559293A priority Critical patent/JP3355691B2/en
Publication of JPH06236758A publication Critical patent/JPH06236758A/en
Priority to US08/386,363 priority patent/US5494762A/en
Application granted granted Critical
Publication of JP3355691B2 publication Critical patent/JP3355691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a positive electrode for nonaqueous electrolytic battery having a high energy capacity at charge and discharge. CONSTITUTION:A metal compound capable of storing or releasing lithium is used as a positive electrode active material. A positive electrode is formed of a current collecting core 2 and the positive electrode active material 1 covering the surface. The current collecting core 2 is formed of a current collecting material consisting of any one of metal, carbon fiber, and graphite fiber. The surface of the current collecting core 2 has a current collecting protruding part 20 protruded into the positive electrode active material 1. The current collecting protruding part 20 is an irregular body, a net body, or a loop body. The positive electrode active material 1 may contain a conductive stripe piece or its aggregate. The conductive stripe piece is a laminated body in which the compound foil piece of the metal compound is laminated on the conductive foil film of the current collecting material, a fiber bode, a covered film in which the surface of the crystal particle of the metal compound is partially covered. The metal compound capable of storing or releasing lithium is preferably a metal compound containing lithium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,リチウムを吸蔵又は放
出しうる金属化合物を正極活物質として用いる非水電解
質電池の正極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode for a non-aqueous electrolyte battery using a metal compound capable of inserting or extracting lithium as a positive electrode active material.

【0002】[0002]

【従来技術】リチウム又はリチウム化合物を負極とする
非水電解質電池においては,その正極活物質として,従
来よりMnO2 ,V25 が検討されている。これらの
金属化合物は充放電による結晶構造の崩壊のため電池の
エネルギ容量の減少が著しい。
2. Description of the Related Art In a non-aqueous electrolyte battery using lithium or a lithium compound as a negative electrode, MnO 2 , V 2 O 5 has been conventionally studied as a positive electrode active material. These metal compounds significantly reduce the energy capacity of the battery due to the collapse of the crystal structure due to charge and discharge.

【0003】この対策として,予めリチウムを含んだリ
チウム複合酸化物が提案されており,例えば,LiMn
24 を正極活物質に用いることが報告されている(M
aterial Research Bulletin
18,(1983),461─472)。
As a countermeasure against this, a lithium composite oxide containing lithium has been proposed in advance, for example, LiMn.
It has been reported that 2 O 4 is used as a positive electrode active material (M
outer Research Bulletin
18, (1983), 461-472).

【0004】LiMn24 は,スピネル構造をした立
方晶の結晶構造であり,一般に,リチウム塩粉末とマン
ガン酸化物粉末との混合物を焼成して得られる。上記正
極活物質は,一般に,LiMn24 に導電剤及び結着
剤を混合したものを,集電用コアの上にプレス成形して
作製したものである。上記導電剤は,微粒子のカーボン
である。また,上記集電用コアとしては,金属箔等の導
電性を有する集電材料を用いる。
LiMn 2 O 4 has a cubic crystal structure having a spinel structure, and is generally obtained by firing a mixture of lithium salt powder and manganese oxide powder. The positive electrode active material is generally prepared by press-molding a mixture of LiMn 2 O 4 with a conductive agent and a binder onto a current collecting core. The conductive agent is fine particle carbon. In addition, as the current collecting core, a conductive current collecting material such as a metal foil is used.

【0005】[0005]

【解決しようとする課題】しかしながら,上記従来の正
極では,正極活物質内の導電剤分布の不均一或いは,導
電剤間の電気的接続の欠落により,正極の面内及び膜厚
方向に導電率にばらつきが生じる。そのため,充放電の
際,正極反応は不均一となり,エネルギ容量が低下す
る。
However, in the above-mentioned conventional positive electrode, due to the uneven distribution of the conductive agent in the positive electrode active material or the lack of electrical connection between the conductive agents, the conductivity of the positive electrode in the plane and in the film thickness direction is increased. Variation occurs. Therefore, during charging and discharging, the positive electrode reaction becomes non-uniform and the energy capacity is reduced.

【0006】また,導電剤は集電用コアの集電材料に比
べて導電率が小さいため,内部抵抗による電圧降下が著
しくエネルギ容量が低下するという問題がある。特に,
こうした問題は大電流の充放電時において顕著となる。
本発明はかかる従来の問題点に鑑み,充放電時のエネル
ギ容量が高い,非水電解質電池の正極を提供しようとす
るものである。
Further, since the conductive agent has a smaller conductivity than the current collecting material of the current collecting core, there is a problem that the voltage drop due to the internal resistance is remarkably reduced and the energy capacity is lowered. In particular,
Such a problem becomes remarkable when charging and discharging a large current.
In view of such conventional problems, the present invention aims to provide a positive electrode for a non-aqueous electrolyte battery, which has a high energy capacity during charging and discharging.

【0007】[0007]

【課題の解決手段】本願にかかる第1発明は,リチウム
を吸蔵又は放出しうる金属化合物を正極活物質として用
いる非水電解質電池の正極において,上記正極は集電用
コアとその表面を被覆する正極活物質とからなり,上記
集電用コアは,金属,炭素繊維,グラファイト繊維のい
ずれかよりなる集電材料からなり,かつ,上記集電用コ
アの表面は上記正極活物質中に突出した集電突出部を有
することを特徴とする非水電解質電池の正極にある。
According to a first aspect of the present invention, in a positive electrode of a non-aqueous electrolyte battery using a metal compound capable of inserting or extracting lithium as a positive electrode active material, the positive electrode covers a current collecting core and its surface. A positive electrode active material, the current collecting core is made of a metal, carbon fiber, or graphite fiber current collecting material, and the surface of the current collecting core protrudes into the positive electrode active material. A positive electrode of a non-aqueous electrolyte battery having a current collecting protrusion.

【0008】上記発明において最も注目すべきことは,
集電用コアが,その表面に正極活物質中に突出した集電
突出部を有することである。該集電突出部は,凹凸状
体,網状体,ループ体等である。上記凹凸状体とは,集
電突出部が凹部と凸部とからなり,その形状がストライ
プ状,格子状,ハニカム状等のものをいう。
What is most noticeable in the above invention is that
That is, the current collecting core has a current collecting protrusion protruding into the positive electrode active material on its surface. The current collecting protrusion is an uneven body, a net body, a loop body, or the like. The above-mentioned concavo-convex body means that the current-collecting protruding portion is composed of concave portions and convex portions, and the shape thereof is a stripe shape, a lattice shape, a honeycomb shape or the like.

【0009】上記集電突出部は,フォトグラフィ技術及
びエッチング技術等の化学的加工法,プレス技術等の機
械的加工法等により形成することができる。また,上記
集電突出部は,集電用コアを酸化して得られる酸化物半
導体を用いることができる。
The current collecting protrusions can be formed by a chemical processing method such as a photography technique and an etching technique, or a mechanical processing method such as a pressing technique. Further, the current collecting protrusion may be made of an oxide semiconductor obtained by oxidizing the current collecting core.

【0010】上記凸部と凹部との高低差は,2〜150
μmが好ましい。2μm未満では,導電率向上の効果が
小さくなるおそれがある。また,150μmを越える場
合には,凸部の占有体積が増加し,エネルギ容量が低下
するおそれがある。上記網状体とは,集電用コア自身が
メッシュ状の形状をしたものをいう。網状体は,集電材
料をワイヤ状,糸状,繊維状に成形し,これらを網状に
組むことにより形成される。
The height difference between the convex portion and the concave portion is 2 to 150.
μm is preferred. If it is less than 2 μm, the effect of improving the conductivity may be reduced. On the other hand, if it exceeds 150 μm, the volume occupied by the protrusions may increase and the energy capacity may decrease. The reticulated body means that the current collecting core itself has a mesh shape. The reticulate body is formed by forming a current collecting material into a wire shape, a thread shape, or a fiber shape, and assembling these into a reticulated shape.

【0011】上記ループ体とは,上記集電材料よりなる
ワイヤをループ状に,集電用コア表面に,間欠的に接着
したものをいう。即ち,該ワイヤは,正極活物質内に部
分的に突出させた状態で,集電用コアの表面に接着され
るのである。各ワイヤは,断続的,又は連続的に,集電
用コアの表面に集電突出部を形成している。ループ体の
高低差は20〜150μmが好ましい。高低差が20μ
m未満の場合には,充放電容量が低下するおそれがあ
る。また,高低差が150μmを越える場合には,エネ
ルギ容量低下のおそれがある。
The loop body means a wire made of the current collecting material that is intermittently adhered to the surface of the current collecting core in a loop shape. That is, the wire is adhered to the surface of the current collecting core while partially protruding into the positive electrode active material. Each wire forms a current collecting protrusion on the surface of the current collecting core intermittently or continuously. The height difference of the loop body is preferably 20 to 150 μm. Height difference is 20μ
If it is less than m, the charge / discharge capacity may decrease. If the height difference exceeds 150 μm, the energy capacity may decrease.

【0012】また,上記酸化物半導体としては,Cu
O,TiO2 ,ZnO等があり,これらは例えば各金属
板の表面にウィスカ等の針状体を形成させることにより
得られる。上記集電用コアを被覆する正極活物質の厚み
は,25〜200μmが好ましい。25μm未満の場合
には,正極中の正極活物質の割合が低下し,エネルギ容
量が低下するおそれがある。また,200μmを越える
場合には,導電率向上の効果が小さくなるおそれがあ
る。上記集電材料は,金属,炭素繊維,グラファイト繊
維のいずれかよりなる。上記金属としては,Al,C
u,Ni,Ti,ステンレス鋼,Al−1%Si等があ
る。
As the oxide semiconductor, Cu is used.
There are O, TiO 2 , ZnO and the like, which can be obtained by forming a needle-shaped body such as a whisker on the surface of each metal plate. The thickness of the positive electrode active material coating the current collecting core is preferably 25 to 200 μm. If it is less than 25 μm, the proportion of the positive electrode active material in the positive electrode may decrease, and the energy capacity may decrease. If it exceeds 200 μm, the effect of improving the conductivity may be reduced. The current collecting material is made of metal, carbon fiber or graphite fiber. As the above metal, Al, C
u, Ni, Ti, stainless steel, Al-1% Si and the like.

【0013】上記正極は,リチウムを吸蔵又は放出しう
る金属化合物の正極活物質,集電用コア,導電剤,結着
剤等よりなる。上記金属化合物としては,LiMn2
4 ,Lix MnO2 ,LiCoO2 ,LiNiO2 ,L
iFeO2 ,LiV38 ,V2 MoO8 ,Cu22
7 ,MoO3 ,V25 ,Cr25 ,MnO2 ,T
iS2 ,MoS2 などを用いる。
The positive electrode comprises a positive electrode active material of a metal compound capable of occluding or releasing lithium, a current collecting core, a conductive agent, a binder and the like. Examples of the metal compound include LiMn 2 O
4 , Li x MnO 2 , LiCoO 2 , LiNiO 2 , L
iFeO 2 , LiV 3 O 8 , V 2 MoO 8 , Cu 2 V 2
O 7 , MoO 3 , V 2 O 5 , Cr 2 O 5 , MnO 2 , T
iS 2 , MoS 2 or the like is used.

【0014】上記金属化合物は,リチウムを含む金属化
合物であることが好ましい。これにより,充放電による
金属化合物の結晶構造の崩壊を防止することができる。
本発明にかかる正極は,負極とともに,リチウムを含有
する電解液中に浸漬されて,非水電解質電池を構成す
る。
The metal compound is preferably a metal compound containing lithium. This can prevent the crystal structure of the metal compound from collapsing due to charge and discharge.
The positive electrode according to the present invention, together with the negative electrode, is immersed in an electrolyte solution containing lithium to form a non-aqueous electrolyte battery.

【0015】本願にかかる第2発明は,リチウムを吸蔵
又は放出しうる金属化合物を正極活物質として用いる非
水電解質電池の正極において,上記正極は集電用コアと
その表面を被覆する正極活物質とからなり,上記集電用
コアは,金属,炭素繊維,グラファイト繊維のいずれか
よりなる集電材料からなり,かつ,上記正極活物質は,
導電性細片を含有していることを特徴とする非水電解質
電池の正極にある。
A second invention according to the present application is a positive electrode of a non-aqueous electrolyte battery using a metal compound capable of inserting or extracting lithium as a positive electrode active material, wherein the positive electrode is a current collecting core and a positive electrode active material coating the surface thereof. And the current collecting core is made of a current collecting material made of any one of metal, carbon fiber, and graphite fiber, and the positive electrode active material is
The positive electrode of a non-aqueous electrolyte battery is characterized by containing conductive strips.

【0016】本第2発明において最も注目すべきこと
は,上記正極活物質が,多数の導電性細片を含有してい
ることである。上記導電性細片は,例えば上記集電材料
の導電箔片に上記金属化合物の化合物箔片を積層した積
層体を用いる。
What is most noticeable in the second invention is that the positive electrode active material contains a large number of conductive strips. As the conductive strip, for example, a laminated body in which a compound foil piece of the metal compound is laminated on a conductive foil piece of the current collecting material is used.

【0017】上記積層体中の導電箔片の厚みは,0.0
01〜10μmが好ましい。0.001μm未満の場合
には,内部抵抗の増大によるエネルギ容量の低下のおそ
れがある。また,10μmを越える場合には,導電箔片
の占有体積が大きくなりエネルギ容量の低下のおそれが
ある。
The thickness of the conductive foil piece in the laminate is 0.0
01 to 10 μm is preferable. If it is less than 0.001 μm, the energy capacity may decrease due to an increase in internal resistance. On the other hand, if it exceeds 10 μm, the volume occupied by the conductive foil piece becomes large and the energy capacity may decrease.

【0018】上記積層体における金属化合物の化合物箔
片の厚みは,0.01〜100μmが好ましい。0.0
1μm未満の場合には,エネルギ容量の低下のおそれが
ある。また,100μmを越える場合には,導電率向上
の効果が小さくなり充放電容量の低下のおそれがある。
上記正極活物質の厚みは,0.02〜200μmが好ま
しい。0.02μm未満の場合には,エネルギ容量の低
下のおそれがある。また,200μmを越える場合に
は,導電率向上の効果が小さくなり,充放電容量の低下
のおそれがある。
The thickness of the compound foil piece of the metal compound in the above laminate is preferably 0.01 to 100 μm. 0.0
If it is less than 1 μm, the energy capacity may decrease. On the other hand, when the thickness exceeds 100 μm, the effect of improving the conductivity becomes small and the charge / discharge capacity may decrease.
The thickness of the positive electrode active material is preferably 0.02 to 200 μm. If it is less than 0.02 μm, the energy capacity may decrease. On the other hand, when the thickness exceeds 200 μm, the effect of improving the conductivity becomes small, and the charge / discharge capacity may decrease.

【0019】上記導電性細片を製造するに当たっては,
例えば,蒸着法を用いる。即ち,蒸着用の仮の基板の上
に金属化合物と集電材料とを交互に蒸着する。これによ
り,基板の上に化合物箔片と導電箔片とが交互に積層さ
れる(図8)。次に,該化合物箔片,導電箔片からなる
積層体を基板から剥離し,粉砕して,細片化する。その
後,これを結着剤と混合して正極活物質となし,集電用
コアの表面に接着する(図7)。
In producing the above-mentioned conductive strip,
For example, a vapor deposition method is used. That is, the metal compound and the current collecting material are alternately deposited on the temporary substrate for vapor deposition. As a result, the compound foil pieces and the conductive foil pieces are alternately laminated on the substrate (FIG. 8). Next, the laminate consisting of the compound foil piece and the conductive foil piece is peeled from the substrate, crushed, and made into pieces. Then, this is mixed with a binder to form a positive electrode active material, which is adhered to the surface of the current collecting core (FIG. 7).

【0020】上記仮の基板としては,ガラス,Si,A
l,ステンレス,紙,ウレタン等を用いる。上記基板
は,その表面が平面或いは凹凸を有するもの等を用い
る。基板に凹凸がある場合には,積層体の形状を,針
状,立方体形状とすることができる。また,上記導電箔
片の表面に金属化合物を塗布することにより,上記積層
体を得ることもできる。
As the above-mentioned temporary substrate, glass, Si, A
1, stainless steel, paper, urethane, etc. are used. As the substrate, a substrate having a flat surface or unevenness is used. When the substrate has irregularities, the shape of the laminated body can be needle-like or cubic. Moreover, the said laminated body can also be obtained by apply | coating the metal compound on the surface of the said conductive foil piece.

【0021】また,上記導電性細片としては,上記集電
材料よりなる繊維体を用いることもできる。該繊維体の
直径は,2〜7μmが好ましい。2μm未満の場合に
は,導電率向上の効果が小さくなるおそれがある。ま
た,7μmを越える場合には,繊維体の占有体積が増大
しエネルギ容量の低下のおそれがある。また,上記繊維
体のアスペクト比は,5〜70が好ましい。5未満の場
合には,繊維体同志の接続が不十分となり充放電容量の
低下のおそれがある。また,70を越える場合には,繊
維体の占有体積が増大しエネルギ容量の低下のおそれが
ある。
Further, as the conductive strip, a fibrous body made of the above current collecting material can be used. The diameter of the fibrous body is preferably 2 to 7 μm. If it is less than 2 μm, the effect of improving the conductivity may be reduced. On the other hand, if it exceeds 7 μm, the volume occupied by the fibrous body is increased, and the energy capacity may be lowered. The aspect ratio of the fibrous body is preferably 5 to 70. If it is less than 5, the connection between the fibrous bodies is insufficient and the charge / discharge capacity may be reduced. On the other hand, if it exceeds 70, the volume occupied by the fibrous body increases, and the energy capacity may decrease.

【0022】上記正極活物質中に導電性細片を含有させ
る場合には,繊維体が2〜15wt%含まれていること
が好ましい。2wt%未満の場合には,エネルギ容量が
低下するおそれがある。また,15wt%を越える場合
には,充放電容量の低下のおそれがある。
When the conductive strips are contained in the positive electrode active material, it is preferable that the fibrous body is contained in an amount of 2 to 15 wt%. If it is less than 2 wt%, the energy capacity may decrease. On the other hand, if it exceeds 15 wt%, the charge / discharge capacity may decrease.

【0023】また,上記導電性細片としては,上記金属
化合物の結晶粒子の表面を部分的に被覆した,導電材料
の被覆膜を用いることもできる。該被覆膜の膜厚は,
0.001μm〜1μmが好ましい。0.001μm未
満の場合には,導電率向上の効果が低下するおそれがあ
る。また,1μmを越える場合には,被覆膜の占有体積
が増大し,エネルギ容量が低下するおそれがある。
As the conductive strip, it is possible to use a coating film of a conductive material in which the surface of the crystal particles of the metal compound is partially coated. The film thickness of the coating film is
0.001 μm to 1 μm is preferable. If it is less than 0.001 μm, the effect of improving the conductivity may be reduced. On the other hand, if it exceeds 1 μm, the volume occupied by the coating film may increase and the energy capacity may decrease.

【0024】また,被覆率は,10〜60%が好まし
い。10%未満の場合には,被覆膜同志の接続が不充分
となり,充放電容量が低下するおそれがある。また,6
0%を越える場合には,電極反応面積が少なくなり,エ
ネルギ容量が低下するおそれがある。上記被覆率とは,
上記結晶粒子の表面において,その全表面積に対する,
被覆膜により被覆された被覆面積の比率をいう。
The coverage is preferably 10 to 60%. If it is less than 10%, the connection between the coating films may be insufficient and the charge / discharge capacity may decrease. Also, 6
If it exceeds 0%, the reaction area of the electrode is reduced and the energy capacity may be reduced. The coverage is
On the surface of the crystal grain, for its total surface area,
It refers to the ratio of the coated area covered by the coating film.

【0025】上記被覆膜を製造するに当たっては,例え
ば,無電解メッキ法を用いる。即ち,金属を含むメッキ
液中に,上記金属化合物の粉末を浸漬することにより,
Cu,Ni,Au等の被覆膜が形成される。被覆膜の膜
厚及び被覆率は,メッキ処理時間,処理温度等により任
意に制御することができる。その他は,上記第1発明と
同様である。
In producing the coating film, for example, an electroless plating method is used. That is, by immersing the metal compound powder in a plating solution containing a metal,
A coating film of Cu, Ni, Au or the like is formed. The film thickness and the coverage of the coating film can be arbitrarily controlled by the plating processing time, the processing temperature and the like. Others are the same as those of the first invention.

【0026】[0026]

【作用及び効果】上記第1発明においては,集電用コア
は,金属,炭素繊維,グラファイト繊維のいずれかより
なる集電材料を用いている。該集電材料は電子伝導性が
良い。そのため,上記集電用コアは,優れた電子伝達路
として働く。また,集電突出部が酸化物半導体である場
合においても,集電用コアは優れた電子伝達路として働
く。一方,集電用コアの表面を被覆している正極活物質
は,リチウムの酸化,還元反応点となる。
In the first aspect of the invention, the current collecting core is made of a current collecting material made of any one of metal, carbon fiber and graphite fiber. The current collecting material has good electron conductivity. Therefore, the current collecting core functions as an excellent electron transmission path. Even when the current collecting protrusion is an oxide semiconductor, the current collecting core functions as an excellent electron transfer path. On the other hand, the positive electrode active material that coats the surface of the current collecting core becomes the oxidation and reduction reaction point of lithium.

【0027】そして,本発明においては,集電用コアの
表面は正極活物質中に突出した凹凸形状などの集電突出
部を有する。そのため,上記酸化,還元反応点への電子
の移動距離が短くなる。また,上記集電用コアの表面が
集電突出部を有するため,正極活物質内での電子伝導性
が均一になる。これにより,内部抵抗を小さくすること
ができる。
In the present invention, the surface of the current collecting core has a current collecting protrusion such as an uneven shape protruding in the positive electrode active material. Therefore, the migration distance of the electron to the oxidation / reduction reaction point becomes short. Further, since the surface of the current collecting core has the current collecting protrusion, the electron conductivity in the positive electrode active material becomes uniform. As a result, the internal resistance can be reduced.

【0028】集電用コアの表面は上記正極活物質中に突
出した集電突出部を有するため,その表面積は大きい。
それ故,集電用コア内の電子の正極活物質への放出面積
が大きくなる。これにより,一度に多量の電子を放出す
ることができる。従って,正極内での酸化,還元反応の
不均一化,内部抵抗による電圧降下を抑制することがで
き,エネルギ容量の増大を図ることができる。
The surface of the current collecting core has a large surface area because it has a current collecting protrusion protruding into the positive electrode active material.
Therefore, the emission area of the electrons in the current collecting core to the positive electrode active material becomes large. As a result, a large amount of electrons can be emitted at one time. Therefore, it is possible to suppress the unevenness of the oxidation and reduction reactions in the positive electrode and the voltage drop due to the internal resistance, and to increase the energy capacity.

【0029】上記第2発明においては,正極活物質は,
上記積層体,繊維体,被覆膜等の導電性細片を含有して
いる。そのため,正極活物質内での電子伝導性が均一に
なる。これにより,内部抵抗を小さくすることができ
る。従って,正極内での酸化,還元反応の不均一化,内
部抵抗による電圧降下を抑制することができ,エネルギ
容量の増大を図ることができる。その他,上記第1発明
と同様の効果を得ることができる。以上のごとく本発明
によれば,充放電時のエネルギ容量の高い,非水電解質
電池の正極を提供することができる。
In the second invention, the positive electrode active material is
It contains conductive strips such as the above-mentioned laminated body, fibrous body and coating film. Therefore, the electron conductivity in the positive electrode active material becomes uniform. As a result, the internal resistance can be reduced. Therefore, it is possible to suppress the unevenness of the oxidation and reduction reactions in the positive electrode and the voltage drop due to the internal resistance, and to increase the energy capacity. Besides, the same effects as those of the first invention can be obtained. As described above, according to the present invention, it is possible to provide a positive electrode for a non-aqueous electrolyte battery, which has a high energy capacity during charging and discharging.

【0030】[0030]

【実施例】【Example】

実施例1 本発明の実施例にかかる非水電解質電池の正極につい
て,図1を用いて説明する。本例の非水電解質電池の正
極9は,リチウムを吸蔵又は放出しうる金属化合物を,
正極活物質1として用いる。上記正極9は,集電用コア
2と,その表面を被覆する正極活物質1とからなる。集
電用コア2は,金属よりなる集電材料からなる。集電用
コア2の表面は上記正極活物質1中に突出した集電突出
部20を有する。
Example 1 A positive electrode of a non-aqueous electrolyte battery according to an example of the present invention will be described with reference to FIG. The positive electrode 9 of the non-aqueous electrolyte battery of this example contains a metal compound capable of inserting or extracting lithium,
Used as the positive electrode active material 1. The positive electrode 9 includes a current collecting core 2 and a positive electrode active material 1 that covers the surface thereof. The current collecting core 2 is made of a current collecting material made of metal. The surface of the current collecting core 2 has a current collecting protrusion 20 protruding into the positive electrode active material 1.

【0031】集電突出部20は,凸部21と凹部29と
からなり,その形状がストライプ状の凹凸状体である。
該集電突出部20は,フォトリソグラフィ技術及びエッ
チング技術を用いた化学的加工法により形成される。上
記凸部21の幅は2μmである。上記凹部29の幅は1
5μmである。凸部21と凹部29との高低差は,20
μmである。上記正極活物質1の厚みは25μmであ
る。
The current collecting protrusion 20 is composed of a convex portion 21 and a concave portion 29, and the shape thereof is an uneven body having a stripe shape.
The current collecting protrusions 20 are formed by a chemical processing method using a photolithography technique and an etching technique. The width of the convex portion 21 is 2 μm. The width of the recess 29 is 1
It is 5 μm. The height difference between the convex portion 21 and the concave portion 29 is 20
μm. The positive electrode active material 1 has a thickness of 25 μm.

【0032】上記正極活物質1は,LiMn24 を用
いた金属化合物90wt%と,カーボンを用いた導電剤
6wt%と,テフロンを用いた結着剤よりなる。集電用
コア2はAl(アルミニウム)の集電材料よりなる。正
極活物質1は,上記集電用コア2の表面において,上記
集電突出部20の間に塗布されている。本例の正極9
は,負極とともに,リチウムを含有する電解液中に浸漬
して用いられる。
The positive electrode active material 1 comprises 90 wt% of a metal compound using LiMn 2 O 4 , 6 wt% of a conductive agent using carbon, and a binder using Teflon. The current collecting core 2 is made of an Al (aluminum) current collecting material. The positive electrode active material 1 is applied between the current collecting protrusions 20 on the surface of the current collecting core 2. Positive electrode 9 of this example
Is used by immersing it together with the negative electrode in an electrolyte solution containing lithium.

【0033】次に,本例の作用効果について説明する。
本例においては,集電用コア2は,電子伝導性の良いア
ルミニウムよりなる集電材料を用いている。そのため,
上記集電用コア2は,優れた電子伝達路として働く。一
方,集電用コア2の表面を被覆している正極活物質1
は,リチウムの酸化,還元反応点となる。
Next, the function and effect of this example will be described.
In this example, the current collecting core 2 uses a current collecting material made of aluminum having good electron conductivity. for that reason,
The current collecting core 2 functions as an excellent electron transmission path. On the other hand, the positive electrode active material 1 covering the surface of the current collecting core 2
Are the oxidation and reduction reaction points of lithium.

【0034】上記集電用コア2の表面は,正極活物質1
中に突出した,凹凸状の集電突出部20を有する。その
ため,上記酸化,還元反応点への電子の移動距離が短く
なる。また,正極活物質1内での電子伝導性が均一にな
る。これにより,正極9は内部抵抗が小さくなる。従っ
て,正極9内での酸化,還元反応の不均一化,内部抵抗
による電圧降下を抑制することができ,エネルギ容量の
増大を図ることができる。
The surface of the current collecting core 2 has a positive electrode active material 1
It has an uneven current collecting protrusion 20 protruding inside. Therefore, the migration distance of the electron to the oxidation / reduction reaction point becomes short. In addition, the electron conductivity in the positive electrode active material 1 becomes uniform. This reduces the internal resistance of the positive electrode 9. Therefore, it is possible to suppress the unevenness of the oxidation and reduction reactions in the positive electrode 9 and the voltage drop due to the internal resistance, and to increase the energy capacity.

【0035】また,上記集電用コア2の表面は,正極活
物質1中に突出した集電突出部20を有する。そのた
め,集電用コア2の表面積は大きい。それ故,集電用コ
ア2内の電子の正極活物質1への放出面積が大きくな
る。これにより,一度に多量の電子を放出することがで
きる。従って,充放電時における正極9のエネルギ容量
が増大する。
The surface of the current collecting core 2 has a current collecting protrusion 20 protruding into the positive electrode active material 1. Therefore, the surface area of the current collecting core 2 is large. Therefore, the emission area of the electrons in the current collecting core 2 to the positive electrode active material 1 becomes large. As a result, a large amount of electrons can be emitted at one time. Therefore, the energy capacity of the positive electrode 9 during charging / discharging increases.

【0036】実施例2 本例の正極においては,図2〜図4に示すごとく,その
集電突出部が集電用コアを酸化して得られる酸化物半導
体である。該酸化物半導体はCuOである。即ち,図2
に示すごとく,上記集電突出部30は,集電用コア2の
表面から正極活物質1中に突出している。
Example 2 In the positive electrode of this example, as shown in FIGS. 2 to 4, the current collecting protrusion is an oxide semiconductor obtained by oxidizing the current collecting core. The oxide semiconductor is CuO. That is, FIG.
As shown in FIG. 3, the current collecting protrusion 30 projects into the positive electrode active material 1 from the surface of the current collecting core 2.

【0037】上記集電突出部30を形成するに当たって
は,まず,図3に示すごとく,銅板よりなる集電用コア
2を準備する。次いで,これを10%酸素雰囲気中,7
30℃で,1時間酸化処理する。これにより,図4に示
すごとく,集電用コア2の表面に針状の集電突出部30
が生成する。この集電突出部30は,CuOのウィスカ
である。
In forming the current collecting protrusion 30, first, as shown in FIG. 3, a current collecting core 2 made of a copper plate is prepared. Then, this was placed in a 10% oxygen atmosphere for 7
Oxidize at 30 ° C for 1 hour. As a result, as shown in FIG. 4, the needle-shaped current collecting protrusions 30 are formed on the surface of the current collecting core 2.
Is generated. The current collecting protrusion 30 is a CuO whisker.

【0038】また,集電突出部30の凸部21の幅は約
0.2μm,凹部29の幅は約1.5μmである。凸部
21と凹部29との高低差は30μmである。集電突出
部30の太さ,高さの形状は,上記酸化処理における酸
素雰囲気,温度,時間等の条件により調整可能である。
The width of the projection 21 of the current collecting projection 30 is about 0.2 μm, and the width of the recess 29 is about 1.5 μm. The height difference between the convex portion 21 and the concave portion 29 is 30 μm. The shape of the thickness and height of the current collecting protrusion 30 can be adjusted by the conditions such as oxygen atmosphere, temperature and time in the above-mentioned oxidation treatment.

【0039】その他は,実施例1と同様である。また,
実施例1と同様の効果を得ることができる。尚,本例に
おいては,集電突出部はCuOからなるものを示した
が,その他に例えばTiO2 ,ZnO等を用いることも
できる。この場合,これらは,集電材料としてチタン,
亜鉛等を用い,上記と同様に酸化処理することにより,
酸化物ウィスカとして生成させることができる。
Others are the same as in the first embodiment. Also,
The same effect as that of the first embodiment can be obtained. In this example, the current collecting protrusion is made of CuO, but other materials such as TiO 2 and ZnO may be used. In this case, these are titanium as the current collector,
By using zinc or the like and performing the same oxidation treatment as above,
It can be produced as an oxide whisker.

【0040】実施例3 本例においては,図5に示すごとく,集電用コア2自身
が網状の形状をした網状体3である。該網状体3は,直
径18μmのAl−1%Siからなる集電材料を,糸状
に成形し,これらを網目状に組むことにより形成され
る。上記正極活物質1は金属化合物としてのLiMn2
4 からなる。その他は,実施例1と同様である。本例
においても,実施例1と同様の効果を得ることができ
る。
Example 3 In this example, as shown in FIG. 5, the current collecting core 2 itself is a mesh body 3 having a mesh shape. The reticulate body 3 is formed by forming a current collecting material having a diameter of 18 μm and made of Al-1% Si into a thread shape, and assembling these into a mesh shape. The positive electrode active material 1 is LiMn 2 as a metal compound.
It consists of O 4 . Others are the same as in the first embodiment. Also in this example, the same effect as that of the first embodiment can be obtained.

【0041】実施例4 本例においては,図6に示すごとく,集電用コア2の表
面に形成された集電突出部40がループ体である。ルー
プ体とは,集電材料よりなる多数のワイヤ4を,弧状の
ループとなし,これらを集電用コア2の表面に,間欠的
に接着したものをいう。
Example 4 In this example, as shown in FIG. 6, the current collecting protrusion 40 formed on the surface of the current collecting core 2 is a loop body. The loop body is formed by forming a large number of wires 4 made of a current collecting material into arc-shaped loops and intermittently adhering these to the surface of the current collecting core 2.

【0042】即ち,該ワイヤ4は,正極活物質1内に部
分的に突出させた状態で,集電用コア2の表面に接合し
たものである。ワイヤ4の高低差は30μmであり,間
隔200μmごとに集電用コア2の表面に接合されてい
る。各ワイヤ4は,断続的に,集電用コア2の表面に集
電突出部40を形成している。ワイヤ4は,集電材料と
してのAl−1%Siよりなり,その直径は18μmで
ある。
That is, the wire 4 is joined to the surface of the current collecting core 2 while partially protruding into the positive electrode active material 1. The height difference of the wires 4 is 30 μm, and they are joined to the surface of the current collecting core 2 at intervals of 200 μm. Each wire 4 is intermittently formed with a current collecting protrusion 40 on the surface of the current collecting core 2. The wire 4 is made of Al-1% Si as a current collector and has a diameter of 18 μm.

【0043】上記集電用コア2は集電材料としてのAl
からなり,上記正極活物質1は金属化合物としてのLi
Mn24 からなる。その他は,実施例1と同様であ
る。本例においても,実施例1と同様の効果を得ること
ができる。
The current collecting core 2 is made of Al as a current collecting material.
The positive electrode active material 1 is composed of Li as a metal compound.
It consists of Mn 2 O 4 . Others are the same as in the first embodiment. Also in this example, the same effect as that of the first embodiment can be obtained.

【0044】実施例5 本例における正極は,図7に示すごとく,正極活物質1
が,導電性細片としての積層体5を含有している。該積
層体5は,集電材料の導電箔片50に上記金属化合物の
化合物箔片10を積層した積層物である。そして,積層
体5は,結着剤7により集電用コア2の表面に成形され
ている。上記積層体5は,導電箔片50と,その両表面
に積層された化合物箔片10とからなる。上記導電箔片
50は集電材料としてのAl(アルミニウム)を,上記
化合物箔片10は金属化合物としてのLiMn24
用いている。
Example 5 As shown in FIG. 7, the positive electrode in this example is a positive electrode active material 1
However, it contains the laminated body 5 as a conductive strip. The laminated body 5 is a laminated body in which the conductive foil piece 50 of the current collecting material and the compound foil piece 10 of the metal compound are laminated. The laminated body 5 is formed on the surface of the current collecting core 2 with the binder 7. The laminated body 5 includes a conductive foil piece 50 and a compound foil piece 10 laminated on both surfaces thereof. The conductive foil piece 50 uses Al (aluminum) as a current collecting material, and the compound foil piece 10 uses LiMn 2 O 4 as a metal compound.

【0045】上記積層体5は,短冊状であり,その長さ
は約50μm,幅は約50μm,厚みは約10μmであ
る。化合物箔片10の厚みは5μm,導電箔片50の厚
みは100nmである。上記正極活物質1の厚みは,約
100μmである。尚,本例では,正極活物質1が導電
性細片として積層体5を含んだものとしているが,積層
体5の集合体を正極活物質1とし,結着剤7により集電
用コア2の表面に成形してもよい。
The laminate 5 is in the form of a strip and has a length of about 50 μm, a width of about 50 μm and a thickness of about 10 μm. The compound foil piece 10 has a thickness of 5 μm, and the conductive foil piece 50 has a thickness of 100 nm. The positive electrode active material 1 has a thickness of about 100 μm. In this example, the positive electrode active material 1 includes the laminate 5 as a conductive strip, but the aggregate of the laminate 5 is used as the positive electrode active material 1 and the binder 7 is used to collect the core 2 It may be molded on the surface.

【0046】次に,上記積層体5の製造方法について説
明する。即ち,図8に示すごとく,蒸着用の仮の基板8
の上に金属化合物を蒸着し,化合物箔片10を形成す
る。次に,該化合物箔片10の表面に,集電材料を蒸着
し,導電箔片50を形成する。
Next, a method of manufacturing the laminated body 5 will be described. That is, as shown in FIG. 8, a temporary substrate 8 for vapor deposition is used.
A metal compound is vapor-deposited on the top surface to form a compound foil piece 10. Next, a current collecting material is vapor-deposited on the surface of the compound foil piece 10 to form the conductive foil piece 50.

【0047】次いで,該導電箔片50の表面に,更に上
記と同じ金属化合物を蒸着し,化合物箔片10を形成す
る。これにより,基板8の上に積層体5が形成される。
次に,該積層体5を基板8から剥離し,かき集めて,粉
砕する。これにより,図7に示すごとく,導電箔片50
と,その表面を被覆する化合物箔片10とからなる積層
体5が得られる。その後,該積層体5を結着剤7と混合
し,これを集電用コア2の表面に塗布する。その他は,
実施例1と同様である。
Next, the same metal compound as that described above is vapor-deposited on the surface of the conductive foil piece 50 to form the compound foil piece 10. As a result, the laminated body 5 is formed on the substrate 8.
Next, the laminated body 5 is peeled from the substrate 8, scraped and crushed. As a result, as shown in FIG.
And a compound foil piece 10 covering the surface thereof is obtained. Then, the laminated body 5 is mixed with the binder 7, and this is applied onto the surface of the current collecting core 2. Others,
This is the same as in the first embodiment.

【0048】次に,本例の作用効果について説明する。
本例においては,正極活物質1は,導電性細片としての
積層体5を含有している。そのため,正極活物質1内で
の電子伝導性が均一になる。これにより,内部抵抗を小
さくすることができる。従って,正極9内での酸化,還
元反応の不均一化,内部抵抗による電圧降下を抑制する
ことができ,エネルギ容量の増大を図ることができる。
その他,上記実施例1と同様の効果を得ることができ
る。
Next, the function and effect of this example will be described.
In this example, the positive electrode active material 1 contains the laminated body 5 as a conductive strip. Therefore, the electron conductivity in the positive electrode active material 1 becomes uniform. As a result, the internal resistance can be reduced. Therefore, it is possible to suppress the unevenness of the oxidation and reduction reactions in the positive electrode 9 and the voltage drop due to the internal resistance, and to increase the energy capacity.
In addition, the same effects as those of the first embodiment can be obtained.

【0049】実施例6 本例の正極活物質において,導電性細片は,図9に示す
ごとく,金属化合物の結晶粒子15の表面を部分的に被
覆した被覆膜55である。上記正極活物質は,表面が被
覆膜55により覆われた結晶粒子15を,結着剤7とと
もに混合することにより形成される。
Example 6 In the positive electrode active material of this example, the conductive strip is a coating film 55 which partially covers the surface of the metal compound crystal particles 15, as shown in FIG. The positive electrode active material is formed by mixing the crystal particles 15 whose surface is covered with the coating film 55 with the binder 7.

【0050】上記被覆膜55は集電材料としての銅から
なる。一方,上記結晶粒子15は金属化合物粉末として
のLiMn2 4 からなる。被覆膜55の膜厚は0.0
5μmで,被覆率は約35%である。上記被覆膜55
は,無電解メッキ法により形成される。即ち,上記金属
化合物の粉末を,銅を含むメッキ液に浸漬して,銅を結
晶粒子15の表面に析出させることにより形成される。
その他は,実施例5と同様である。
The coating film 55 is made of copper as a current collecting material. On the other hand, the crystal particles 15 are made of LiMn 2 O 4 as a metal compound powder. The film thickness of the coating film 55 is 0.0
At 5 μm, the coverage is about 35%. The coating film 55
Are formed by electroless plating. That is, the metal compound powder is immersed in a plating solution containing copper to deposit copper on the surface of the crystal particles 15.
Others are the same as in the fifth embodiment.

【0051】次に,本例の作用効果について説明する。
本例においては,導電性の高い被覆膜55が結晶粒子1
5の表面を部分的に被覆している。そのため,被覆膜5
5が,隣接する他の結晶粒子15と接触することにな
る。これにより,正極活物質1内には,三次元的な電子
のチャンネルが形成される。それ故,本例の正極活物質
1は,優れた導電性を有する。その他,実施例5と同様
の効果を得ることができる。
Next, the function and effect of this example will be described.
In this example, the coating film 55 having high conductivity is the crystal grain 1
5 partially covers the surface. Therefore, the coating film 5
5 comes into contact with another adjacent crystal grain 15. As a result, a three-dimensional electron channel is formed in the positive electrode active material 1. Therefore, the positive electrode active material 1 of this example has excellent conductivity. In addition, the same effect as that of the fifth embodiment can be obtained.

【0052】実施例7 本例の正極9は,図10に示すごとく,正極活物質1が
導電性細片としての多数の繊維体6を含有している。各
繊維体6は互いに連続して接触している。繊維体6は集
電材料としてのグラファイト繊維よりなる。繊維体6の
直径は2〜7μmであり,そのアスペクト比は5〜70
である。上記繊維体6は,金属化合物及び結着剤と共に
混合され,正極活物質1を形成する。該正極活物質1に
は,繊維体6が6wt%添加されている。その他は,上
記実施例5と同様である。
Example 7 In the positive electrode 9 of this example, as shown in FIG. 10, the positive electrode active material 1 contains a large number of fibrous bodies 6 as conductive strips. The fibrous bodies 6 are in continuous contact with each other. The fibrous body 6 is made of graphite fiber as a current collecting material. The fiber body 6 has a diameter of 2 to 7 μm and an aspect ratio of 5 to 70 μm.
Is. The fibrous body 6 is mixed with the metal compound and the binder to form the positive electrode active material 1. 6 wt% of the fibrous body 6 is added to the positive electrode active material 1. Others are the same as those in the fifth embodiment.

【0053】本例においては,導電率の高い多数の繊維
体6が正極活物質1中に混合され,これら繊維体6は連
続して接触している。そのため,正極活物質1には三次
元的に電子のチャンネルが形成される。それ故,上記正
極活物質1は,優れた導電性を有する。その他,本例に
おいても,上記実施例5と同様の効果を得ることができ
る。
In this example, a large number of fibrous bodies 6 having a high conductivity are mixed in the positive electrode active material 1, and these fibrous bodies 6 are continuously in contact with each other. Therefore, three-dimensional electron channels are formed in the positive electrode active material 1. Therefore, the positive electrode active material 1 has excellent conductivity. In addition, also in this example, the same effect as that of the fifth embodiment can be obtained.

【0054】実験例 本例においては,上記実施例1にかかる正極を用いて,
充放電サイクル試験をおこなった。該試験に際しては,
上記正極と,負極として金属リチウムと,電解液として
プロピレンカーボネートに過塩素酸リチウムを溶解させ
たものとを用いて,非水電解質電池を組み立てた。非水
電解質電池は,直径20mm,高さ3.2mmの大きさ
のボタン型電池である。
Experimental Example In this example, the positive electrode according to Example 1 was used,
A charge / discharge cycle test was performed. In the test,
A non-aqueous electrolyte battery was assembled using the above positive electrode, metallic lithium as the negative electrode, and lithium perchlorate dissolved in propylene carbonate as the electrolytic solution. The non-aqueous electrolyte battery is a button type battery having a diameter of 20 mm and a height of 3.2 mm.

【0055】上記ボタン型電池について,0.5mA/
cm2 の定電流,上限電圧4.1V,5時間充電を行な
い,その後2Vまで放電するという,充放電テストを繰
り返した。そして,各放電時の放電容量について測定し
た。
For the above button type battery, 0.5 mA /
A charging / discharging test was repeated in which charging was performed at a constant current of cm 2 and an upper limit voltage of 4.1 V for 5 hours, and then discharging to 2 V. Then, the discharge capacity at each discharge was measured.

【0056】尚,比較のために,表面に集電突出部のな
い集電用コアを形成し,その表面を正極活物質により被
覆し,正極を作製した。その他は,上記実施例1にかか
る正極と同様である。そして,該正極を,比較例とし
て,上記試験に供した。上記試験結果を図11に示す。
同図より知られるごとく,実施例1にかかる正極は,比
較例と比べて大きな放電容量を示した。
For comparison, a current collecting core having no current collecting protrusion was formed on the surface, and the surface was covered with a positive electrode active material to prepare a positive electrode. Others are the same as those of the positive electrode according to Example 1 above. Then, the positive electrode was subjected to the above test as a comparative example. The test results are shown in FIG.
As is known from the figure, the positive electrode according to Example 1 exhibited a larger discharge capacity than the comparative example.

【0057】また,上記実施例2〜7にかかる正極につ
いても,上記と同様にして,充放電サイクル試験を行っ
た。その結果,上記実施例1と同様に優れた放電容量を
示した。
A charge / discharge cycle test was conducted on the positive electrodes according to Examples 2 to 7 in the same manner as above. As a result, the same discharge capacity as in Example 1 was exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の正極の断面図。FIG. 1 is a cross-sectional view of a positive electrode of Example 1.

【図2】実施例2の正極の断面図。FIG. 2 is a sectional view of a positive electrode of Example 2.

【図3】実施例2の正極の製造方法を示す説明図。FIG. 3 is an explanatory view showing a method for manufacturing the positive electrode of Example 2.

【図4】図3に続く,実施例2の正極の製造方法を示す
説明図。
FIG. 4 is an explanatory view showing the method of manufacturing the positive electrode of Example 2 following FIG.

【図5】実施例3の正極の断面図。FIG. 5 is a sectional view of a positive electrode of Example 3.

【図6】実施例4の正極の断面図。FIG. 6 is a cross-sectional view of the positive electrode of Example 4.

【図7】実施例5の正極の断面図。FIG. 7 is a sectional view of a positive electrode of Example 5.

【図8】実施例5にかかる積層体の製造方法を示す説明
図。
FIG. 8 is an explanatory view showing a method for manufacturing a laminated body according to the fifth embodiment.

【図9】実施例6の正極の断面図。FIG. 9 is a sectional view of the positive electrode of Example 6.

【図10】実施例7の正極の断面図。FIG. 10 is a sectional view of the positive electrode of Example 7.

【図11】実験例における,充放電サイクル試験の結果
を示す線図。
FIG. 11 is a diagram showing the results of a charge / discharge cycle test in an experimental example.

【符号の説明】[Explanation of symbols]

1...正極活物質, 10...化合物箔片, 15...結晶粒子, 2...集電用コア, 20,30,40...集電突出部, 4...ワイヤ, 3...網状体, 5...積層体, 50...導電箔片, 55...被覆膜, 6...繊維体, 7...結着剤, 9...正極, 1. . . Positive electrode active material, 10. . . Compound foil piece, 15. . . Crystal particles, 2. . . Current collecting core, 20, 30, 40. . . 3. Current collecting protrusion, 4. . . Wire, 3. . . Reticulate body, 5. . . Laminate, 50. . . Conductive foil piece, 55. . . Coating film, 6. . . Fibrous body, 7. . . Binder, 9. . . Positive electrode,

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵又は放出しうる金属化合
物を正極活物質として用いる非水電解質電池の正極にお
いて,上記正極は集電用コアとその表面を被覆する正極
活物質とからなり,上記集電用コアは,金属,炭素繊
維,グラファイト繊維のいずれかよりなる集電材料から
なり,かつ,上記集電用コアの表面は上記正極活物質中
に突出した集電突出部を有することを特徴とする非水電
解質電池の正極。
1. A positive electrode of a non-aqueous electrolyte battery using a metal compound capable of occluding or releasing lithium as a positive electrode active material, wherein the positive electrode comprises a current collecting core and a positive electrode active material coating the surface thereof. The current collecting core is made of a current collecting material made of metal, carbon fiber or graphite fiber, and the surface of the current collecting core has a current collecting protrusion protruding into the positive electrode active material. And the positive electrode of the non-aqueous electrolyte battery.
【請求項2】 請求項1において,上記集電突出部は,
凹凸状体,網状体,ループ体のいずれかであることを特
徴とする非水電解質電池の正極。
2. The current collecting protrusion according to claim 1,
A positive electrode for a non-aqueous electrolyte battery, which is one of an uneven body, a mesh body, and a loop body.
【請求項3】 請求項1において,上記集電突出部は酸
化物半導体であることを特徴とする非水電解質電池の正
極。
3. The positive electrode for a non-aqueous electrolyte battery according to claim 1, wherein the current collecting protrusion is an oxide semiconductor.
【請求項4】 リチウムを吸蔵又は放出しうる金属化合
物を正極活物質として用いる非水電解質電池の正極にお
いて,上記正極は集電用コアとその表面を被覆する正極
活物質とからなり,上記集電用コアは,金属,炭素繊
維,グラファイト繊維のいずれかよりなる集電材料から
なり,かつ,上記正極活物質は,導電性細片を含有して
いることを特徴とする非水電解質電池の正極。
4. A positive electrode of a non-aqueous electrolyte battery using a metal compound capable of inserting or extracting lithium as a positive electrode active material, wherein the positive electrode comprises a current collecting core and a positive electrode active material coating the surface thereof. The non-aqueous electrolyte battery is characterized in that the electric core is made of a current collecting material made of any one of metal, carbon fiber and graphite fiber, and the positive electrode active material contains conductive strips. Positive electrode.
【請求項5】 請求項4において,上記導電性細片は,
上記集電材料の導電箔片に上記金属化合物の化合物箔片
を積層した積層体であることを特徴とする非水電解質電
池の正極。
5. The conductive strip according to claim 4, wherein:
A positive electrode for a non-aqueous electrolyte battery, which is a laminate in which a compound foil piece of the metal compound is laminated on a conductive foil piece of the current collecting material.
【請求項6】 請求項4において,上記導電性細片は,
上記集電材料の繊維体であることを特徴とする非水電解
質電池の正極。
6. The conductive strip according to claim 4, wherein:
A positive electrode for a non-aqueous electrolyte battery, which is a fibrous body of the above current collecting material.
【請求項7】 請求項4において,上記導電性細片は,
上記金属化合物の結晶粒子の表面を部分的に被覆した,
上記集電材料の被覆膜であることを特徴とする非水電解
質電池の正極。
7. The conductive strip according to claim 4, wherein:
Partially covering the surface of the crystal particles of the above metal compound,
A positive electrode for a non-aqueous electrolyte battery, which is a coating film of the above current collecting material.
【請求項8】 請求項1,4,5又は7において,上記
リチウムを吸蔵又は放出しうる金属化合物は,リチウム
を含む金属化合物であることを特徴とする非水電解質電
池の正極。
8. The positive electrode for a non-aqueous electrolyte battery according to claim 1, 4, 5 or 7, wherein the metal compound capable of inserting or extracting lithium is a metal compound containing lithium.
JP09559293A 1992-01-16 1993-03-29 Cathode of non-aqueous electrolyte battery Expired - Fee Related JP3355691B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP09559293A JP3355691B2 (en) 1992-12-14 1993-03-29 Cathode of non-aqueous electrolyte battery
US08/386,363 US5494762A (en) 1992-01-16 1995-02-09 Non-aqueous electrolyte lithium secondary cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-353673 1992-12-14
JP35367392 1992-12-14
JP09559293A JP3355691B2 (en) 1992-12-14 1993-03-29 Cathode of non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH06236758A true JPH06236758A (en) 1994-08-23
JP3355691B2 JP3355691B2 (en) 2002-12-09

Family

ID=26436813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09559293A Expired - Fee Related JP3355691B2 (en) 1992-01-16 1993-03-29 Cathode of non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3355691B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017053A (en) * 2001-06-28 2003-01-17 Ise Chemicals Corp Electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR100451436B1 (en) * 1999-06-09 2004-10-06 에스케이씨 주식회사 Preparation of electrodes for secondary lithium batteries
JP2008103118A (en) * 2006-10-17 2008-05-01 Nissan Motor Co Ltd Electrode for battery
JP2010218849A (en) * 2009-03-16 2010-09-30 Furukawa Electric Co Ltd:The Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, collector used for anode of lithium-ion secondary battery, and manufacturing method of anode for lithium-ion secondary battery
JP2011165665A (en) * 2010-02-05 2011-08-25 Robert Bosch Gmbh Manufacturing method of cathode structure for li battery which has aligned structure of cycle resistance
JP2011175904A (en) * 2010-02-25 2011-09-08 Kyocera Corp All solid lithium ion secondary battery
KR101276336B1 (en) * 2010-05-24 2013-06-18 주식회사 아모텍 Lithium Ion Capacitor Electrode Using Fibrous Current Collector Comprising Carbon Nano Fiber, Method of Manufacturing the Same, and Lithium Ion Capacitor Using the Same
JP2014120403A (en) * 2012-12-18 2014-06-30 Mitsubishi Motors Corp Secondary battery
WO2016122196A1 (en) * 2015-01-28 2016-08-04 경상대학교 산학협력단 Electrode, and method for producing battery and electrode

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451436B1 (en) * 1999-06-09 2004-10-06 에스케이씨 주식회사 Preparation of electrodes for secondary lithium batteries
JP2003017053A (en) * 2001-06-28 2003-01-17 Ise Chemicals Corp Electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2008103118A (en) * 2006-10-17 2008-05-01 Nissan Motor Co Ltd Electrode for battery
JP2010218849A (en) * 2009-03-16 2010-09-30 Furukawa Electric Co Ltd:The Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, collector used for anode of lithium-ion secondary battery, and manufacturing method of anode for lithium-ion secondary battery
JP2011165665A (en) * 2010-02-05 2011-08-25 Robert Bosch Gmbh Manufacturing method of cathode structure for li battery which has aligned structure of cycle resistance
JP2011175904A (en) * 2010-02-25 2011-09-08 Kyocera Corp All solid lithium ion secondary battery
KR101276336B1 (en) * 2010-05-24 2013-06-18 주식회사 아모텍 Lithium Ion Capacitor Electrode Using Fibrous Current Collector Comprising Carbon Nano Fiber, Method of Manufacturing the Same, and Lithium Ion Capacitor Using the Same
JP2014120403A (en) * 2012-12-18 2014-06-30 Mitsubishi Motors Corp Secondary battery
WO2016122196A1 (en) * 2015-01-28 2016-08-04 경상대학교 산학협력단 Electrode, and method for producing battery and electrode
US10096836B2 (en) 2015-01-28 2018-10-09 Industry-Academic Cooperation Foundation Gyeongsang National University Electrode, and method for producing battery and electrode

Also Published As

Publication number Publication date
JP3355691B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
US5789114A (en) Active materials for a secondary cell, a method for making the same, positive electrodes for a secondary cell comprising the active material, and a non-aqueous electrolytic secondary cell
US9837665B2 (en) Lipon coatings for high voltage and high temperature Li-ion battery cathodes
KR101371829B1 (en) Anode material, anode and battery
JP4777593B2 (en) Method for producing lithium ion secondary battery
JP5296323B2 (en) All solid battery
CN105047942B (en) Rechargeable nonaqueous electrolytic battery
US3353998A (en) Alkaline battery cells with silver-oxide or silver electrodes
CN101098005B (en) Electrode collector and manufacturing method, electrode for battery and manufacturing method, and secondary battery
KR20060054047A (en) Battery
KR20060010727A (en) Nonaqueous electrolyte secondary battery and method for producing same
JP2000353512A (en) Manufacture of nonaqueous secondary battery positive electrode
KR20190087948A (en) Cathode mixture for all solid-state battery, cathode for all solid-state battery, all solid-state battery, and method for producing the same
JPH05234621A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3355691B2 (en) Cathode of non-aqueous electrolyte battery
EP3346526A1 (en) Electrode for secondary battery and manufacturing method therefor
JP2018073513A (en) All-solid lithium ion secondary battery
JP2007059409A (en) All-solid battery
US5756232A (en) Lithium metal anodes
JP2003249223A (en) Lithium ion secondary battery and its manufacturing method
JPH10188955A (en) Battery electrode, manufacture of the electrode and battery
KR100404733B1 (en) Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes
EP1429412A1 (en) Production method of lithuim secondary battery and production device therefor
US7524585B2 (en) Anode and battery using it
JP2003263979A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JPH04328244A (en) Battery positive pole and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees