JPH06235572A - Oil separator of refrigerating plant - Google Patents

Oil separator of refrigerating plant

Info

Publication number
JPH06235572A
JPH06235572A JP2236893A JP2236893A JPH06235572A JP H06235572 A JPH06235572 A JP H06235572A JP 2236893 A JP2236893 A JP 2236893A JP 2236893 A JP2236893 A JP 2236893A JP H06235572 A JPH06235572 A JP H06235572A
Authority
JP
Japan
Prior art keywords
oil
refrigerant gas
separated
separation
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2236893A
Other languages
Japanese (ja)
Inventor
Yoshio Haeda
芳夫 蝿田
Susumu Nakayama
進 中山
Kensaku Kokuni
研作 小国
Kenji Togusa
健治 戸草
Masaaki Yamada
眞朗 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2236893A priority Critical patent/JPH06235572A/en
Publication of JPH06235572A publication Critical patent/JPH06235572A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Abstract

PURPOSE:To obtain a small oil separating mechanism which keeps a high oil separating performance even when the treating flow rate fluctuates, by a method wherein a separating cylinder is held inside the upper part of a main body, and the refrigerant gas strikes against the external wall of the cylinder so that oil falls down and is separated by a centrifuge and the refrigerant gas flows inside the cylinder from below and is discharged outside from the top. CONSTITUTION:A refrigerant gas (a) discharged from a compressor of a refrigerating plant flows into a main body 1 from a suction pipe 2, strikes against a separating plate 5 where most of oil is separated and falls down to the lower pat. As the separating plate 5 has a cylindrical shape, the refrigerant gas (a) is divided into two streams in the opposite directions around the outer wall surface of the cylinder and the two streams strike against each other at the place opposite to the inlet, causing the oil to be separated further. The separated refrigerant gas (a) flows down and into the separating plate 5 from below, passes through the inside of the separation plate 5 and is discharged outside through an outlet pipe 3 as a delivered gas (b). As the falling direction of the separated oil is opposite to the flow direction of the separated refrigerant gas (a), the flow of the refrigerant gas (a) has no effect on an oil surface 10 even when the treating flow rate becomes high, preventing the oil rescattering phenomena from occurring.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷凍装置において、圧縮
機から吐出された高圧の冷媒ガス中に混入する冷凍機油
を分離するのに好適な機構を備えた冷凍装置の油分離器
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil separator for a refrigerating machine having a mechanism suitable for separating refrigerating machine oil mixed in high pressure refrigerant gas discharged from a compressor.

【0002】[0002]

【従来の技術】従来、この種の油分離器として、特開昭
60−106516号公報などのような構造が良くしられてお
り、このものは図14に示したように、密閉容器51の
上部に冷媒ガス55aの入口管52,密閉容器51上部
側面に出口管53をそれぞれ接続され、密閉容器51の
内部に油を分離する円筒状分離板54が垂直に取り付け
られ冷媒ガス55aは入口管52から入り、円筒54内
側上部から下部側に流れ円筒状分離板54の下側を通り
冷媒ガス55aは上部の出口管53から吐出ガス5bは
外へ吐出される。冷媒ガス55aに含まれているミスト
状の油は、円筒状分離板54の内側を通過している時に
油の自重により分離され油56は下部に溜る。密閉容器
51の底には、油戻し管55がある。そして、この種の
従来構造の油分離器は、処理速度が早くなると冷媒ガス
55aは分離され溜っている油表面に衝突し再飛散が発
生し冷媒ガス55aは微粒子の油を持ち去るために分離
効率が低下する構造となっている。この種の構造は、処
理流速の比較的遅い条件に限られており適用が困難な構
造である。
2. Description of the Related Art Heretofore, as an oil separator of this type, Japanese Patent Laid-Open No.
As shown in FIG. 14, a structure such as that of Japanese Patent Laid-Open No. 60-106516 is well-known. As shown in FIG. Cylindrical separation plates 54 for vertically separating the oil are connected to the insides of the closed container 51, and the refrigerant gas 55a enters from the inlet pipe 52 and flows from the inside of the cylinder 54 to the lower side. The refrigerant gas 55a passes through the lower side and the discharge gas 5b is discharged to the outside from the upper outlet pipe 53. The mist-like oil contained in the refrigerant gas 55a is separated by its own weight while passing through the inside of the cylindrical separation plate 54, and the oil 56 is accumulated in the lower part. At the bottom of the closed container 51, there is an oil return pipe 55. In the conventional oil separator of this type, when the processing speed increases, the refrigerant gas 55a collides with the separated oil surface and re-scatters, and the refrigerant gas 55a carries away fine particle oil to separate the oil. Is a structure that decreases. This type of structure is difficult to apply because it is limited to the condition that the processing flow rate is relatively slow.

【0003】[0003]

【発明が解決しようとする課題】ところで図14に示す
油分離器の従来技術では、冷媒ガスの入口管52から密
閉容器51内に入り円筒状分離板54内に冷媒ガス55
aに含まれた油が、円筒状分離板54の下側を通過し上
部の出口管に向かって進む際に流れの方向が反転するた
めに遠心力が働き冷媒ガスに比較して比重の大きな油は
下部に落とす分離機構である。しかし、処理流速が比較
的早くなると遠心による分離だけでは、効率が急速に低
下する。効率を上げるためには、大きな形状にしなけれ
ばならない欠点があった。冷凍装置内の油が多くなると
熱交換器の性能低下をはじめ膨張弁、及び、制御用弁の
動作不良の原因となり冷凍装置の信頼性が低下する。本
発明の目的は、小形で構造が容易で処理流速が変化して
も分離性能の高い機構を提供することにある。
By the way, in the prior art of the oil separator shown in FIG. 14, the refrigerant gas 55 enters the closed container 51 through the refrigerant gas inlet pipe 52 and the cylindrical separation plate 54.
When the oil contained in a passes through the lower side of the cylindrical separation plate 54 and advances toward the upper outlet pipe, the flow direction is reversed, so that centrifugal force acts and the specific gravity is larger than that of the refrigerant gas. Oil is a separation mechanism that drops it to the bottom. However, when the processing flow rate is relatively high, the efficiency is rapidly decreased only by the separation by centrifugation. In order to improve efficiency, there is a drawback that a large shape must be used. If the amount of oil in the refrigeration system increases, the performance of the heat exchanger will deteriorate and the expansion valve and control valve will malfunction, resulting in a reduction in the reliability of the refrigeration system. An object of the present invention is to provide a mechanism that is small in size, has a simple structure, and has high separation performance even when the processing flow rate changes.

【0004】[0004]

【課題を解決するための手段】本発明の分離機構は、冷
媒ガスは分離器上部の入口管を介し水平方向に入り円筒
形状の分離板の表面に当てて分離し、その後は冷媒ガス
通路にデミスタを設置し、衝突,拡散,膨張により油を
分離する機構で、デミスタの取付け位置は分離した油を
冷媒ガスは押し出す方向、つまり、内容積が小さな室か
ら大きな室になるようにすることにより、デミスタ内に
油の溜りが起きない最適構造にすることにより処理流速
が早くなっても冷媒ガスが油面に当たらない分離機構と
する。処理流速が早い場合の冷媒ガスでも、衝突による
分離効率は低下しない。衝突を利用した分離機構は処理
流速が早くなっても分離効率の低下はないので、デミス
タの最適な構造の組合わせにより分離効率の高い機構に
より達成出来る。
According to the separation mechanism of the present invention, the refrigerant gas enters in the horizontal direction through the inlet pipe in the upper part of the separator and is applied to the surface of the cylindrical separation plate to separate it. It is a mechanism that installs a demister and separates oil by collision, diffusion and expansion. The mounting position of the demister is the direction in which the separated gas is pushed out by the refrigerant gas, that is, by changing the internal volume from a small chamber to a large chamber. By adopting an optimal structure in which oil does not accumulate in the demister, a separation mechanism is provided in which the refrigerant gas does not hit the oil surface even if the processing flow rate becomes faster. Even when the processing gas has a high processing flow rate, the separation efficiency due to collision does not decrease even with the refrigerant gas. Since the separation mechanism utilizing collision does not lower the separation efficiency even if the processing flow speed becomes faster, it can be achieved by a mechanism having a high separation efficiency by combining the optimal structure of the demister.

【0005】[0005]

【作用】圧縮機の高圧の吐出冷媒ガスは、油分離器上部
の吐出管を介して水平に入り円筒形状の分離板に当た
り、ここで大部分の油は分離される。次に、デミスタ内
を通過する際に、衝突,膨張、及び拡散作用などでによ
り微粒子の油を分離する。分離された冷媒ガスは、筒形
状の分離板の内側を流れ上部に進み出口管より外へ出
る。一方、分離された油は底部に溜り、底に設けた油戻
し管を介して、圧縮機内に戻す。油戻し管は、ここでは
2本示しているが何本でもよい。
The high-pressure refrigerant gas discharged from the compressor enters horizontally through the discharge pipe above the oil separator and hits the cylindrical separation plate, where most of the oil is separated. Next, when passing through the inside of the demister, the fine particle oil is separated by collision, expansion, and diffusion. The separated refrigerant gas flows through the inside of the cylindrical separation plate, goes to the upper part, and exits from the outlet pipe. On the other hand, the separated oil collects at the bottom and returns to the inside of the compressor through an oil return pipe provided at the bottom. Two oil return pipes are shown here, but any number may be used.

【0006】[0006]

【実施例】以下、本発明の一実地例を図1により説明す
る。図2,図3,図4,図5,図6,図7,図8,図
9,図10,図11,図12、及び図13は幾つかの応
用例を示し、図14は従来構造を示す。図1に本発明の
一実地例に係る油分離器の全体側面図を示す。1は本
体、2は入口管、3は出口管、4は支え足、5は円筒形
状の分離板、5aは分離板5の固定部、6と8は油戻し
管、7と9は金網形状のフィルタ、10は油面を示す。
矢印は冷媒ガスの流れ方向を示し、aは冷媒ガス、bは
吐出ガスを示す。次に、図1に示した油分離機構の動作
について説明する。ここでは図示してないが、冷凍装置
の圧縮機から吐出された冷媒ガスaは、矢印のように吸
入管2からは本体1内に入り分離板5に衝突し、ここで
大部分の油は分離され下部に落ちる。分離板5は円筒形
をしているので、冷媒ガスaは表面の外形を両側から周
り反対側の位置で冷媒ガスa同士が衝突し油がさらに分
離される。分離された冷媒ガスaは、矢印に示すように
分離板5の下側を流れ、分離板5の内側を通り上部の出
口管3から外へ吐出ガスbが吐出される。分離板5が容
易な形状をしているが、油5が分離され落ちる方向と冷
媒ガスの進む方向が異なっており処理流速が早くなって
も、油面10には影響しないので再飛散の現象は発生に
ない。したがって、処理流速の広い範囲で分離効率の性
能がよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A practical example of the present invention will be described below with reference to FIG. FIGS. 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, and 13 show some application examples, and FIG. 14 shows a conventional structure. Indicates. FIG. 1 shows an overall side view of an oil separator according to a practical example of the present invention. 1 is a main body, 2 is an inlet pipe, 3 is an outlet pipe, 4 is a supporting leg, 5 is a cylindrical separating plate, 5a is a fixing portion of the separating plate 5, 6 and 8 are oil return pipes, and 7 and 9 are wire mesh-shaped Filter 10 indicates an oil level.
The arrow indicates the flow direction of the refrigerant gas, a indicates the refrigerant gas, and b indicates the discharge gas. Next, the operation of the oil separation mechanism shown in FIG. 1 will be described. Although not shown here, the refrigerant gas a discharged from the compressor of the refrigeration system enters the main body 1 from the suction pipe 2 and collides with the separation plate 5 as shown by the arrow, and most of the oil is It separates and falls to the bottom. Since the separation plate 5 has a cylindrical shape, the refrigerant gas a surrounds the outer shape of the surface from both sides, and the refrigerant gases a collide with each other at positions on the opposite side to further separate the oil. The separated refrigerant gas a flows under the separation plate 5 as shown by the arrow, passes through the inside of the separation plate 5, and the discharge gas b is discharged from the upper outlet pipe 3 to the outside. The separation plate 5 has an easy shape, but the oil surface 10 is not affected even if the processing flow velocity increases because the direction in which the oil 5 is separated and the direction in which the refrigerant gas advances are different, so the phenomenon of re-scattering occurs. Does not occur. Therefore, the performance of the separation efficiency is good in a wide range of the processing flow rate.

【0007】次に、油分離器の応用例を図2を用いて説
明する。図1に示した実地例と基本的は同じ分離機構で
あり、異なるところは分離板5aの上部が本体1から離
れて下部側で支える構造で入口管2は分離板5bの片側
を貫通し、反対側の内壁に衝突させる機構にした分離構
造である。次に、分離動作について説明する。冷媒ガス
aは入口管2から入り分離板5bの内壁に衝突し油を分
離する。分離板5bの上部は遮蔽されているので、冷媒
ガスaは、下部側に流れるものや円周方向に流れてから
下部側に流れ、冷媒ガス通路5cを通り上部出口管から
外へ出る分離機構である。この分離機構は、遠心力を利
用して分離するものと、衝突による分離する構造で分離
効率の高い機構である。ここでは図に示してないが、分
離板5bの内壁や天井の壁に小さい穴を数個明けたり絞
り機構つけた穴を付けることにより分離性能は良くな
る。
Next, an application example of the oil separator will be described with reference to FIG. The separation mechanism is basically the same as the practical example shown in FIG. 1, except that the upper part of the separation plate 5a is separated from the main body 1 and supported on the lower side, and the inlet pipe 2 penetrates one side of the separation plate 5b. It is a separation structure that has a mechanism to collide with the inner wall on the opposite side. Next, the separating operation will be described. The refrigerant gas a enters from the inlet pipe 2 and collides with the inner wall of the separation plate 5b to separate oil. Since the upper part of the separation plate 5b is shielded, the refrigerant gas a flows to the lower side or flows in the circumferential direction and then to the lower side, and then passes through the refrigerant gas passage 5c to come out from the upper outlet pipe to the outside. Is. This separation mechanism has a structure that separates by utilizing centrifugal force and a structure that separates by collision and has high separation efficiency. Although not shown in the figure here, the separation performance is improved by making several small holes in the inner wall of the separation plate 5b or the wall of the ceiling and providing holes with a diaphragm mechanism.

【0008】次に、油分離器の応用例を図3を用いて説
明する。図2に示した実地例と基本的に全く同じ分離機
構であり、異なるところは入口管2先端部の内側にデミ
スタ2aを備えることによりデミスタ2aを通過する際
に油の粒子が膨張,拡散により大きく発達して衝突板に
衝突するので分離効果がよくなり分離効率が向上する。
図3に示してないが、分離板5bの内側に緩衝材を設け
ることにより、再飛散が防止され分離効率が向上する。
Next, an application example of the oil separator will be described with reference to FIG. The separation mechanism is basically the same as the practical example shown in FIG. 2, except that the demister 2a is provided inside the tip of the inlet pipe 2 so that the oil particles expand and diffuse when passing through the demister 2a. Since it greatly develops and collides with the collision plate, the separation effect is improved and the separation efficiency is improved.
Although not shown in FIG. 3, by providing a cushioning material inside the separation plate 5b, re-scattering is prevented and the separation efficiency is improved.

【0009】次に、油分離器の応用例を図4を用いて説
明する。図2に示した実地例と基本的に全く同じ分離機
構であり、異なるところは分離板5bの底面にデミスタ
5dを備えることにより微粒子状の油を完全に分離する
ことが出来るので分離効率が向上する。分離機構は、油
の落る方向と冷媒ガスaの流れる方向が同じでありデミ
スタ5d部内に油が溜らないので分離が良くなり、さら
には冷媒ガスaは油の落ちる方向と反対の上部方向に進
ので分離効率が良くなる。
Next, an application example of the oil separator will be described with reference to FIG. The separation mechanism is basically the same as that of the practical example shown in FIG. 2, except that a demister 5d is provided on the bottom surface of the separation plate 5b, so that fine oil particles can be completely separated, so that the separation efficiency is improved. To do. In the separation mechanism, the direction in which the oil falls and the direction in which the refrigerant gas a flows are the same, and the oil does not accumulate in the demister 5d, resulting in good separation. Further, the refrigerant gas a moves in the upper direction opposite to the direction in which the oil falls. Since it advances, the separation efficiency improves.

【0010】次に、油分離器の応用例を図5を用いて説
明する。図3及び図4に示した実施例を組み合わせた分
離機構であり、冷媒ガスaの入口管2の先端部の内側に
デミスタ2a備え、さらに、分離板5bの底面にデミス
タ5dを備えることにより、デミスタ2a及びデミスタ
5d内の油は冷媒ガスaで押し出されるので、必ず下部
に落ちる。分離機構部が比較的小な寸法でも分離効率の
高い分離機構を備えている。
Next, an application example of the oil separator will be described with reference to FIG. 3 and 4, which is a combination of the embodiments shown in FIGS. 3 and 4, in which the demister 2a is provided inside the tip of the inlet pipe 2 for the refrigerant gas a, and the demister 5d is provided on the bottom surface of the separation plate 5b, Since the oil in the demister 2a and the demister 5d is pushed out by the refrigerant gas a, it always drops to the lower part. The separation mechanism has a separation mechanism with high separation efficiency even if the separation mechanism has a relatively small size.

【0011】次に、油分離器の応用例を図6を用いて説
明する。図2に示した実施例と分離機構は基本的に同じ
であり、冷媒ガスaの入口管2の先端部が上部方向に向
う構造で、分離板5bの天井遮蔽板に冷媒ガスを衝突さ
せる機構としたもので、衝突による分離を良くした構造
であり分離効率の高い分離機構を備えている。2は入口
管、5bは分離板、そして、5cは冷媒ガス通路。
Next, an application example of the oil separator will be described with reference to FIG. The separation mechanism is basically the same as that of the embodiment shown in FIG. 2, and the tip of the inlet pipe 2 for the refrigerant gas a is directed upward, and the mechanism for causing the refrigerant gas to collide with the ceiling shielding plate of the separation plate 5b. It has a structure that improves separation by collision and is equipped with a separation mechanism with high separation efficiency. 2 is an inlet pipe, 5b is a separating plate, and 5c is a refrigerant gas passage.

【0012】次に、油分離器の応用例を図7を用いて説
明する。図6に示した実施例と分離機構は基本的に同じ
であり、異なるところは冷媒ガスaの入口管2の先端部
の内側にデミスタ2aを備えた構造で、冷媒ガスaに含
まれる油は、ここのデミスタ2a部を通過することによ
り、微粒子状の油が大きく発達してから衝突するので衝
突効果を向上させたものである。5cは冷媒ガスa通路
であり本体1と分離板5bの間を通過し出口管3から外
へ出る。構造が容易で油の分離を良くした分離効率の高
い分離機構を備えている。
Next, an application example of the oil separator will be described with reference to FIG. The separation mechanism is basically the same as that of the embodiment shown in FIG. 6, except that the structure is provided with a demister 2a inside the tip portion of the inlet pipe 2 for the refrigerant gas a, and the oil contained in the refrigerant gas a is By passing through the demister 2a portion, the fine particle oil is greatly developed and then collides, so that the collision effect is improved. A refrigerant gas a passage 5c passes between the main body 1 and the separation plate 5b and exits from the outlet pipe 3. It has a separation mechanism with a simple structure and good oil separation, and high separation efficiency.

【0013】次に、油分離器の応用例を図8を用いて説
明する。図6に示した実施例と分離機構は基本的に同じ
であり、異なるところは分離板5bの底面にデミスタ5
dを備えた構造で、冷媒ガスaに含まれる油は、分離板
5bの天井遮蔽板の所で衝突により分離されその後デミ
スタ部5eを通過する事により、微粒子状の油が拡散,
膨張の繰り返しにより大きく発達し、自重により下部に
落ちる。5cは冷媒ガス通路であり本体1と分離板5b
の間を通過し出口管3から外へ出る。構造が容易で油の
分離を良くした分離効率の高い分離機構を備えている。
Next, an application example of the oil separator will be described with reference to FIG. The separating mechanism is basically the same as that of the embodiment shown in FIG. 6, except that the demister 5 is provided on the bottom surface of the separating plate 5b.
In the structure provided with d, the oil contained in the refrigerant gas a is separated by collision at the ceiling shielding plate of the separation plate 5b and then passes through the demister section 5e, so that the fine particle oil diffuses,
It develops greatly due to repeated expansion, and falls to the bottom due to its own weight. Reference numeral 5c is a refrigerant gas passage, which is the main body 1 and the separation plate 5b.
It passes through the space between the outlet pipe 3 and the outside. It has a separation mechanism with a simple structure and good oil separation, and high separation efficiency.

【0014】次に、油分離器の応用例を図9を用いて説
明する。図7及び図8に示した実施例の組合わせ分離機
構であり基本的には同じである。したがって、分離機構
の動作についての説明は省く。この油分離機構は、分離
効率が高くしかも比較的寸法が小さく出来ると共に、分
離性能の高い分離機構である。
Next, an application example of the oil separator will be described with reference to FIG. The combination separating mechanism of the embodiments shown in FIGS. 7 and 8 is basically the same. Therefore, the description of the operation of the separating mechanism is omitted. This oil separation mechanism has high separation efficiency, can be relatively small in size, and has high separation performance.

【0015】次に、油分離器の応用例を図10を用いて
説明する。図9に示した実施例と分離機構は基本的には
同じであり、入口配管2の先端部が下向きとなった構造
で、デミスタ部で分離した油は、必ず冷媒ガスで下部に
落す構造になっているのでデミスタ部の目づまりは発生
しないので油分離器の冷媒ガス通過圧力損失は小さい。
衝突板15は、冷媒ガスaが油面15に当らないように
したものであり、15aは油の通路である。衝突板15が
なくても良い。動作は図9に示した構造と同じであり説
明は省く。
Next, an application example of the oil separator will be described with reference to FIG. The separation mechanism is basically the same as that of the embodiment shown in FIG. 9, and the inlet pipe 2 has a structure in which the tip end portion is directed downward, and the oil separated in the demister portion is always dropped to the bottom by the refrigerant gas. Therefore, the clogging of the demister section does not occur, and the refrigerant gas passage pressure loss in the oil separator is small.
The collision plate 15 prevents the refrigerant gas a from hitting the oil surface 15, and 15a is an oil passage. The collision plate 15 may be omitted. The operation is the same as the structure shown in FIG. 9, and the description is omitted.

【0016】次に、油分離器の応用例を図11を用いて
説明する。図1に示した実施例と分離機構は基本的には
同じであり、異なるところは、本体1と分離板5との間
にデミスタ5eを備え分離板5の外周を冷媒ガスaを回
し遠心力で分離効果を高め遠心力により分離すると共
に、分離された油はデミスタ5e部を通過する際、本体
1の壁面を伝わって油は落ちる。また、デミスタ5eを
冷媒ガスが通過する際に油を分離する効果があるので、
構造が容易であるが分離効率が高い。
Next, an application example of the oil separator will be described with reference to FIG. The separating mechanism is basically the same as that of the embodiment shown in FIG. 1, except that a demister 5e is provided between the main body 1 and the separating plate 5 to rotate the refrigerant gas a around the outer periphery of the separating plate 5 and to apply centrifugal force. The separating effect is enhanced by the centrifugal force, and the separated oil is transmitted along the wall surface of the main body 1 when passing through the demister 5e portion, and the oil drops. In addition, when the refrigerant gas passes through the demister 5e, it has an effect of separating oil,
The structure is simple, but the separation efficiency is high.

【0017】次に、油分離器の応用例を図12及び図1
3を用いて説明する。図1に示した実施例と分離機構は
基本的には同じであり、異なるところは、入口管の先端
部が上向きにした構造で、その他は全く同じである。図
13に示した図は、図12のA−A断面図を示したもの
で、入口配管2は分離板5の円形の内部側に入った構造
で、冷媒ガスaは分離板5の固定部5aを旋回して遠心
力による分離機構が入った油分離機構である。ここで
は、分離板5外円形内に入口配管2の先端が入っている
がスペースが十分にある場合は入らなくてもよい。
Next, application examples of the oil separator are shown in FIGS. 12 and 1.
3 will be used for the explanation. The separating mechanism is basically the same as that of the embodiment shown in FIG. 1, except that the inlet pipe has a tip portion directed upward, and the other parts are exactly the same. The drawing shown in FIG. 13 is a cross-sectional view taken along the line AA of FIG. 12, in which the inlet pipe 2 enters the circular inner side of the separation plate 5, and the refrigerant gas a is the fixed portion of the separation plate 5. 5a is an oil separation mechanism that swivels 5a and includes a separation mechanism by centrifugal force. Here, the tip of the inlet pipe 2 is included in the outer circle of the separation plate 5, but it may not be included if there is sufficient space.

【0018】[0018]

【発明の効果】本発明によれば、これまで欠点となって
いた油分離器の分離性能のなかで、圧縮機の容量制御に
より回転数が変化するので、冷媒ガスの吐出量が変り油
分離器の処理流速も同様に変化してくる。油分離器は処
理流速に分離性能が影響し、早くなると大幅に分離性能
は低下し、冷凍装置でも油により性能が低下していた。
本発明の分離機構は、処理流速の変化に対して分離性能
は影響しない。容易な構造であり、小形,安価に出来
る。
According to the present invention, in the separation performance of the oil separator, which has been a drawback so far, the rotational speed changes due to the capacity control of the compressor, so that the discharge amount of the refrigerant gas changes and the oil separation. The processing flow rate of the vessel also changes. The separation performance of the oil separator has an effect on the processing flow rate, and the separation performance is significantly deteriorated as the processing speed increases, and the performance of the refrigeration system is also deteriorated by oil.
The separation mechanism of the present invention does not affect the separation performance with respect to changes in the processing flow rate. It has a simple structure and can be made small and inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である油分離器の全体構造の
断面図。
FIG. 1 is a cross-sectional view of the overall structure of an oil separator that is an embodiment of the present invention.

【図2】本発明の第二実施例である油分離器の全体構造
の断面図。
FIG. 2 is a sectional view of the overall structure of an oil separator that is a second embodiment of the present invention.

【図3】本発明の第三実施例である油分離器の全体構造
の断面図。
FIG. 3 is a sectional view of the overall structure of an oil separator that is a third embodiment of the present invention.

【図4】本発明の第四実施例である油分離器の全体構造
の断面図。
FIG. 4 is a sectional view of the overall structure of an oil separator that is a fourth embodiment of the present invention.

【図5】本発明の第五実施例である油分離器の全体構造
の断面図。
FIG. 5 is a sectional view of the overall structure of an oil separator that is a fifth embodiment of the present invention.

【図6】本発明の第六実施例である油分離器の全体構造
の断面図。
FIG. 6 is a sectional view of the overall structure of an oil separator that is a sixth embodiment of the present invention.

【図7】本発明の第七実施例である油分離器の全体構造
の断面図。
FIG. 7 is a sectional view of the overall structure of an oil separator that is a seventh embodiment of the present invention.

【図8】本発明の第八実施例である油分離器の全体構造
の断面図。
FIG. 8 is a sectional view of the entire structure of an oil separator that is an eighth embodiment of the present invention.

【図9】本発明の第九実施例である油分離器の全体構造
の断面図。
FIG. 9 is a sectional view of the overall structure of an oil separator that is a ninth embodiment of the present invention.

【図10】本発明の第十実施例である油分離器の全体構
造の断面図。
FIG. 10 is a sectional view of the overall structure of an oil separator that is a tenth embodiment of the present invention.

【図11】本発明の第十一実施例である油分離器の全体
構造の断面図。
FIG. 11 is a sectional view of the overall structure of an oil separator that is an eleventh embodiment of the present invention.

【図12】本発明の第十二実施例である油分離器の全体
構造の断面図。
FIG. 12 is a sectional view of the overall structure of an oil separator that is a twelfth embodiment of the present invention.

【図13】図12の断面図。13 is a sectional view of FIG.

【図14】従来の全体構造図の断面図。FIG. 14 is a sectional view of a conventional overall structural view.

【符号の説明】[Explanation of symbols]

1…本体、2…入口管、2a…デミスタ、3…出口管、
4…支え足、5…円筒形状の分離板、5a…分離板の固
定部、5b…分離板、5c…冷媒ガス通路、5d…デミ
スタ、5e…デミスタ、6,8…油戻し管、7,9…金
網状のフィルタ、10…油面。
1 ... Main body, 2 ... Inlet pipe, 2a ... Demister, 3 ... Outlet pipe,
4 ... Support legs, 5 ... Cylindrical separation plate, 5a ... Separation plate fixing part, 5b ... Separation plate, 5c ... Refrigerant gas passage, 5d ... Demister, 5e ... Demister, 6, 8 ... Oil return pipe, 7, 9 ... Wire mesh filter, 10 ... Oil surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戸草 健治 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (72)発明者 山田 眞朗 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Togusa Kenji Togusa 390 Muramatsu, Shimizu City, Shizuoka Prefecture Inside the Shimizu Plant, Hitachi, Ltd. (72) Masaro Yamada 390 Muramatsu, Shimizu City, Shizuoka Hitachi, Ltd. Shimizu Plant, Hitachi Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷凍装置の圧縮機から吐出される高圧の冷
媒ガス内に含まれるミスト状の油を分離する縦形の油分
離器で、上部が分離機構、下部は油溜めの組合わせ構造
で前記冷媒ガスは前記分離機構に水平方向に入り、上部
から吐出される分離構造において、分離板の円筒容器は
本体上部内側に保持され、前記冷媒ガスは前記円筒容器
の外壁に衝突し油を下部に落すと共に遠心により分離し
前記冷媒ガスは前記円筒容器の下側から内側に進んで上
部から外に吐出され分離効率の高い機構を備えているこ
とを特徴とする冷凍装置の油分離器。
1. A vertical oil separator for separating mist-like oil contained in a high-pressure refrigerant gas discharged from a compressor of a refrigeration system, wherein the upper part is a separating mechanism and the lower part is a combination structure of an oil sump. In the separation structure in which the refrigerant gas enters the separating mechanism in the horizontal direction and is discharged from the upper portion, the cylindrical container of the separating plate is held inside the upper portion of the main body, and the refrigerant gas collides with the outer wall of the cylindrical container to lower the oil. An oil separator of a refrigerating apparatus, which is equipped with a mechanism having a high separation efficiency, in which the refrigerant gas is dropped into the inside of the cylindrical container and is separated by centrifugation, and the refrigerant gas is discharged from the upper part to the outer part from the lower part.
JP2236893A 1993-02-10 1993-02-10 Oil separator of refrigerating plant Pending JPH06235572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2236893A JPH06235572A (en) 1993-02-10 1993-02-10 Oil separator of refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2236893A JPH06235572A (en) 1993-02-10 1993-02-10 Oil separator of refrigerating plant

Publications (1)

Publication Number Publication Date
JPH06235572A true JPH06235572A (en) 1994-08-23

Family

ID=12080696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2236893A Pending JPH06235572A (en) 1993-02-10 1993-02-10 Oil separator of refrigerating plant

Country Status (1)

Country Link
JP (1) JPH06235572A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154830A (en) * 2005-12-07 2007-06-21 Aisin Seiki Co Ltd Gas liquid separation device for compressor
JP2007532853A (en) * 2004-04-08 2007-11-15 ヨーク・インターナショナル・コーポレーション Flash tank for use in an economizer circuit
US7690216B2 (en) 2004-11-25 2010-04-06 Lg Electronics Inc. Oil separator for air conditioners
US7967901B2 (en) 2008-04-14 2011-06-28 Kobe Steel, Ltd. Lubricating liquid separator
JP2013031798A (en) * 2011-08-02 2013-02-14 Hino Motors Ltd Catch tank for air dryer apparatus
JP2013210188A (en) * 2013-06-19 2013-10-10 Mitsubishi Electric Corp Cyclone oil separator, and compression refrigerating device and air compression device equipped with the same
WO2014020837A1 (en) * 2012-07-30 2014-02-06 Motohashi Takao Gas-liquid separation device for air discharge means
CN104848615A (en) * 2014-02-13 2015-08-19 松下知识产权经营株式会社 Oil separator
CN112361357A (en) * 2020-10-21 2021-02-12 江苏旭龙环境科技有限公司 Pipeline viscous oil processing apparatus of waste gas paint
WO2022121432A1 (en) * 2020-12-08 2022-06-16 合肥美的暖通设备有限公司 Oil separator and outdoor unit of air conditioner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532853A (en) * 2004-04-08 2007-11-15 ヨーク・インターナショナル・コーポレーション Flash tank for use in an economizer circuit
US7690216B2 (en) 2004-11-25 2010-04-06 Lg Electronics Inc. Oil separator for air conditioners
JP2007154830A (en) * 2005-12-07 2007-06-21 Aisin Seiki Co Ltd Gas liquid separation device for compressor
US7967901B2 (en) 2008-04-14 2011-06-28 Kobe Steel, Ltd. Lubricating liquid separator
JP2013031798A (en) * 2011-08-02 2013-02-14 Hino Motors Ltd Catch tank for air dryer apparatus
WO2014020837A1 (en) * 2012-07-30 2014-02-06 Motohashi Takao Gas-liquid separation device for air discharge means
JP2013210188A (en) * 2013-06-19 2013-10-10 Mitsubishi Electric Corp Cyclone oil separator, and compression refrigerating device and air compression device equipped with the same
CN104848615A (en) * 2014-02-13 2015-08-19 松下知识产权经营株式会社 Oil separator
KR20150095550A (en) * 2014-02-13 2015-08-21 파나소닉 아이피 매니지먼트 가부시키가이샤 Oil separator
EP2910875A1 (en) * 2014-02-13 2015-08-26 Panasonic Intellectual Property Management Co., Ltd. Oil separator
JP2015166668A (en) * 2014-02-13 2015-09-24 パナソニックIpマネジメント株式会社 oil separator
CN104848615B (en) * 2014-02-13 2019-05-14 松下知识产权经营株式会社 Oil eliminator
CN112361357A (en) * 2020-10-21 2021-02-12 江苏旭龙环境科技有限公司 Pipeline viscous oil processing apparatus of waste gas paint
CN112361357B (en) * 2020-10-21 2023-08-04 江苏旭龙环境科技有限公司 Pipeline oil sticking treatment device for waste gas paint
WO2022121432A1 (en) * 2020-12-08 2022-06-16 合肥美的暖通设备有限公司 Oil separator and outdoor unit of air conditioner

Similar Documents

Publication Publication Date Title
JP4356214B2 (en) Oil separator and outdoor unit
US4162904A (en) Silencer-separator device
JPH06235572A (en) Oil separator of refrigerating plant
CN101440809B (en) Liquid container for horizontal compressor and control method and application thereof
JPH06235571A (en) Oil separator of refrigerating plant
JP6797675B2 (en) Oil separator
JP2002039647A (en) Gas-liquid separator
JP4063179B2 (en) Oil separator
JP2010048483A (en) Gas-liquid separator and air compression device and air conditioner equipped with the gas-liquid separator
CN207865771U (en) Oil separator
CN108465301B (en) Combined cyclone deflection large-caliber gas-liquid compound separation device of gas compressor
CN100436973C (en) Oil-separator in pipeline
JPH06323697A (en) Oil separator for refrigerator
JPH0425212Y2 (en)
EP2213357B1 (en) Mechanical separation system
CA1155400A (en) Muffler
JP3327242B2 (en) Oil separator
JPH06346855A (en) Compressed air dehumidifying device
CN113521888A (en) Oil separator and compressor assembly
KR100715043B1 (en) Oil Separator for Air Conditioner
JP2005098534A (en) Oil separator
WO2018198516A1 (en) Oil separator and refrigeration cycle device
CN114234497B (en) Liquid storage device and compressor assembly
JPH0519721Y2 (en)
JPH05203293A (en) Oil separator for refrigerating plant