JPH06232412A - Nonvolatile memory cell - Google Patents

Nonvolatile memory cell

Info

Publication number
JPH06232412A
JPH06232412A JP1984693A JP1984693A JPH06232412A JP H06232412 A JPH06232412 A JP H06232412A JP 1984693 A JP1984693 A JP 1984693A JP 1984693 A JP1984693 A JP 1984693A JP H06232412 A JPH06232412 A JP H06232412A
Authority
JP
Japan
Prior art keywords
memory cell
drain
gate electrode
voltage
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1984693A
Other languages
Japanese (ja)
Inventor
Tomoyuki Morii
知行 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1984693A priority Critical patent/JPH06232412A/en
Priority to EP93113747A priority patent/EP0590319B1/en
Priority to DE69316298T priority patent/DE69316298T2/en
Priority to US08/245,253 priority patent/US5424979A/en
Publication of JPH06232412A publication Critical patent/JPH06232412A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0441Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates
    • G11C16/0458Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates comprising two or more independent floating gates which store independent data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/561Multilevel memory cell aspects
    • G11C2211/5612Multilevel memory cell with more than one floating gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To provide a nonvolatile memory cell capable of being multivalued by providing an insulating film of a pair of different thickness in the upper part of a pair of high-concentration impurity regions in a range to be thinner than an insulating film in the upper part of a semiconductor substrate between the high-concentration impurity regions. CONSTITUTION:When voltage is applied to the control gate electrode 14 of a nonvolatile memory cell 1 and a source 24 and a drain 25, an energy barrier against the electrons of a thermal oxidation film 15A effectively becomes low, so that electrons 30A are injected into a floating gate electrode 17A. Since electrons are stored in the floating gate electrodes 17A, 17B by two different voltages to be applied, two-valued information is written into the memory cell 1, and since even if a drain voldtage is a fixed value, a drain current differs depending upon the magnitude of electric charges to be stored, the two-valued value can be read out. When a control gate voltage is set in the range in which the distribution of injected electric charges is not overlapped, a two-valued memory cell can be constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は不揮発性メモリセルに関
する。
FIELD OF THE INVENTION The present invention relates to non-volatile memory cells.

【0002】[0002]

【従来の技術】図5に従来の不揮発性メモリセルの断面
図であり、その断面はトランジスタ部のチャネル幅と直
交する方向である。図5に示すように、2段縦積み階段
ゲート絶縁膜型不揮発性メモリセル43は、P型シリコ
ン基板42のソース40とドレイン41間に不均一な厚
さから成るゲート酸化膜39を介してシリコン窒化膜3
8と制御電極37が形成され構成されている(特願昭4
6−97287号)。
2. Description of the Related Art FIG. 5 is a cross-sectional view of a conventional non-volatile memory cell, the cross section being in a direction orthogonal to the channel width of a transistor portion. As shown in FIG. 5, the two-stage vertically stacked staircase gate insulating film type nonvolatile memory cell 43 has a gate oxide film 39 having a non-uniform thickness between the source 40 and the drain 41 of the P-type silicon substrate 42. Silicon nitride film 3
8 and a control electrode 37 are formed (Japanese Patent Application No. 4).
6-97287).

【0003】[0003]

【発明が解決しようとする課題】従来の2段縦積み階段
ゲート絶縁膜型不揮発性メモリセルは、ソース・ドレイ
ン端上部シリコン窒化膜への書き込み注入量の偏りを防
止する目的で作成されており、ゲート絶縁膜の厚みの違
いを利用して、メモリセルの多値化を図るものはない。
The conventional two-stage vertically stacked staircase gate insulating film type non-volatile memory cell is formed for the purpose of preventing uneven distribution of the write injection amount into the upper silicon nitride film at the source / drain end. There is nothing to achieve multi-valued memory cells by utilizing the difference in thickness of the gate insulating film.

【0004】2段縦積み階段ゲート絶縁膜型構造を利用
して不揮発性メモリセルへの書き込み注入量の多値化を
図る場合には、階段形状のゲート絶縁膜上部の制御電極
の電圧を変化させることにより注入電荷の変化を生させ
て行う。従来、この書き込み注入量を制御するためには
制御電極からの印加電圧を大きく変化させていた(19
92年秋季応用物理学会、予稿集 17a-ZS-9,10)。
In order to increase the write injection amount into the nonvolatile memory cell by utilizing the two-stage vertically stacked staircase gate insulating film type structure, the voltage of the control electrode above the staircase-shaped gate insulating film is changed. By doing so, a change in injected charge is generated. Conventionally, in order to control the write injection amount, the applied voltage from the control electrode is largely changed (19
1992 Autumn Society of Applied Physics, Proceedings 17a-ZS-9, 10).

【0005】しかしゲート絶縁膜が薄膜化すると、制御
電極からの印加電圧のわずかな変化により書き込み注入
量に大きなばらつきが生じ、注入量の電圧だけによる制
御に限界がある。
However, when the gate insulating film is thinned, a slight change in the voltage applied from the control electrode causes a large variation in the write injection amount, and there is a limit to the control by only the injection amount voltage.

【0006】また、ゲート絶縁膜を階段形状の厚さに形
成することは非常に困難である。従って、従来の2段縦
積み階段ゲート絶縁膜型不揮発性メモリセルにおいては
制御電極からの印加電圧の変化により、書き込み注入量
の多値化を図るには精度が悪いという問題点があった。
Further, it is very difficult to form the gate insulating film to have a stepped thickness. Therefore, in the conventional two-stage vertically stacked staircase gate insulating film type non-volatile memory cell, there is a problem in that it is not accurate to achieve multi-valued write injection amount due to a change in the voltage applied from the control electrode.

【0007】本発明は上記問題点を解決することができ
る不揮発性メモリセルを提供するものである。
The present invention provides a non-volatile memory cell that can solve the above problems.

【0008】[0008]

【課題を解決するための手段】本発明は、第1導電型半
導体基板に形成された第2導電型の一対の高濃度不純物
領域即ちソース及びドレインと、このソース、ドレイン
の上部に一対の厚みの異なる薄い絶縁膜を介してフロー
ティングゲート電極を、さらにソース、ドレイン間に上
記厚みの異なる薄い絶縁膜よりも厚い絶縁膜を介して制
御電極が形成された不揮発性メモリセルにおいて、薄い
絶縁膜を有するソース側を、制御電極からの10V程度
の電圧印加によりソースからのトンネル電流を流せる程
度に薄く形成し、ソース側の絶縁膜よりも厚い絶縁膜を
有するドレイン側を、制御電極からの15V程度の電圧
印加によりドレインからのトンネル電流を流せる程度に
厚く形成する。
According to the present invention, a pair of high-concentration impurity regions of the second conductivity type, that is, a source and a drain, formed on a semiconductor substrate of the first conductivity type, and a pair of thicknesses above the source and the drain. In a non-volatile memory cell in which a floating gate electrode is formed through a thin insulating film of different thickness, and a control electrode is formed between a source and a drain through an insulating film thicker than the thin insulating film of different thickness described above, a thin insulating film is formed. The source side is thinly formed so that a tunnel current from the source can flow by applying a voltage of about 10 V from the control electrode, and the drain side having an insulating film thicker than the insulating film on the source side is about 15 V from the control electrode. It is formed thick enough to pass the tunnel current from the drain by applying the voltage.

【0009】この厚みの異なる絶縁膜の厚さは例えば各
々10nm、15nm程度が良いが、少なくとも制御電
極への10V程度の電圧印加により、ソースからフロー
ティングゲート電極に、トンネル電流が流れる厚さに設
定する。また、制御電極への15Vの程度の電圧印加に
より、ソースとドレインの両方からフローティングゲー
ト電極にトンネル電流が流れる厚さに設定する。さら
に、ゲート絶縁膜の厚さは制御電極からの電圧印加によ
りソースからドレインに、チャネル電流が流れる厚さ、
例えば20nm程度に設定する。
The thicknesses of the insulating films having different thicknesses are, for example, about 10 nm and 15 nm, respectively, but are set to a thickness at which a tunnel current flows from the source to the floating gate electrode by applying a voltage of at least about 10 V to the control electrode. To do. Further, by applying a voltage of about 15 V to the control electrode, the thickness is set to a thickness at which the tunnel current flows from both the source and the drain to the floating gate electrode. Furthermore, the thickness of the gate insulating film is the thickness at which the channel current flows from the source to the drain by applying a voltage from the control electrode,
For example, it is set to about 20 nm.

【0010】[0010]

【作用】本発明によれば、一対の高濃度不純物領域上部
の各々の絶縁膜が臨界点の異なる電圧によりトンネル電
流が流れるように極めて薄く且つ厚みが異なるよう形成
されているため、制御電極に10V程度の電圧を印加す
る書き込み時にはこの高濃度不純物領域の一方、即ちソ
ースからフローティングゲート電極に電荷が注入され、
15V程度の電圧を印加する書き込み時にはこの高濃度
不純物領域の両方、即ちソース及びドレインからフロー
ティングゲート電極に電荷が注入される。また、一対の
高濃度不純物領域間では少なくともチャネル電流が流れ
る程度に酸化膜が厚く形成されているため制御電極に5
V、ドレインに1V程度の電圧を印加する読み出し時に
は、フローティングゲート電極に書き込まれた電荷を保
持したまま、ソースからドレインに必要且つ十分なチャ
ネル電流が流れる。
According to the present invention, the insulating films above the pair of high-concentration impurity regions are formed so as to be extremely thin and have different thicknesses so that the tunnel currents flow by the voltages having different critical points. At the time of writing in which a voltage of about 10 V is applied, charges are injected from one of the high concentration impurity regions, that is, the source, to the floating gate electrode,
At the time of writing in which a voltage of about 15 V is applied, charges are injected from both of the high-concentration impurity regions, that is, the source and drain into the floating gate electrode. In addition, since the oxide film is formed between the pair of high-concentration impurity regions so thick that at least the channel current flows, the control electrode has 5
At the time of reading by applying a voltage of about 1 V to V and drain, a necessary and sufficient channel current flows from the source to the drain while holding the charges written in the floating gate electrode.

【0011】[0011]

【実施例】以下本発明の一実施例の不揮発性メモリセル
について、図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-volatile memory cell according to an embodiment of the present invention will be described below with reference to the drawings.

【0012】図1A、B、Cは本発明の実施例における不
揮発性メモリセルの製法例、図2A、B、C、Dは不揮発性
メモリセルの書き込み時、読みだし時、消去時の電極の
制御と電荷との関係からメモリセルの動作を示すもので
ある。図3は、本発明の実施例における不揮発性メモリ
セルの、書き込み時の制御電極からの印加電圧の変化と
そのときの注入電荷の変化の関係を示すものである。図
4は、本発明の実施例における不揮発性メモリセルの、
読み出し時のチャネル電流特性図である。図5は本発明
の従来例における2段縦積み階段ゲート絶縁膜型不揮発
性メモリセルの構造断面図である。
1A, 1B, 1C show an example of a method of manufacturing a non-volatile memory cell according to an embodiment of the present invention, and FIGS. 2A, 2B, 2C, 2D show electrodes of a non-volatile memory cell during writing, reading and erasing. The operation of the memory cell is shown from the relationship between control and electric charge. FIG. 3 shows the relationship between the change of the applied voltage from the control electrode during writing and the change of the injected charge at that time in the nonvolatile memory cell in the example of the present invention. FIG. 4 shows a nonvolatile memory cell according to an embodiment of the present invention.
It is a channel current characteristic diagram at the time of reading. FIG. 5 is a structural cross-sectional view of a two-stage vertically stacked staircase gate insulating film type nonvolatile memory cell in a conventional example of the present invention.

【0013】図1A、B、C、図2A、B、C、D、図3、図
5において1は不揮発性メモリセル、11はP型シリコ
ン基板、12は厚い熱酸化膜、14はコントロールゲー
ト電極、15A、15Bは薄い熱酸化膜、17A、17Bは
フローティングゲート電極,18は層間絶縁膜、20S
はソース電極、20Dはドレイン電極、29はチャネ
ル、30A、30Bはエレクトロン、31A、31Bは寄生
抵抗、37は制御電極、38はシリコン窒化膜、39は
ゲート酸化膜、40はソース、41はドレイン、42は
シリコン基板、43は不揮発性メモリセルを示す。
1A, B, C, 2A, B, C, D, 3 and 5, 1 is a non-volatile memory cell, 11 is a P-type silicon substrate, 12 is a thick thermal oxide film, and 14 is a control gate. Electrodes, 15A and 15B are thin thermal oxide films, 17A and 17B are floating gate electrodes, 18 is an interlayer insulating film, 20S
Is a source electrode, 20D is a drain electrode, 29 is a channel, 30A and 30B are electrons, 31A and 31B are parasitic resistances, 37 is a control electrode, 38 is a silicon nitride film, 39 is a gate oxide film, 40 is a source, and 41 is a drain. , 42 is a silicon substrate, and 43 is a non-volatile memory cell.

【0014】以下図1を用いて実施例を製法例と共に説
明する。まず図1Aに示すように、導電型例えばP型シリ
コン基板11の全面にゲート酸化膜即ち、厚い熱酸化膜
12を形成した後、ポリシリコンをCVD法により成長さ
せてコントロールゲート層を形成し、次に写真食刻法を
用いてコントロールゲート電極14を所定のパターンに
エッチングする。 そして、このコントロールゲート電
極14をマスクとしてヒ素イオンAs+を注入して高濃度
不純物領域即ちソース24、ドレイン25を形成する。
An embodiment and a manufacturing method will be described below with reference to FIG. First, as shown in FIG. 1A, after forming a gate oxide film, that is, a thick thermal oxide film 12 on the entire surface of a conductive type, for example, P type silicon substrate 11, polysilicon is grown by a CVD method to form a control gate layer, Next, the control gate electrode 14 is etched into a predetermined pattern by using a photolithography method. Then, using the control gate electrode 14 as a mask, arsenic ions As + are implanted to form high-concentration impurity regions, that is, the source 24 and the drain 25.

【0015】次に図1Bに示すように、全面に熱酸化膜
を形成し、写真食刻法を用いてソース・ドレイン上部の
絶縁膜を所定の厚みの薄い熱酸化膜15Aになるようエ
ッチングする。次に全面に薄い熱酸化膜15Bを形成
し、続けてドレイン側にレジストを堆積した後、写真食
刻法を用いてドレイン上部以外の上記薄い熱酸化膜15
Bをエッチングし、結果としてゲート酸化膜よりも薄く
形成する。続けてポリシリコンをCVD法により成長させ
てフローティングゲート層を形成した後、異方性エッチ
ングにより上記コントロールゲート電極14の側壁にフ
ローティングゲート電極17A、17Bを形成する。
Next, as shown in FIG. 1B, a thermal oxide film is formed on the entire surface, and the insulating film above the source / drain is etched to a thin thermal oxide film 15A having a predetermined thickness by photolithography. . Next, a thin thermal oxide film 15B is formed on the entire surface, a resist is continuously deposited on the drain side, and then the thin thermal oxide film 15 other than the upper portion of the drain is formed by photolithography.
B is etched, resulting in a thinner layer than the gate oxide. Subsequently, polysilicon is grown by the CVD method to form a floating gate layer, and then anisotropic etching is performed to form the floating gate electrodes 17A and 17B on the sidewalls of the control gate electrode 14.

【0016】次に図1Cに示すように層間膜18、ソー
ス電極20S及びドレイン電極20Dを形成し本発明に関
わる不揮発性メモリセル1の構造を得る。
Next, as shown in FIG. 1C, the interlayer film 18, the source electrode 20S and the drain electrode 20D are formed to obtain the structure of the nonvolatile memory cell 1 according to the present invention.

【0017】次に、この不揮発性メモリの動作について
図2を用いて説明する。図2Aに示すように上記の製法
により得られた不揮発性メモリセル1(ソース、ドレイ
ン電極は図示せず)のコントロールゲート電極14とソ
ース24とドレイン25に各々に例えば10ボルト、0
ボルト、0ボルト程度の電圧を印加すると、ソース24
からみたコントロールゲート電極14方向へのゲート酸
化膜即ち薄い熱酸化膜15Aのエレクトロンに対するエ
ネルギ障壁が実効的に低くなり、フローティングゲート
電極17Aとソース24各々との間をエレクトロンがト
ンネリングしフローティングゲート電極17Aにエレク
トロン30Aが注入される。
Next, the operation of this nonvolatile memory will be described with reference to FIG. As shown in FIG. 2A, the control gate electrode 14, the source 24, and the drain 25 of the nonvolatile memory cell 1 (source and drain electrodes not shown) obtained by the above-described manufacturing method are respectively supplied with 10 V, 0, respectively.
When a voltage of about 0 V is applied, the source 24
The energy barrier to electrons of the gate oxide film, that is, the thin thermal oxide film 15A toward the control gate electrode 14 when viewed is effectively lowered, and the electrons tunnel between the floating gate electrode 17A and the source 24 to cause floating gate electrode 17A. Electrons 30A are injected into.

【0018】次に図2Bに示すようにコントロールゲー
ト電極14とソース24とドレイン25に各々に例えば
15ボルト、0ボルト、0ボルト程度の電圧を印加する
と、ソース24及びドレイン25からみたコントロール
ゲート電極14方向へのゲート酸化膜即ち薄い熱酸化膜
15Bのエレクトロンに対するエネルギ障壁が実効的に
低くなり、フローティングゲート電極17Aとソース2
4、フローティングゲート電極17Bとドレイン25各
々との間をエレクトロンがトンネリングしフローティン
グゲート電極17Aとフローティングゲート電極17Bに
エレクトロン30Bが注入されメモリセルに2値の情報
が書き込まれることになる。
Next, as shown in FIG. 2B, when a voltage of, for example, about 15 volts, 0 volts, or 0 volts is applied to the control gate electrode 14, the source 24, and the drain 25, the control gate electrode viewed from the source 24 and the drain 25. The energy barrier to electrons of the gate oxide film in the 14 direction, that is, the thin thermal oxide film 15B is effectively lowered, and the floating gate electrode 17A and the source 2
4. Electrons tunnel between the floating gate electrode 17B and the drain 25, electrons 30B are injected into the floating gate electrode 17A and the floating gate electrode 17B, and binary information is written in the memory cell.

【0019】このようにコントロールゲート電極14に
印加する2種類の電圧により、フローティングゲート電
極17A,17Bにエレクトロンが蓄積されるのでメモ
リセルに2値の情報が書き込まれる。
Electrons are accumulated in the floating gate electrodes 17A and 17B by the two kinds of voltages applied to the control gate electrode 14 in this manner, so that binary information is written in the memory cell.

【0020】次に図2Cに示すように不揮発性メモリセ
ル1のコントロールゲート電極14に例えば5ボルト、
ドレイン24に1ボルト程度の電圧を各々印加すること
によりチャネル29が形成される。このチャネル電流値
は図4に示すようにフローティングゲート電極17A、B
に注入されているエレクトロン30A、Bの量に起因する
ドレイン25、ソース24の寄生抵抗31A、31Bに支
配され、この値をもとに不揮発性メモリセル1の”2”
と”1”及び”0”の状態を読み出す。
Next, as shown in FIG. 2C, the control gate electrode 14 of the nonvolatile memory cell 1 has, for example, 5 volts,
A channel 29 is formed by applying a voltage of about 1 volt to the drain 24, respectively. This channel current value is, as shown in FIG. 4, floating gate electrodes 17A, B.
Is controlled by the parasitic resistances 31A and 31B of the drain 25 and the source 24, which are caused by the amount of electrons 30A and B injected into the non-volatile memory cell 1.
And the states of "1" and "0" are read.

【0021】次に図2Dに示すように不揮発性メモリセ
ル1のコントロールゲート電極14に−15ボルト程度
の電圧を印加すると、フローティングゲート電極17
A、17Bからエレクトロン30A、30Bがソース24及
びドレイン25にトンネリングにより放出され、メモリ
セルから消去される。
Next, as shown in FIG. 2D, when a voltage of about -15 V is applied to the control gate electrode 14 of the non-volatile memory cell 1, the floating gate electrode 17 is formed.
Electrons 30A and 30B are emitted from A and 17B to the source 24 and the drain 25 by tunneling and erased from the memory cell.

【0022】図3にコントロールゲート電極からの印加
電圧とフローティングゲート電極への注入電荷の2値化
の関係を示す。コントロールゲート電圧により、注入電
荷が変化していることがわかる。これを利用して注入電
荷のばらつきが重なりあわない範囲でコントロールゲー
ト電圧を設定すれば、2値のメモリセルを構成できる。
FIG. 3 shows the relationship between the voltage applied from the control gate electrode and the binarization of the charge injected into the floating gate electrode. It can be seen that the injected charge changes depending on the control gate voltage. By utilizing this, a binary memory cell can be constructed by setting the control gate voltage within a range where variations in injected charges do not overlap.

【0023】また蓄積した電荷の読みだしも、図4に示
すとおり、メモリセルに蓄積した電荷の大きさによっ
て、ドレイン電圧が一定であってもドレイン電流が異な
るので、2値の値を読み出すことができる。ドレイン電
流が異なるのは、図2(c)で示した通り、フローティン
グゲート電極に蓄積したエレクトロンの量によって、ソ
ース、ドレインの寄生抵抗が異なるためである。つま
り、コントロールゲート電極14に電圧を印加して、チ
ャネルを形成しても、フローティングゲートに蓄積した
エレクトロンの量により寄生抵抗が異なり、ドレイン電
圧が一定であってもドレイン電流は異なるのである。
Further, as shown in FIG. 4, the reading of the accumulated charge also depends on the magnitude of the accumulated charge in the memory cell, because the drain current is different even if the drain voltage is constant. You can The drain current is different because the parasitic resistance of the source and drain is different depending on the amount of electrons accumulated in the floating gate electrode, as shown in FIG. That is, even if a voltage is applied to the control gate electrode 14 to form a channel, the parasitic resistance varies depending on the amount of electrons accumulated in the floating gate, and the drain current varies even if the drain voltage is constant.

【0024】[0024]

【発明の効果】以上のように本発明によれば、高濃度不
純物間半導体基板上部の絶縁膜より薄い範囲で一対の高
濃度不純物領域上部に一対の異なる厚さの絶縁膜を設け
ることにより、メモリセルの容易に多値化を図る。
As described above, according to the present invention, by providing a pair of insulating films having different thicknesses above a pair of high-concentration impurity regions in a range thinner than the insulating film above the high-concentration impurity semiconductor substrate, A memory cell can be easily multi-valued.

【0025】さらにこのとき不揮発性メモリセルの書き
込み、読みだし、消去のための電気的制御は極めて単純
化され、かつ、フローティングゲート電極への注入及び
放出電荷を精度良く制御することができる。また、高濃
度不純物領域からのトンネル電流は制御電極内には注入
されず、MOSFET特性は劣化しない。
Further, at this time, electrical control for writing, reading, and erasing of the nonvolatile memory cell is extremely simplified, and injection and emission charges to the floating gate electrode can be controlled with high accuracy. Further, the tunnel current from the high-concentration impurity region is not injected into the control electrode, and the MOSFET characteristics are not deteriorated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における不揮発性メモリ
セルの製法例を示す工程図
FIG. 1 is a process drawing showing an example of a method of manufacturing a nonvolatile memory cell according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における不揮発性メモリ
セルの書き込み、読み出し、消去の動作を示す断面構造
FIG. 2 is a sectional structural view showing the write, read, and erase operations of the nonvolatile memory cell according to the first embodiment of the present invention.

【図3】本発明の第1の実施例における不揮発性メモリ
セルの書き込み時の制御電極からの印加電圧と注入電荷
量の関係図
FIG. 3 is a diagram showing a relationship between an applied voltage from a control electrode and an amount of injected charges when writing data in the nonvolatile memory cell according to the first embodiment of the present invention.

【図4】本発明の第1の実施例における不揮発性メモリ
セルの読み出し時のドレイン電流特性図
FIG. 4 is a drain current characteristic diagram during reading of the nonvolatile memory cell according to the first embodiment of the present invention.

【図5】本発明の従来例を示す2段縦積み階段ゲート絶
縁膜型不揮発性メモリセルの断面構造図
FIG. 5 is a cross-sectional structural view of a two-stage vertically stacked staircase gate insulating film type nonvolatile memory cell showing a conventional example of the present invention.

【符号の説明】[Explanation of symbols]

1 不揮発性メモリセル 11 P型シリコン基板 12 厚い熱酸化膜 14 コントロールゲート電極 15A 薄い熱酸化膜 15B 薄い熱酸化膜 17A フローティングゲート電極 17B フローティングゲート電極 18 層間絶縁膜 20S ソース 20D ドレイン 29 チャネル 30A エレクトロン 30B エレクトロン 31A 寄生抵抗 31B 寄生抵抗 37 制御電極 38 シリコン窒化膜 39 ゲート酸化膜 40 ソース 41 ドレイン 42 シリコン基板 43 不揮発性メモリセル 1 Non-Volatile Memory Cell 11 P-Type Silicon Substrate 12 Thick Thermal Oxide Film 14 Control Gate Electrode 15A Thin Thermal Oxide Film 15B Thin Thermal Oxide Film 17A Floating Gate Electrode 17B Floating Gate Electrode 18 Interlayer Insulation Film 20S Source 20D Drain 29 Channel 30A Electron 30B Electron 31A Parasitic resistance 31B Parasitic resistance 37 Control electrode 38 Silicon nitride film 39 Gate oxide film 40 Source 41 Drain 42 Silicon substrate 43 Non-volatile memory cell

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1導電型半導体基板と、前記第1導電型
半導体基板に第2導電型の一対の高濃度不純物領域と、
前記不純物領域の上部に一対の厚みの異なる薄い絶縁膜
を介してフローティングゲート電極を設け、前記一対の
高濃度不純物領域間に前記第1導電型半導体基板と前記
一対の厚みの異なる薄い絶縁膜よりも厚い絶縁膜を介し
て、制御電極が形成されていることを特徴とする不揮発
性メモリセル。
1. A semiconductor substrate of a first conductivity type, and a pair of high-concentration impurity regions of a second conductivity type on the semiconductor substrate of the first conductivity type,
A floating gate electrode is provided on the impurity region via a pair of thin insulating films having different thicknesses, and the first conductive type semiconductor substrate and the pair of thin insulating films having different thicknesses are provided between the pair of high concentration impurity regions. A non-volatile memory cell having a control electrode formed through a thick insulating film.
JP1984693A 1992-10-02 1993-02-08 Nonvolatile memory cell Pending JPH06232412A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1984693A JPH06232412A (en) 1993-02-08 1993-02-08 Nonvolatile memory cell
EP93113747A EP0590319B1 (en) 1992-10-02 1993-08-27 A non-volatile memory cell
DE69316298T DE69316298T2 (en) 1992-10-02 1993-08-27 Non-volatile memory cell
US08/245,253 US5424979A (en) 1992-10-02 1994-05-17 Non-volatile memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984693A JPH06232412A (en) 1993-02-08 1993-02-08 Nonvolatile memory cell

Publications (1)

Publication Number Publication Date
JPH06232412A true JPH06232412A (en) 1994-08-19

Family

ID=12010626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984693A Pending JPH06232412A (en) 1992-10-02 1993-02-08 Nonvolatile memory cell

Country Status (1)

Country Link
JP (1) JPH06232412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164167B2 (en) 2001-11-21 2007-01-16 Sharp Kabushiki Kaisha Semiconductor storage device, its manufacturing method and operating method, and portable electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164167B2 (en) 2001-11-21 2007-01-16 Sharp Kabushiki Kaisha Semiconductor storage device, its manufacturing method and operating method, and portable electronic apparatus
US7582926B2 (en) 2001-11-21 2009-09-01 Sharp Kabushiki Kaisha Semiconductor storage device, its manufacturing method and operating method, and portable electronic apparatus

Similar Documents

Publication Publication Date Title
KR100468745B1 (en) Non-volatile memory cell having a silicon-oxide-nitride-oxide-silicon gate structure and fabrication method of such cell
EP0676811B1 (en) EEPROM cell with isolation transistor and methods for making and operating the same
US6925007B2 (en) Multi-state non-volatile integrated circuit memory systems that employ dielectric storage elements
US6358799B2 (en) Nonvolatile semiconductor memory device and method for fabricating the same, and semiconductor integrated circuit device
US6804149B2 (en) Nonvolatile memory cell, operating method of the same and nonvolatile memory array
US7480185B2 (en) Ballistic injection NROM flash memory
US20040057286A1 (en) Self-aligned split-gate NAND flash memory and fabrication process
WO1993014521A1 (en) Eeprom with split gate source side injection
KR20000053369A (en) Eeprom memory cell and method of fabricating the same
JP2939537B2 (en) Flash memory and manufacturing method thereof
US7439574B2 (en) Silicon/oxide/nitride/silicon nonvolatile memory with vertical channels
US6930348B2 (en) Dual bit split gate flash memory
US6418062B1 (en) Erasing methods by hot hole injection to carrier trap sites of a nonvolatile memory
US6335549B1 (en) EEPROM with high channel hot carrier injection efficiency
JPH07226449A (en) Semiconductor memory device capable of electrically writing and erasing and its manufacture and memory recognition
US6657251B1 (en) Semiconductor memory device having memory transistors with gate electrodes of a double-layer stacked structure and method of fabricating the same
JPH02308571A (en) Semiconductor memory device
US7348625B2 (en) Semiconductor device and method of manufacturing the same
EP0590319A2 (en) A non-volatile memory cell
JPH06232412A (en) Nonvolatile memory cell
US8154090B2 (en) Non-volatile two-transistor semiconductor memory cell and method for producing the same
JPH06334192A (en) Non-volatile semiconductor memory
JP3139165B2 (en) Method for manufacturing nonvolatile memory cell
JPH10256403A (en) Semiconductor device and manufacture thereof
JP3136895B2 (en) Non-volatile memory cell