JPH06232042A - Formation of si-ge thin film - Google Patents

Formation of si-ge thin film

Info

Publication number
JPH06232042A
JPH06232042A JP1346593A JP1346593A JPH06232042A JP H06232042 A JPH06232042 A JP H06232042A JP 1346593 A JP1346593 A JP 1346593A JP 1346593 A JP1346593 A JP 1346593A JP H06232042 A JPH06232042 A JP H06232042A
Authority
JP
Japan
Prior art keywords
thin film
hydrogen
gas
reaction furnace
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1346593A
Other languages
Japanese (ja)
Inventor
Kinya Ashikaga
欣哉 足利
Morifumi Oono
守史 大野
Toshiyuki Nakamura
稔之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1346593A priority Critical patent/JPH06232042A/en
Publication of JPH06232042A publication Critical patent/JPH06232042A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method by which the surface morphology and crystallinity of an Si-Ge thin film can be improved and, at the same time, the critical strain growing film thickness can be increased as compared with the conventional example by introducing an SiH4 and GeH4 gases into a reaction furnace housing a silicon substrate and forming the Si-Ge thin film while the silicon substrate is heated. CONSTITUTION:A B2H6 gas is introduced into a reaction furnace together with an SiH4 and GeH4 gases so that the concentration of the H2H6 in the furnace can reach such a level that the strain growing critical film thickness of the thin film in which a boron concentration is formed of a formed Si-Ge thin film becomes a desired value. In the atmosphere of such a mixed gas, a silicon substrate is heated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、Si−Ge薄膜の形
成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a Si-Ge thin film.

【0002】[0002]

【従来の技術】近年、Si系高速バイポーラ素子、マイ
クロ波素子、あるいは超格子素子への応用を目的とし
て、IV族系半導体薄膜、特にシリコン−ゲルマニウム
(Si−Ge)薄膜が注目されている。そして、このS
i−Ge薄膜の実用化を図るために、Si系下地として
の例えばシリコン基板上に、Si−Ge薄膜をエピタキ
シャル成長させる方法が種々検討されている。
2. Description of the Related Art In recent years, Group IV semiconductor thin films, particularly silicon-germanium (Si-Ge) thin films, have been attracting attention for the purpose of application to Si-based high-speed bipolar devices, microwave devices, or superlattice devices. And this S
In order to put the i-Ge thin film into practical use, various methods for epitaxially growing the Si-Ge thin film on, for example, a silicon substrate as a Si-based underlayer have been studied.

【0003】例えばこの出願に係る出願人も、シリコン
基板を入れた反応炉内にシリコンを含むIV族水素系ガ
ス(例えばSiH4 )とゲルマニウムを含むIV族水素
系ガス(例えばGeH4 )とを導入し、かつ、このシリ
コン基板に加熱処理を行いながら、このシリコン基板上
にSi−Ge薄膜を形成する方法を提案していた(例え
ば文献I:アプライド サーフィス サイエンス(Appli
ed Surface Science),60/61(1992)pp.597-601 )。
For example, the applicant of the present application also has a group IV hydrogen-based gas containing silicon (eg SiH 4 ) and a group IV hydrogen-based gas containing germanium (eg GeH 4 ) in a reaction furnace containing a silicon substrate. A method of forming a Si-Ge thin film on the silicon substrate while introducing and performing heat treatment on the silicon substrate has been proposed (for example, Document I: Applied Surface Science (Appli).
ed Surface Science), 60/61 (1992) pp.597-601).

【0004】Si−Ge薄膜を形成するための他の方法
として知られているMBE法では固体ソースを用いるた
め原料容器容量に限界があり目的の薄膜を迅速に成長で
きない、Si−Ge膜中に高濃度に不純物を導入させる
ことが困難などの欠点があったのに対し、シリコンを含
むIV族水素系ガス及びゲルマニウムを含むIV族水素
系ガスを用いる方法は基本的に化学的気相成長(CV
D)法であるため、MBE法での欠点を除去できた。
The MBE method, which is known as another method for forming a Si-Ge thin film, uses a solid source and therefore has a limited capacity of a raw material container and cannot grow a target thin film rapidly. While there are drawbacks such as difficulty in introducing impurities to a high concentration, the method using a group IV hydrogen-based gas containing silicon and a group IV hydrogen-based gas containing germanium is basically a chemical vapor deposition ( CV
Since it is the method D), the defects of the MBE method can be eliminated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、CVD
法によるSi−Ge薄膜の形成方法といえど、シリコン
基板上にシリコンの格子定数より大きな格子定数を有す
るゲルマニウムを含むSi−Ge薄膜を成長させるの
で、シリコンを含むIV族水素系ガス及びゲルマニウム
を含むIV族水素系ガスのみを用いる方法では、Si基
板とSi−Ge薄膜との間で格子不整合は依然生じ、こ
のため、以下に説明するような(イ)、 (ロ)及び(ハ) などの
問題点が生じることがこの出願に係る発明者の研究によ
り明らかになってきた。
[Problems to be Solved by the Invention] However, CVD
Even if the Si-Ge thin film is formed by the method, since a Si-Ge thin film containing germanium having a lattice constant larger than that of silicon is grown on a silicon substrate, a group IV hydrogen-containing gas containing silicon and germanium are contained. In the method using only the group IV hydrogen-based gas, the lattice mismatch still occurs between the Si substrate and the Si-Ge thin film, and therefore (a), (b) and (c) as described below It has become clear from the research conducted by the inventor of this application that the above problems occur.

【0006】(イ) 得られたSi−Ge薄膜の表面のモホ
ロジが満足の行くものではないという問題点。例えば、
膜厚100nmのSi−Ge薄膜を形成した場合その表
面には10nm以上の凹凸が生じてしまうことが判って
いる(後述の比較例参照)。
(A) The problem that the morphology of the surface of the obtained Si-Ge thin film is not satisfactory. For example,
It is known that when a Si-Ge thin film having a film thickness of 100 nm is formed, unevenness of 10 nm or more is generated on the surface (see Comparative Example described later).

【0007】(ロ) 得られたSi−Ge薄膜の結晶性はホ
モエピタキシャル層(シリコ基板上へのシリコン層やゲ
ルマニウム基板上へのゲルマニウム層)に比べ悪くなり
易いという問題点。
(B) The crystallinity of the obtained Si-Ge thin film tends to be worse than that of a homoepitaxial layer (a silicon layer on a silicon substrate or a germanium layer on a germanium substrate).

【0008】このような(イ) 凹凸発生や、(ロ) 結晶性悪
化は、Si−Ge薄膜の特性を十分に生かせない原因に
なるので、これらを軽減できる方法が望まれる。
Since the occurrence of (a) unevenness and (b) deterioration of crystallinity cause the characteristics of the Si-Ge thin film not to be fully utilized, a method capable of reducing these is desired.

【0009】(ハ) また、実用に耐えるSi−Ge薄膜は
歪成長の臨界膜厚以下の範囲のものであるが、シリコン
を含むIV族水素系ガス及びゲルマニウムを含むIV族
水素系ガスのみを用いる場合の歪成長の臨界膜厚は薄い
という問題点。例えば、Ge組成が15原子%になる条
件で形成したSi−Ge薄膜の場合の歪成長の臨界膜厚
は約100nmであることが判っている。CVD法によ
るSi−Ge薄膜の形成法の場合、該薄膜の成長速度
(換言すれば膜厚制御)は原料ガスの供給量により主に
制御されることを考えると、歪成長の臨界膜厚が薄い程
所望の薄膜を得にくいので臨界膜厚を厚くできる方法が
望まれる。
(C) Further, the Si-Ge thin film that can be used practically has a thickness within the range of the critical film thickness for strain growth, but only the group IV hydrogen-based gas containing silicon and the group IV hydrogen-based gas containing germanium are used. The problem is that the critical thickness for strain growth when used is thin. For example, it has been found that the critical film thickness for strain growth is about 100 nm in the case of a Si—Ge thin film formed under the condition that the Ge composition is 15 atomic%. In the case of forming a Si-Ge thin film by the CVD method, considering that the growth rate of the thin film (in other words, film thickness control) is mainly controlled by the supply amount of the source gas, the critical film thickness for strain growth is The thinner the film, the harder it is to obtain a desired thin film, and therefore a method capable of increasing the critical film thickness is desired.

【0010】この発明はこのような点に鑑みなされたも
のであり、従ってこの発明の目的は、シリコンを含むI
V族水素系ガス及びゲルマニウムを含むIV族水素系ガ
スを用いかつSi系下地を加熱処理をしながらこの下地
上にSi−Ge薄膜を形成する方法であって、従来に比
べSi−Ge薄膜の表面モホロジ及び結晶性を改善で
き、かつ、歪成長の臨界膜厚を増加させることができる
方法を提供することにある。
The present invention has been made in view of the above points, and therefore, an object of the present invention is to contain silicon containing silicon.
A method for forming a Si-Ge thin film on a Si-Ge underlayer while heat-treating the Si-based underlayer using a group-V hydrogen-based gas and a group IV hydrogen-based gas containing germanium. It is an object of the present invention to provide a method capable of improving surface morphology and crystallinity and increasing the critical film thickness for strain growth.

【0011】[0011]

【課題を解決するための手段】この目的の達成を図るた
め、この発明によれば、反応炉内にシリコン(Si)系
下地を入れ、該反応炉内にシリコンを含むIV族水素系
ガスとゲルマニウムを含むIV族水素系ガスを導入し、
かつ、前述の下地に加熱処理を行ないながら、前述の下
地上にSi−Ge薄膜を形成する方法において、形成さ
れるSi−Ge薄膜中に該薄膜とシリコン下地との格子
不整合を緩和するためのホウ素を添加するために、反応
炉内に、シリコンを含むIV族水素系ガス及びゲルマニ
ウムを含むIV族水素系ガスと共に、ホウ素を含む水素
系ガスを導入することを特徴とする。
In order to achieve this object, according to the present invention, a silicon (Si) based underlayer is placed in a reaction furnace, and a group IV hydrogen based gas containing silicon is placed in the reaction furnace. Introducing a group IV hydrogen-containing gas containing germanium,
And, in the method of forming the Si-Ge thin film on the lower surface while performing the heat treatment on the above-mentioned underlayer, in order to alleviate the lattice mismatch between the thin film and the silicon underlayer in the formed Si-Ge thin film. In order to add boron, the hydrogen-containing gas containing boron is introduced into the reaction furnace together with the group-IV hydrogen containing gas containing silicon and the group IV hydrogen-containing gas containing germanium.

【0012】なお、この発明でいうSi系下地は、Si
基板そのものである場合は勿論のこと、Si基板上にS
i系のエピタキシャル層が形成されたもの、Si基板以
外の基板にSi系のエピタキシャル層が形成されたも
の、これらのものに素子が作り込まれた中間体(いわゆ
るウエハ)など、Si−Ge薄膜を形成させたいシリコ
ンの下地を広く意味している。
The Si-based substrate referred to in the present invention is made of Si.
Not only the substrate itself, but also S on the Si substrate
Si-Ge thin films such as those having an i-type epitaxial layer formed thereon, those having a Si-type epitaxial layer formed on a substrate other than the Si substrate, and intermediates (so-called wafers) in which elements are formed in these. It broadly means the base of silicon on which to form.

【0013】また、シリコンを含むIV族水素系ガスと
しては、例えば、SiH4 (シラン)、Si2 6 (ジ
シラン)、Si3 8 (トリシラン)などの各種のもの
を挙げることができる。必要に応じては、2種以上のガ
スを用いても良い。また、ゲルマニウムを含む水素系ガ
スとしては、GeH4 (ゲルマン)、GeH3 F(フル
オロゲルマン)などの各種のものを挙げることができ
る。必要に応じては、2種以上のガスを用いても良い。
また、ホウ素を含む水素系ガスとしては例えばB2 6
(ジボラン)を挙げることができる。もちろん、ホウ素
を含む水素系ガスはジボランに限られず他の好適なもの
でも良く、また、この場合も必要に応じては、2種以上
のガスを用いても良い。
Examples of the group IV hydrogen-containing gas containing silicon include various gases such as SiH 4 (silane), Si 2 H 6 (disilane), and Si 3 H 8 (trisilane). If necessary, two or more kinds of gas may be used. As the hydrogen-containing gas containing germanium, various gases such as GeH 4 (germane) and GeH 3 F (fluorogermane) can be cited. If necessary, two or more kinds of gas may be used.
The hydrogen-containing gas containing boron is, for example, B 2 H 6
(Diborane) can be mentioned. Of course, the hydrogen-containing gas containing boron is not limited to diborane, and other suitable gas may be used. Also in this case, two or more kinds of gas may be used as required.

【0014】また、シリコンを含むIV族水素系ガス、
ゲルマニウムを含む水素系ガス及びホウ素を含む水素系
ガスそれぞれの導入量であるが、ゲルマニウムを含む水
素系ガスの導入量については、Si−Ge薄膜の設計に
応じ(即ち要求されるGe組成に応じ)決定する。ま
た、ホウ素を含むガスの導入量については、Si系下地
とSi−Ge薄膜との格子不整合をどの程度緩和したい
か(即ち、Si−Ge薄膜の表面モホロジ、結晶性及び
歪成長の臨界膜厚をどの程度改善したいか)という点
と、Si−Ge薄膜に要求されるp型不純物濃度値とを
比較考慮して決定するのが良い。例えば、形成されるS
i−Ge薄膜中のホウ素濃度が該形成される薄膜の歪成
長の臨界膜厚を所望の値とし得る濃度に少なくともなる
ように、前記ホウ素を含む水素系ガスの導入量を制御す
るのが好適である。所望の臨界膜厚が得られるように所
定濃度でホウ素が添加されたSi−Ge薄膜ではホウ素
を添加しない場合に比べ格子不整合の緩和及び結晶性の
向上のいずれも図れるからである(実施例参照)。な
お、ここで所望の臨界膜厚とは、実際に形成するSi−
Ge薄膜の膜厚や該薄膜の使用目的に応じ決定されるも
のであるが、少なくとも実際に形成するSi−Ge薄膜
の膜厚よりは厚い膜厚である。
A Group IV hydrogen-containing gas containing silicon,
Regarding the introduction amounts of the hydrogen-containing gas containing germanium and the hydrogen-containing gas containing boron, the introduction amount of the hydrogen-containing gas containing germanium depends on the design of the Si—Ge thin film (that is, depending on the required Ge composition). )decide. Regarding the introduction amount of the gas containing boron, how much the lattice mismatch between the Si-based underlayer and the Si-Ge thin film should be relaxed (that is, the surface morphology, crystallinity and strain growth critical film of the Si-Ge thin film). It is preferable to determine it by comparing the point of "how much thickness should be improved" with the p-type impurity concentration value required for the Si-Ge thin film. For example, S formed
It is preferable to control the introduction amount of the hydrogen-containing gas containing boron so that the concentration of boron in the i-Ge thin film is at least a concentration at which the critical film thickness for strain growth of the formed thin film can be a desired value. Is. This is because the Si-Ge thin film to which boron is added at a predetermined concentration so as to obtain a desired critical film thickness can alleviate lattice mismatch and improve crystallinity as compared with the case where boron is not added (Examples). reference). Note that the desired critical film thickness here means the actually formed Si-
The thickness is determined according to the film thickness of the Ge thin film and the purpose of use of the thin film, but it is at least larger than the film thickness of the Si-Ge thin film actually formed.

【0015】また、Si系下地を加熱処理する際のSi
系下地の加熱方法は、基本的には、電気炉による方法、
ランプによる方法など種々の方法で行なうことができ
る。しかし、膜質の向上や膜厚の制御性などを考える
と、ランプを用いる加熱方法が好ましい。ランプを用い
る方法の場合、下地を所望温度に素早く加熱でき、ま
た、下地の冷却も素早く行なえるからである。ランプと
しては、赤外線ランプがシリコン加熱に有効な波長の光
を発するので好ましい。具体的な赤外線光源としては、
タングステン−ハロゲンランプまたはキセノン−アーク
ランプなどを挙げることができる。
In addition, when heat-treating a Si-based substrate, Si
The heating method of the system base is basically a method using an electric furnace,
Various methods such as a lamp method can be used. However, a heating method using a lamp is preferable in consideration of improvement of film quality and controllability of film thickness. This is because in the case of using the lamp, the base can be quickly heated to a desired temperature and the base can be cooled quickly. As the lamp, an infrared lamp is preferable because it emits light having a wavelength effective for heating silicon. As a specific infrared light source,
Mention may be made of tungsten-halogen lamps or xenon-arc lamps.

【0016】[0016]

【作用】この発明の構成によれば、形成されるSi−G
e薄膜中にはホウ素が取り込まれる。ホウ素の原子半径
は0.088nmであり、シリコンのそれ(0.117
nm)より小さいので、Si−Ge薄膜においてSiよ
り大きな原子半径(0.122nm)を有するゲルマニ
ウムに起因して生じるSi−Ge薄膜とSi系下地との
格子不整合の程度を、このホウ素が緩和すると考えられ
る。また、このホウ素はSi−Ge薄膜をp型のものと
する場合のp型不純物としても使用できる。
According to the structure of the present invention, the Si-G formed
e Boron is incorporated into the thin film. The atomic radius of boron is 0.088 nm and that of silicon (0.117 nm).
nm), the boron relaxes the degree of lattice mismatch between the Si-Ge thin film and the Si-based underlayer caused by germanium having an atomic radius (0.122 nm) larger than Si in the Si-Ge thin film. It is thought that. Also, this boron can be used as a p-type impurity when the Si-Ge thin film is made to be p-type.

【0017】[0017]

【実施例】以下、図面を参照して、この発明のSi−G
e薄膜の形成方法の実施例について説明する。なお、説
明に用いる各図は、この発明が理解できる程度に、各構
成成分の形状、大きさおよび配置関係を概略的に示して
あるにすぎない。また、以下の説明では、特定の材料及
び特定の数値的条件を挙げて説明するが、これら材料及
び条件は単なる好適例にすぎず、従って、この発明はこ
れらに限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The Si-G of the present invention will be described below with reference to the drawings.
An example of a method of forming a thin film will be described. It should be noted that the drawings used for the description merely schematically show the shapes, sizes, and arrangement relationships of the respective constituent components to the extent that the present invention can be understood. Further, in the following description, specific materials and specific numerical conditions will be described, but these materials and conditions are merely preferable examples, and thus the present invention is not limited thereto.

【0018】1.薄膜形成装置の説明 先ず、この発明の方法を実施するために好適な装置例に
ついて説明する。
1. Description of Thin Film Forming Apparatus First, an example of an apparatus suitable for carrying out the method of the present invention will be described.

【0019】図2は、この装置の全体構成を概略的に示
す図である。なお、図2では反応炉11内にシリコン系
下地として、この場合、シリコン基板15(以下、「基
板」と略称することもある。)を配置した状態を示して
ある。
FIG. 2 is a diagram schematically showing the overall structure of this apparatus. In this case, FIG. 2 shows a state in which a silicon substrate 15 (hereinafter sometimes abbreviated as “substrate”) is arranged as a silicon-based base in the reaction furnace 11.

【0020】この装置は例えば石英製の反応炉(チャン
バー)11を具えている、この反応炉11は内部の基板
支持体13の上に基板15を出し入れ自在に載置できる
構造となっている。
This apparatus is provided with a reaction furnace (chamber) 11 made of, for example, quartz. The reaction furnace 11 has a structure in which a substrate 15 can be freely placed on and placed on a substrate support 13 inside.

【0021】さらに、この反応炉11の外部には加熱部
12を設けてある。この加熱部12は任意好適な構成の
赤外線照射手段例えば赤外線ランプをもって構成する。
赤外線ランプ12としてはタングステン−ハロゲンラン
プその他の任意好適なランプを用いる。好ましくは複数
個の赤外線ランプ12を反応炉11内の加熱を均一に行
なえるように配置する。また、基板15の近傍位置に基
板15の表面温度を測定するための温度測定手段14例
えば熱電対を設けてある。
Further, a heating section 12 is provided outside the reaction furnace 11. The heating unit 12 is composed of an infrared irradiating means of any suitable structure such as an infrared lamp.
As the infrared lamp 12, a tungsten-halogen lamp or any other suitable lamp is used. Preferably, a plurality of infrared lamps 12 are arranged so that the inside of the reaction furnace 11 can be heated uniformly. Further, a temperature measuring means 14 for measuring the surface temperature of the substrate 15, such as a thermocouple, is provided near the substrate 15.

【0022】さらにこの装置では、反応炉11に、該反
応炉11内を排気するための排気手段21及び22を、
排気管23及びバルブ24、25、26、27、28、
29、30を介し接続してある。これらバルブをそれぞ
れ任意好適に開閉することによって反応炉11内の圧力
を任意好適な圧力に制御でき反応炉11内に低真空排気
状態及び高真空排気状態を形成することが可能となって
いる。この真空度は真空計34で測定できる。
Further, in this apparatus, the reaction furnace 11 is provided with exhaust means 21 and 22 for exhausting the inside of the reaction furnace 11.
Exhaust pipe 23 and valves 24, 25, 26, 27, 28,
It is connected via 29 and 30. By appropriately opening and closing these valves, the pressure in the reaction furnace 11 can be controlled to any suitable pressure, and a low vacuum exhaust state and a high vacuum exhaust state can be formed in the reaction furnace 11. This degree of vacuum can be measured by a vacuum gauge 34.

【0023】さらに、この装置にはレリーフバルブ31
を設けてある。このレリーフバルブ31は反応炉11内
の圧力が大気圧例えば760Torrを超えた場合に自
動的に開放する。排気手段22は、このレリーフバルブ
31の開放によってガス供給源(後述する。)から反応
炉11内へ供給されたガスを排気する。尚、上述した排
気手段21、22は、例えば拡散ポンプ21とこのポン
プ21に接続されたロータリーポンプ22とをもって構
成できる。なお、図2において、32、33は排気管2
3に連通させて設けた真空計(或いは圧力ゲージ)であ
る。
Furthermore, this device has a relief valve 31.
Is provided. The relief valve 31 is automatically opened when the pressure inside the reaction furnace 11 exceeds atmospheric pressure, for example, 760 Torr. The exhaust means 22 exhausts the gas supplied from the gas supply source (described later) into the reaction furnace 11 by opening the relief valve 31. The exhaust means 21 and 22 described above can be configured by, for example, the diffusion pump 21 and the rotary pump 22 connected to the pump 21. In FIG. 2, 32 and 33 are exhaust pipes 2.
3 is a vacuum gauge (or pressure gauge) provided so as to communicate with 3.

【0024】次に、ガス供給系につき説明する。この実
施例では、ガス供給系を図示のように配設した供給管5
8及びこの供給管58の適所に設けた自動開閉バルブ5
1、52、53、54、56、バルブ57、流量コント
ローラ46、47、48、49、50で構成してある。
各流量コントローラの、反応炉11とは反対側の原料ガ
ス源用接続部(以下、「接続部」)41〜45に原料ガ
ス源(図示せず)を接続する。この実施例では接続部4
1に水素ガスを、接続部42にシリコンを含むIV族系
水素系ガスとしてシラン(SiH4 )を10体積%の濃
度で含む水素希釈SiH4 ガスを、接続部43にゲルマ
ニウムを含むIV族水素系ガスとしてゲルマン(GeH
4 )を1体積%の濃度で含む水素希釈GeH4 ガスを、
接続部44にホウ素を含む水素系ガスとしてジボラン
(B2 6 )を100ppmの濃度で含む水素希釈B2
6 ガスを、また、接続部45に不活性ガス例えば窒素
(N2 )ガスを、それぞれ供給する構成としてある。そ
して、これらガスの流量制御はバルブ51〜56をそれ
ぞれ任意好適に開閉することによって行なえ、また、水
素希釈SiH4 ガスと水素希釈GeH4 ガスと水素希釈
2 6 ガスの混合比もバルブ53,53,54をそれ
ぞれ任意好適に開閉することによって制御できる。
Next, the gas supply system will be described. In this embodiment, a supply pipe 5 having a gas supply system arranged as shown in the drawing.
8 and an automatic opening / closing valve 5 provided at an appropriate position on the supply pipe 58
1, 52, 53, 54, 56, a valve 57, and flow rate controllers 46, 47, 48, 49, 50.
A raw material gas source (not shown) is connected to the raw material gas source connecting portions (hereinafter, “connecting portion”) 41 to 45 on the side opposite to the reaction furnace 11 of each flow rate controller. In this embodiment, the connecting portion 4
1 is hydrogen gas, the connecting portion 42 is hydrogen-diluted SiH 4 gas containing silane (SiH 4 ) at a concentration of 10% by volume as a group IV hydrogen-containing gas containing silicon, and the connecting portion 43 is group IV hydrogen containing germanium. Germane as a system gas (GeH
4 ) GeH 4 gas diluted with hydrogen at a concentration of 1% by volume,
Hydrogen dilution B 2 containing diborane (B 2 H 6 ) at a concentration of 100 ppm as a hydrogen-containing gas containing boron in the connection portion 44
The H 6 gas and the inert gas such as nitrogen (N 2 ) gas are supplied to the connecting portion 45, respectively. The flow rate of these gases can be controlled by appropriately opening and closing the valves 51 to 56, and the mixing ratio of the hydrogen-diluted SiH 4 gas, the hydrogen-diluted GeH 4 gas, and the hydrogen-diluted B 2 H 6 gas can also be controlled by the valve 53. , 53, 54 can be controlled by arbitrarily opening and closing.

【0025】2.Si−Ge薄膜の形成例 次に、この発明のSi−Ge薄膜の形成方法の実施例に
ついて比較例と併せて説明する。図1、図3、図4及び
図5はその説明に供する図である。特に、図1は、この
実施例の方法実施中の、反応炉11への各ガスの導入条
件及びシリコン基板15に対する加熱処理条件の説明図
であり、横軸に時間をとり縦軸に温度をとって示したも
のである。また、図3はシリコン基板15とこの上にこ
の実施例の方法で形成されたSi−Ge薄膜61とで構
成される試料の断面図である。図4はシリコン基板15
とこの上に比較例(後述する)の方法で形成されたSi
−Ge薄膜63とで構成される試料の断面図である。な
お、図4において、65は表面に生じた凹凸を示し、6
7は薄膜63中の欠陥を示す。また、図5はSi−Ge
薄膜の歪成長の臨界膜厚が該Si−Ge薄膜中のホウ素
濃度にどのように依存するかについてこの出願に係る発
明者が調べた結果を示した特性図である。
2. Example of forming Si-Ge thin film Next, an example of the method of forming the Si-Ge thin film of the present invention will be described together with a comparative example. 1, 3, 4, and 5 are diagrams used for the description. In particular, FIG. 1 is an explanatory diagram of the conditions for introducing each gas into the reaction furnace 11 and the heat treatment conditions for the silicon substrate 15 during the execution of the method of this embodiment, in which the horizontal axis represents time and the vertical axis represents temperature. It has been shown. FIG. 3 is a cross-sectional view of a sample composed of the silicon substrate 15 and the Si-Ge thin film 61 formed thereon by the method of this embodiment. FIG. 4 shows a silicon substrate 15
And Si formed thereon by the method of the comparative example (described later)
FIG. 6 is a cross-sectional view of a sample including a —Ge thin film 63. In FIG. 4, reference numeral 65 denotes unevenness generated on the surface, and 6
Reference numeral 7 indicates a defect in the thin film 63. Further, FIG. 5 shows Si-Ge.
FIG. 6 is a characteristic diagram showing the results of an investigation conducted by the inventor of the present application as to how the critical film thickness for strain growth of a thin film depends on the boron concentration in the Si—Ge thin film.

【0026】2−1.Si系下地の前処理 この実施例では、より良好なSi−Ge薄膜を得るため
に、Si系下地として用いるシリコン基板15に対し、
これを反応炉11に入れる前に、次のような前処理を行
なう。
2-1. Pretreatment of Si-based underlayer In this example, in order to obtain a better Si-Ge thin film, the silicon substrate 15 used as the Si-based underlayer was
Before putting this in the reaction furnace 11, the following pretreatment is performed.

【0027】先ず、シリコン基板15を、120℃の温
度に加熱した硫酸−過酸化水素水溶液中に、例えば15
分間浸漬する。これにより、シリコン基板15表面に約
1nmの酸化膜が形成される。次に、このシリコン基板
を直ちに1%フッ酸(HF)水溶液中に約30秒間浸漬
後、そこから取り出し純水で洗浄し、その後、乾燥させ
る。このフッ酸による処理により上記酸化膜が除去され
ると共にシリコン基板表面を汚染している物質も除去さ
れる。
First, the silicon substrate 15 is immersed in a sulfuric acid-hydrogen peroxide aqueous solution heated to a temperature of 120 ° C., for example, 15
Soak for a minute. As a result, an oxide film of about 1 nm is formed on the surface of the silicon substrate 15. Next, this silicon substrate is immediately immersed in a 1% hydrofluoric acid (HF) aqueous solution for about 30 seconds, taken out from there, washed with pure water, and then dried. By this treatment with hydrofluoric acid, the oxide film is removed and the substance contaminating the surface of the silicon substrate is also removed.

【0028】前処理の終了したシリコン基板を直ちに反
応炉11内の基板支持体13上に固定する。なお、反応
炉11内には、反応炉内11内で基板15に自然酸化膜
が形成されるのを防止するため、パージ用の不活性ガス
この場合窒素ガスを予め導入しておくのが良い。これ
は、バルブ51、52、53、54、55を閉じてお
き、バルブ56および57を開くことにより行なえる。
The pretreated silicon substrate is immediately fixed on the substrate support 13 in the reaction furnace 11. In order to prevent a natural oxide film from being formed on the substrate 15 in the reaction furnace 11, an inert gas for purging, in this case, nitrogen gas, should be introduced in advance in the reaction furnace 11. . This can be done by closing valves 51, 52, 53, 54 and 55 and opening valves 56 and 57.

【0029】 2−2.Si−Ge単結晶薄膜の形成(その1) 次に、このシリコン基板15上Si−Ge薄膜を以下に
説明するように形成する。
2-2. Formation of Si-Ge Single Crystal Thin Film (No. 1) Next, the Si-Ge thin film on the silicon substrate 15 is formed as described below.

【0030】はじめに、排気手段21,22を用い反応
炉11内をその真空度が例えば1×10-6Torrにな
るまで排気する。これにより反応炉11内の清浄化をお
こなう。次に、バルブ27を閉じ、かつ、バルブ28、
55、52、53及び54をそれぞれ開いて、反応炉1
1内に、上記水素希釈SiH4 ガス、水素希釈GeH4
ガス及び水素希釈B2 6 ガスをそれぞれ導入する(図
1の時刻T1 )。この際、水素希釈SiH4 ガスの流量
を50sccm、水素希釈GeH4 の流量を30scc
m、水素希釈B2 6 の流量を70sccmにそれぞれ
制御すると共に、反応炉11内の真空度が10Torr
程度になるように、排気手段21、22の排気速度を制
御する。
First, the inside of the reaction furnace 11 is evacuated by using the evacuation means 21 and 22 until the degree of vacuum thereof becomes, for example, 1 × 10 -6 Torr. Thereby, the inside of the reaction furnace 11 is cleaned. Next, the valve 27 is closed and the valve 28,
55, 52, 53, and 54 are opened, and the reactor 1
1 in the above, hydrogen diluted SiH 4 gas, hydrogen diluted GeH 4
Gas and hydrogen diluted B 2 H 6 gas are introduced respectively (time T 1 in FIG. 1 ). At this time, the flow rate of hydrogen-diluted SiH 4 gas is 50 sccm, and the flow rate of hydrogen-diluted GeH 4 is 30 sccc.
m, the flow rate of hydrogen diluted B 2 H 6 is controlled to 70 sccm, and the degree of vacuum in the reaction furnace 11 is 10 Torr.
The exhausting speed of the exhausting means 21, 22 is controlled so that the exhaust gas is exhausted.

【0031】次に、加熱装置12としての赤外線ランプ
によりシリコン基板15の加熱を開始する(図1の時刻
2 )。この加熱はシリコン基板15の表面温度を温度
測定手段14で測定しながら、基板温度が例えば25℃
/秒〜100℃/秒の間の適当な割合で上昇するような
条件で行なう。そして、基板表面温度が約700〜90
0℃の間の好適な温度(この場合は850℃とする。)
となったら(図1の時刻T3 )、例えば30秒間その温
度の状態を保持できるように基板15の加熱を制御する
(図1の期間A)。そして、30秒間が経過したとき
(図1のT4 )、加熱手段12の動作を停止し、およ
び、バルブ52、53、54をそれぞれ閉じて水素希釈
SiH4 ガス、水素希釈GeH4 ガス及び水素希釈B2
6 ガスの供給を停止すると共に、試料を急速冷却する
ためにバルブ51を開けて反応炉11内に水素ガスを供
給する。
Next, heating of the silicon substrate 15 is started by an infrared lamp as the heating device 12 (time T 2 in FIG. 1). For this heating, while the surface temperature of the silicon substrate 15 is measured by the temperature measuring means 14, the substrate temperature is, for example, 25 ° C.
/ Sec to 100 ° C / sec under the condition that the temperature rises at an appropriate rate. The substrate surface temperature is about 700 to 90.
Suitable temperature between 0 ° C (850 ° C in this case)
When it becomes (time T 3 in FIG. 1), the heating of the substrate 15 is controlled so that the temperature can be maintained for 30 seconds (period A in FIG. 1). Then, when 30 seconds have elapsed (T 4 in FIG. 1), the operation of the heating means 12 is stopped, and the valves 52, 53, 54 are closed to close the hydrogen diluted SiH 4 gas, the hydrogen diluted GeH 4 gas and the hydrogen. Dilution B 2
While the supply of H 6 gas is stopped, the valve 51 is opened to rapidly cool the sample, and hydrogen gas is supplied into the reaction furnace 11.

【0032】上記加熱処理期間Aにおいて、シリコン基
板15上には、基板15の面方位と同一の面方位のSi
−Ge単結晶膜61が約100nmの膜厚で成長する
(図3参照)。そして、この実施例の成長条件(水素希
釈SiH4 ガスなどの流量比や基板温度などの条件)で
は、得られるSi−Ge薄膜61は、Geを10原子%
含み、かつ、ホウ素を1×1020/cm3 の濃度で含む
ものとなる。なお、Ge組成及びホウ素濃度は、供給律
速であるのでそれぞれ水素希釈GeH4 ガスの流量、水
素希釈B2 6 ガスの流量に比例して変化させることが
できる。
During the heat treatment period A, Si having the same plane orientation as that of the substrate 15 is formed on the silicon substrate 15.
The -Ge single crystal film 61 grows to a film thickness of about 100 nm (see FIG. 3). Then, under the growth conditions of this embodiment (conditions such as the flow rate ratio of hydrogen-diluted SiH 4 gas and the substrate temperature), the obtained Si-Ge thin film 61 contains 10 atomic% Ge.
It also contains boron at a concentration of 1 × 10 20 / cm 3 . Since the Ge composition and the boron concentration are rate-controlling, they can be changed in proportion to the flow rate of hydrogen-diluted GeH 4 gas and the flow rate of hydrogen-diluted B 2 H 6 gas, respectively.

【0033】次に、シリコン基板15の温度が例えば1
00℃より低い温度例えばほぼ室温となったら、バルブ
51,55を閉じ水素ガスの供給を停止する。その後、
反応炉11内に原料ガスが残存することを防止するため
に、反応炉11内をその真空度が0.003Torr程
度になるまで排気する。その後、バルブ56、57を開
けて反応炉11内に反応炉内の圧力が大気圧になるまで
不活性ガスを導入する。その後、反応炉11内から試料
(Si−Ge薄膜形成済みのシリコン基板)を取り出
す。
Next, the temperature of the silicon substrate 15 is, for example, 1
When the temperature becomes lower than 00 ° C., for example, almost room temperature, the valves 51 and 55 are closed and the supply of hydrogen gas is stopped. afterwards,
In order to prevent the raw material gas from remaining in the reaction furnace 11, the inside of the reaction furnace 11 is evacuated until the degree of vacuum reaches about 0.003 Torr. After that, the valves 56 and 57 are opened and the inert gas is introduced into the reaction furnace 11 until the pressure inside the reaction furnace becomes atmospheric pressure. Then, the sample (silicon substrate on which the Si—Ge thin film has been formed) is taken out from the reaction furnace 11.

【0034】この実施例の方法で形成されたSi−Ge
薄膜61とシリコン基板15との格子不整合はホウ素を
用いない場合に比べ理論的にいって約9割になる(約1
割緩和される。)。また、形成されたSi−Ge薄膜6
1の表面のモホロジを観察したところ、凹凸(図示せ
ず)は最大でも2nm程度であることが判った。
Si-Ge formed by the method of this embodiment
The lattice mismatch between the thin film 61 and the silicon substrate 15 is theoretically about 90% as compared with the case where boron is not used (about 1).
It is relatively eased. ). In addition, the formed Si-Ge thin film 6
The morphology of the surface of No. 1 was observed, and it was found that the unevenness (not shown) was about 2 nm at the maximum.

【0035】一方、比較例として、水素希釈B2 6
用いないこと以外は上記実施例と同様な手順でSi−G
e薄膜を形成する。この比較例の試料のSi−Ge薄膜
63(図4参照)の表面のモホロジを観察したところ、
10nm以上の凹凸65が生じていることが判った。
On the other hand, as a comparative example, Si-G was prepared by the same procedure as in the above-mentioned example except that hydrogen-diluted B 2 H 6 was not used.
e Form a thin film. When the morphology of the surface of the Si-Ge thin film 63 (see FIG. 4) of the sample of this comparative example was observed,
It was found that the unevenness 65 of 10 nm or more was generated.

【0036】これら実施例及び比較例から明らかなよう
にこの発明のSi−Ge薄膜形成方法はSi−Ge薄膜
の表面モホロジの改善に有効なことが理解できる。
As is clear from these examples and comparative examples, it can be understood that the Si-Ge thin film forming method of the present invention is effective in improving the surface morphology of the Si-Ge thin film.

【0037】また、実施例の試料及び比較例の試料各々
のSi−Ge薄膜61,63の結晶欠陥についてそれぞ
れ観察したところ、比較例の薄膜63では欠陥65(図
4参照)が実施例のものより多いことが判った。このこ
とから、この発明のSi−Ge薄膜形成方法はSi−G
e薄膜の結晶性改善にも有効なことが理解できる。
Further, when the crystal defects of the Si-Ge thin films 61 and 63 of the sample of the example and the sample of the comparative example were observed, respectively, the defect 65 (see FIG. 4) in the thin film 63 of the comparative example was that of the example. Turned out to be more. From this, the Si-Ge thin film forming method of the present invention is
It can be understood that it is also effective for improving the crystallinity of the e thin film.

【0038】 2−3.Si−Ge単結晶薄膜の形成(その2) 次に、この発明の方法により歪成長の臨界膜厚がどの程
度改善されるか(増加するか)を調べるために、形成す
るSi−Ge薄膜61の膜厚を種々に設定し、かつ、水
素希釈B2 6 ガスの流量を2−1項のときのほぼ5倍
(約350sccm)としたこと以外は、2−1項での
形成条件でそれぞれ複数の試料を作製する。
2-3. Formation of Si-Ge Single Crystal Thin Film (Part 2) Next, in order to investigate how much the critical film thickness of strain growth is improved (increased) by the method of the present invention, the Si-Ge thin film 61 to be formed is formed. Under various conditions, except that the film thickness of B was set to various values and the flow rate of the hydrogen-diluted B 2 H 6 gas was set to approximately 5 times (about 350 sccm) as in the case of 2-1. Multiple samples are prepared for each.

【0039】得られた各試料のSi−Ge薄膜でのGe
組成は上記2−1項のものと同じであるがホウ素濃度は
5×1020/cm3 となっていることが判った。また、
各試料の観察結果より、上記条件の場合(Ge組成が1
0原子%でかつホウ素濃度が5×1020/cm3 である
Si−Ge薄膜の場合)、歪成長の臨界膜厚が約400
nmとなることが判った。
Ge in the Si-Ge thin film of each obtained sample
It was found that the composition was the same as that of the above-mentioned item 2-1, but the boron concentration was 5 × 10 20 / cm 3 . Also,
From the observation result of each sample, in the case of the above conditions (Ge composition is 1
In the case of a Si—Ge thin film having 0 atomic% and a boron concentration of 5 × 10 20 / cm 3 ), the critical film thickness for strain growth is about 400.
It was found to be nm.

【0040】一方、比較例として、水素希釈B2 6
スを用いないこと以外はこの2−3項の実施例の方法と
同様な方法で複数の試料を作製する。そして、比較例の
場合の歪成長の臨界膜厚を調べたところ、約200mで
あることが判った。
On the other hand, as a comparative example, a plurality of samples are prepared in the same manner as in the method of the embodiment of the paragraph 2-3, except that the B 2 H 6 gas diluted with hydrogen is not used. When the critical film thickness for strain growth in the comparative example was examined, it was found to be about 200 m.

【0041】このことから、この発明の方法によれば、
同じGe組成のSi−Ge薄膜を得る場合の歪成長の臨
界膜厚を従来より向上(この実施例の例でいえば2倍に
まで向上)させ得ることが理解できる。このため、この
発明の方法は薄膜の格子不整合の緩和及び結晶性の向上
が図れるばかりでなく、膜厚制御の点でも有利といえ
る。
From this, according to the method of the present invention,
It can be understood that the critical film thickness for strain growth in the case of obtaining a Si-Ge thin film having the same Ge composition can be improved (doubled in the example of this embodiment) as compared with the conventional case. Therefore, the method of the present invention can not only alleviate the lattice mismatch of the thin film and improve the crystallinity but also can be said to be advantageous from the viewpoint of controlling the film thickness.

【0042】また、Si−Ge薄膜の歪成長の臨界膜厚
が該Si−Ge薄膜中のホウ素濃度にどのように依存す
るかについて、Si−Ge薄膜のGe組成が10原子%
となる場合について調べたところ、図5のような関係と
なることが判った。このことから、シリコンを含むIV
族水素系ガスとゲルマニウムを含むIV族水素系ガスに
対するホウ素を含む水素系ガスの混合量を制御してSi
−Ge薄膜に添加されるホウ素の量を制御することで、
臨界膜厚の制御ができることが理解できる。
Further, regarding how the critical film thickness of strain growth of the Si-Ge thin film depends on the boron concentration in the Si-Ge thin film, the Ge composition of the Si-Ge thin film is 10 atomic%.
As a result of investigating the case, the relationship is as shown in FIG. From this, IV containing silicon
Si by controlling the mixing amount of the hydrogen-containing gas containing boron with respect to the group IV hydrogen-containing gas containing germanium and germanium
-By controlling the amount of boron added to the Ge thin film,
It can be understood that the critical film thickness can be controlled.

【0043】[0043]

【発明の効果】上述した説明からも明らかなように、こ
の発明のSi−Ge薄膜の形成方法によれば、Siを含
むIV族系水素ガス、Geを含むIV族系水素ガス及び
ホウ素を含む水素系ガスの混合ガス雰囲気中でSi系下
地に加熱処理を行なってこの下地にSi−Ge薄膜を形
成するので、Siを含むIV族系水素ガス及びGeを含
むIV族系水素ガスのみを用いていた従来方法に比べ、
Si−Ge薄膜の表面モホロジ及び結晶性の改善がそれ
ぞれでき、さらに、歪成長の臨界膜厚を増加させること
ができる。このため、Si−Ge薄膜が有する本来の特
性を生かし易くなると考えられる。
As is apparent from the above description, according to the method of forming a Si-Ge thin film of the present invention, a group IV hydrogen gas containing Si, a group IV hydrogen gas containing Ge and boron are contained. Since a Si-based underlayer is heat-treated in a mixed gas atmosphere of hydrogen-based gas to form a Si-Ge thin film on this underlayer, only a group IV-based hydrogen gas containing Si and a group IV-based hydrogen gas containing Ge are used. Compared with the conventional method,
The surface morphology and crystallinity of the Si-Ge thin film can be improved, and the critical film thickness for strain growth can be increased. Therefore, it is considered that the original characteristics of the Si-Ge thin film can be easily utilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のSi−Ge薄膜の形成条件の説明に供
する図であり、ガス供給条件および基板加熱条件を示し
た図である。
FIG. 1 is a diagram for explaining conditions for forming a Si—Ge thin film of an example, showing gas supply conditions and substrate heating conditions.

【図2】この発明の方法を実施するための成膜装置構成
例を示した図である。
FIG. 2 is a diagram showing an example of the structure of a film forming apparatus for carrying out the method of the present invention.

【図3】実施例の説明に供する図であり、実施例の薄膜
形成条件で形成した試料の断面図である。
FIG. 3 is a diagram for explaining an example, and is a cross-sectional view of a sample formed under the thin film forming conditions of the example.

【図4】比較例の説明に供する図であり、比較例の薄膜
形成条件で形成した試料の断面図である。
FIG. 4 is a diagram for explaining a comparative example, and is a cross-sectional view of a sample formed under the thin film forming conditions of the comparative example.

【図5】実施例の説明に供する図であり、Si−Ge薄
膜の歪成長の臨界膜厚が該Si−Ge薄膜中のホウ素濃
度にどのように依存するかを示した図である。
FIG. 5 is a diagram for explaining an example, showing how the critical film thickness of strain growth of a Si—Ge thin film depends on the boron concentration in the Si—Ge thin film.

【符号の説明】[Explanation of symbols]

15:シリコン系下地(例えばシリコン基板) 61:実施例の方法で得たSiGe薄膜 15: Silicon-based underlayer (eg, silicon substrate) 61: SiGe thin film obtained by the method of the example

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反応炉内にシリコン(Si)系下地を入
れ、該反応炉内にシリコンを含むIV族水素系ガスとゲ
ルマニウムを含むIV族水素系ガスを導入し、かつ、前
記下地に加熱処理を行ないながら、前記下地上にSi−
Ge薄膜を形成する方法において、 形成されるSi−Ge薄膜中に該薄膜とシリコン系下地
との格子不整合を緩和するためのホウ素を添加するため
に、反応炉内に、シリコンを含むIV族水素系ガス及び
ゲルマニウムを含むIV族水素系ガスと共に、ホウ素を
含む水素系ガスを導入することを特徴とするSi−Ge
薄膜の形成方法。
1. A silicon (Si) -based substrate is placed in a reaction furnace, a group IV hydrogen-based gas containing silicon and a group IV hydrogen-based gas containing germanium are introduced into the reaction furnace, and the substrate is heated. While processing, Si-
In a method for forming a Ge thin film, in order to add boron for relaxing lattice mismatch between the Si-Ge thin film to be formed and the silicon-based underlayer, a group IV containing silicon is added in a reaction furnace. Si-Ge characterized in that a hydrogen-containing gas containing boron is introduced together with a group IV hydrogen-containing gas containing hydrogen-containing gas and germanium.
Method of forming thin film.
【請求項2】 請求項1に記載のSi−Ge薄膜の形成
方法において、 形成されるSi−Ge薄膜中のホウ素濃度が該形成され
る薄膜の歪成長の臨界膜厚を所望の値とし得る濃度に少
なくともなるように、前記ホウ素を含む水素系ガスの導
入量を制御することを特徴とするSi−Ge薄膜の形成
方法。
2. The method for forming a Si—Ge thin film according to claim 1, wherein the boron concentration in the formed Si—Ge thin film can set a critical film thickness for strain growth of the formed thin film to a desired value. A method for forming a Si-Ge thin film, which comprises controlling the introduction amount of the hydrogen-containing gas containing boron so as to be at least the concentration.
JP1346593A 1993-01-29 1993-01-29 Formation of si-ge thin film Withdrawn JPH06232042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1346593A JPH06232042A (en) 1993-01-29 1993-01-29 Formation of si-ge thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1346593A JPH06232042A (en) 1993-01-29 1993-01-29 Formation of si-ge thin film

Publications (1)

Publication Number Publication Date
JPH06232042A true JPH06232042A (en) 1994-08-19

Family

ID=11833896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1346593A Withdrawn JPH06232042A (en) 1993-01-29 1993-01-29 Formation of si-ge thin film

Country Status (1)

Country Link
JP (1) JPH06232042A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129558A (en) * 1995-10-30 1997-05-16 Nec Corp Manufacture of semiconductor device
DE19632834A1 (en) * 1996-08-14 1998-02-19 Siemens Ag Process for the production of fine structures
JP2003045811A (en) * 2001-07-31 2003-02-14 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device and wafer processing system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129558A (en) * 1995-10-30 1997-05-16 Nec Corp Manufacture of semiconductor device
DE19632834A1 (en) * 1996-08-14 1998-02-19 Siemens Ag Process for the production of fine structures
DE19632834C2 (en) * 1996-08-14 1998-11-05 Siemens Ag Process for the production of fine structures and its use for the production of a mask and a MOS transistor
US5943571A (en) * 1996-08-14 1999-08-24 Siemens Aktiengesellschaft Method for manufacturing fine structures
JP2003045811A (en) * 2001-07-31 2003-02-14 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device and wafer processing system

Similar Documents

Publication Publication Date Title
US5259918A (en) Heteroepitaxial growth of germanium on silicon by UHV/CVD
Racanelli et al. Temperature dependence of growth of Ge x Si1− x by ultrahigh vacuum chemical vapor deposition
JP2005503000A (en) Film formation on mixed substrate using trisilane
JP3312553B2 (en) Method for producing silicon single crystal and silicon single crystal thin film
US5286334A (en) Nonselective germanium deposition by UHV/CVD
JPH06232042A (en) Formation of si-ge thin film
JP4782670B2 (en) Epitaxial Ge-containing film growth method and epitaxial semiconductor film forming system
JPWO2011078240A1 (en) Method for selective growth of doped epitaxial film and selective growth apparatus for doped epitaxial film
US6251183B1 (en) Rapid low-temperature epitaxial growth using a hot-element assisted chemical vapor deposition process
US8216921B2 (en) Method for production of silicon wafer for epitaxial substrate and method for production of epitaxial substrate
Caymax et al. Low thermal budget chemical vapour deposition techniques for Si and SiGe
JPH0722330A (en) Method for forming strain hetero epitaxial layer
CN110189983B (en) Method and apparatus for forming silicon film, germanium film or silicon germanium film
KR20220124696A (en) Epitaxial Wafer Manufacturing Method and Epitaxial Wafer
JPH05326419A (en) Method for forming semiconductor thin film
EP0905288A1 (en) Process for preparing semiconductor monocrystalline thin film
JP2000277432A (en) Selective growth method
JPH0645257A (en) Method for forming semiconductor thin film
JPH07153685A (en) Method of forming thin film of strain hetero superlattice structure
JPH0669131A (en) Formation of semiconductor thin film
JPH118226A (en) Cleaning of semiconductor substrate surface and apparatus therefor
JPH05109630A (en) Method for forming semiconductor thin film
JPH04324621A (en) Formation of semiconductor thin film
JPH04324619A (en) Formation of semiconductor thin film
JPH0374839A (en) Formation of iii-v compound semiconductor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404