JPH06230066A - Noncontact surge detecting sensor and location of accident section by using noncontact surge detecting sensor - Google Patents

Noncontact surge detecting sensor and location of accident section by using noncontact surge detecting sensor

Info

Publication number
JPH06230066A
JPH06230066A JP5015408A JP1540893A JPH06230066A JP H06230066 A JPH06230066 A JP H06230066A JP 5015408 A JP5015408 A JP 5015408A JP 1540893 A JP1540893 A JP 1540893A JP H06230066 A JPH06230066 A JP H06230066A
Authority
JP
Japan
Prior art keywords
surge
line
microwave
power
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5015408A
Other languages
Japanese (ja)
Inventor
Masahide Ogawa
雅英 小川
Shigeru Ibuki
繁 伊吹
Atsushi Kato
淳 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5015408A priority Critical patent/JPH06230066A/en
Publication of JPH06230066A publication Critical patent/JPH06230066A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Locating Faults (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PURPOSE:To provide a noncontact surge detecting sensor by which a surge wave propagating in a main electric power line can be detected in noncontact in a small structure. CONSTITUTION:When a surge wave propagates in a main electric power line 2 and passes through transmitting parts 1a-1f, an electric current transformer CT of the transmitting parts 1a-1f detects the surge wave, and a bulk effect oscillating element such as, for example, a Gunn diode arranged in the transmitting parts 1a-1f oscillates in an oscillation frequency proper to the element, and generates a microwave. A receiving part 4 installed on a power transmission steel tower 3 receives the microwave transmitted by the transmitting parts 1a-1f, and detects that the surge wave passes through the electric power line. When the transmitting parts 1a-1f having a microwave oscillating element different in the oscillation frequency are installed in the respective lines or respective phases of the main electric power line 2, the line and the phase and the like in which the surge wave is propagating can be discriminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、架空送電線の保守・点
検のためのサージ検出センサおよび非接触サージセンサ
を用いた事故区間標定方法に関し、特に 本発明は架空
送電線路の事故時などに発生するサージ波を非接触で検
出するとともに、事故発生区間を標定することができる
非接触サージ検出センサおよび非接触サージセンサを用
いた事故区間標定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an accident section locating method using a surge detection sensor and a non-contact surge sensor for maintenance / inspection of an overhead power transmission line. The present invention relates to a non-contact surge detection sensor capable of non-contact detection of generated surge waves and of locating an accident occurrence section, and an accident section locating method using the non-contact surge sensor.

【0002】[0002]

【従来の技術】架空送電線路の電力本線には高電圧が印
加されているため、電力本線のサージ波を検出する場合
には、測定装置の絶縁方法が問題となる。図5、図6は
従来のサージ波検出方法を示す図であり、図5、図6に
おいて、2は電力本線、3は送電鉄塔、5は発変電機
器、11a,11bはコンデンサ、12は電流変成器
(以下、CTという)、Sはサージ波を示しており、図
5のコンデンサ11a,11bにより電力本線の電圧を
分圧する電圧変成器(以下、PTという)を構成してい
る。また、図5、図6において、点線で囲まれた部分は
発変電所構内を示している。
2. Description of the Related Art Since a high voltage is applied to an electric power main line of an overhead power transmission line, an insulation method of a measuring device becomes a problem when detecting a surge wave of the electric power main line. FIGS. 5 and 6 are diagrams showing a conventional surge wave detection method. In FIGS. 5 and 6, 2 is a power main line, 3 is a power transmission tower, 5 is a power generation and transformation device, 11a and 11b are capacitors, and 12 is a current. A transformer (hereinafter referred to as CT), S indicates a surge wave, and constitutes a voltage transformer (hereinafter referred to as PT) that divides the voltage of the power main line by the capacitors 11a and 11b in FIG. In addition, in FIG. 5 and FIG. 6, the portion surrounded by the dotted line shows the inside of the transmission and transformation substation.

【0003】従来から、例えば、発変電所構内などにお
いては、図5に示すようにPTを用いたり、図6に示す
ようにCTを用いて電圧/電流を計測し、サージ波など
を検出していた。しかしながら、上記PTあいるはCT
などを用いる場合には、高電圧が印加されている電力本
線に各装置を接続して使用する必要があり、測定系との
絶縁のため碍子装置を必要としたり、あるいは油やガス
で絶縁性能を高める必要があり、大きな装置となった。
Conventionally, for example, in a substation or the like, a PT is used as shown in FIG. 5 or a voltage / current is measured using CT as shown in FIG. 6 to detect a surge wave or the like. Was there. However, the above PT is CT
When using such as, it is necessary to connect each device to the power main line to which a high voltage is applied, and use an insulator device for insulation with the measurement system, or insulation performance with oil or gas. It has become a big device.

【0004】また、最近では、光PTや光CTなどのレ
ーザあるいは光ファイバを利用したものがあるが、これ
らの場合でも大きな碍子装置を必要とした。
In recent years, there are lasers using optical PT and optical CT or optical fibers, but in these cases, a large insulator device is required.

【0005】[0005]

【発明が解決しようとする課題】発変電所などの大きな
敷地が確保されている場所においては、上記のようなC
TやPTを設置することが可能であるが、送電線路途中
の箇所ではサージ波を検出しようとした場合、送電線鉄
塔周辺にはこれらの大きな装置を設置できる程度の敷地
がなく、また、送電鉄塔にこれらのPT,CTを設置す
ることは、電気的な絶縁性能の信頼性を低下させるばか
りでなく、設備が煩雑となり、送電系統の信頼性を損ね
ることとなる。
[Problems to be Solved by the Invention] In a place where a large site such as a power substation is secured, the above-mentioned C
It is possible to install T or PT, but if you try to detect a surge wave in the middle of the transmission line, there is no site around the transmission line tower where you can install these large devices. Installing these PTs and CTs on the steel tower not only lowers the reliability of the electrical insulation performance, but also complicates the equipment and impairs the reliability of the power transmission system.

【0006】本発明は上記した従来技術の問題点を考慮
してなされたものであって、小型でかつ非接触で電力本
線を伝播するサージ波を検出することができる非接触サ
ージ検出センサおよび非接触サージセンサを用いた事故
区間標定方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and is a small-sized non-contact surge detection sensor and a non-contact surge detection sensor that can detect a surge wave propagating through a power main line in a non-contact manner. It is an object of the present invention to provide an accident section location method using a contact surge sensor.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の請求項1の発明は、架空送電線路の電力本
線に取り付けられ、電力本線を伝播するサージ波を検出
する電流変成器と、電流変成器が出力を発生したときマ
イクロ波を出力するマイクロ波発振素子とを具備する発
信部と、電力本線とは別の箇所に設置され、上記発信器
が出力するマイクロ波を受信する受信部とを備え、上記
電流変成器をサージ波が通過したとき発信部が出力する
マイクロ波を受信部で受信することにより、電力本線を
伝播するサージ波を電力本線と非接触で検出するように
したものである。
In order to solve the above-mentioned problems, the invention of claim 1 of the present invention relates to a current transformer which is attached to an electric power main line of an overhead power transmission line and detects a surge wave propagating through the electric power main line. , A receiving section which is provided in a place different from the power main line and a transmitting unit having a microwave oscillating element which outputs a microwave when the current transformer generates an output, and which receives the microwave output from the transmitting unit. And a receiving section that receives a microwave output from the transmitting section when a surge wave passes through the current transformer, so that the surge wave propagating through the power main line can be detected in a non-contact manner with the power main line. It was done.

【0008】本発明の請求項2の発明は、請求項1の発
明において、発信部のCTとして、ロゴスキ・コイルを
用いたものである。本発明の請求項3の発明は、請求項
1または請求項2の発明において、発信部のマイクロ波
発振素子をガン発振素子で構成したものである。本発明
の請求項4の発明は、請求項1,2または請求項3の発
明において、電力本線の各回線もしくは各相に、発振周
波数の異なるマイクロ波発振素子を備えた発信器を取り
付け、サージ波が伝播する電力本線の回線もしくは相
を、発信器の出力周波数により識別できるようにしたも
のである。
According to a second aspect of the present invention, in the first aspect of the invention, a Rogowski coil is used as the CT of the transmitter. According to a third aspect of the present invention, in the first or second aspect of the invention, the microwave oscillating element of the transmitting unit is configured by a gun oscillating element. According to a fourth aspect of the present invention, in the first, second or third aspect of the invention, an oscillator having a microwave oscillating element having a different oscillation frequency is attached to each line or each phase of the power main line, and surge The line or phase of the power mains through which the wave propagates can be identified by the output frequency of the oscillator.

【0009】本発明の請求項5の発明は、架空送電線路
の電力本線の異なった位置に、電力本線をサージ波が伝
播した際、それぞれ異なる周波数で発振する2以上の発
信部を取り付け、また、架空送電線路の電力本線とは別
の箇所に上記各発信器の出力信号を受信する受信部を設
置し、受信部において受信された、上記各発信部の出力
信号の位相差を検出することにより、事故発生方向を判
別し、事故区間を標定するようにしたものである。
According to a fifth aspect of the present invention, two or more transmitters that oscillate at different frequencies when surge waves propagate through the power main line are attached to different positions of the power main line of the overhead power transmission line, and The receiver section for receiving the output signals of the above-mentioned transmitters is installed at a location different from the mains of the overhead power transmission line, and the phase difference between the output signals of the above-mentioned transmitter sections received by the receiver section is detected. In this way, the accident occurrence direction is determined and the accident section is located.

【0010】[0010]

【作用】サージ波が電力本線を伝播し、発信部を通過す
ると、発信部のCTがサージ波を検出し、マイクロ波発
振素子が素子固有の発振周波数で発振しマイクロ波を発
生する。受信部は上記マイクロ波を受信し、サージ波が
電力線を通過したことを検出する。
When the surge wave propagates through the power main line and passes through the transmitting portion, the CT of the transmitting portion detects the surge wave, and the microwave oscillating element oscillates at the oscillation frequency peculiar to the element to generate the microwave. The receiving unit receives the microwave and detects that the surge wave has passed through the power line.

【0011】本発明の請求項1ないし請求項2の発明に
おいては、上記のように、電力本線を通過するサージ波
を電力本線と非接触で検出することができるので、送電
線路の電気的な絶縁性能を低下させることなく、サージ
波の検出が可能となる。また、碍子装置等の格別の絶縁
手段を用いる必要がないので、サージ検出センサを小型
化することができ、送電鉄塔への取り付けも容易とな
る。さらに、マイクロ波を使用することにより、発信
部、受信部が塵粉で汚れても、信号伝達への影響が少な
い。
According to the first and second aspects of the present invention, as described above, the surge wave passing through the power main line can be detected in a non-contact manner with the power main line. Surge waves can be detected without degrading the insulation performance. Further, since it is not necessary to use a special insulating means such as an insulator device, the surge detection sensor can be downsized and can be easily attached to the power transmission tower. Further, by using the microwave, even if the transmitting unit and the receiving unit are contaminated with dust, the influence on the signal transmission is small.

【0012】本発明の請求項3の発明においては、請求
項1または請求項2の発明において、発信部のマイクロ
波発振素子をガン発振素子で構成したので、CTで発生
したエネルギーでマイクロ波を発振させることができ、
発信部に太陽電池などの電源を設ける必要がなく、装置
を小型化することができるとともに、保守が容易とな
る。
In the invention of claim 3 of the present invention, in the invention of claim 1 or 2, the microwave oscillating element of the transmitting portion is composed of a gun oscillating element, so that the microwave generated by the energy generated by CT is generated. Can be oscillated,
Since it is not necessary to provide a power source such as a solar cell in the transmitter, the device can be downsized and maintenance is easy.

【0013】本発明の請求項4の発明においては、請求
項1または請求項2の発明において、電力本線の各回線
もしくは各相に、発振周波数の異なるマイクロ波発振素
子を備えた発信器を取り付けたので、サージ波が伝播し
た回線、相等の識別が可能となる。本発明の請求項5の
発明においては、架空送電線路の電力本線の異なった位
置に、電力本線をサージ波が伝播した際、それぞれ異な
る周波数で発振する2以上の発信部を取り付け、また、
架空送電線路の電力本線とは別の箇所に上記各発信器の
出力信号を受信する受信部を設置し、受信部において受
信された、上記各発信部の出力信号の位相差を検出する
ことにより、事故発生方向を判別するようにしたので、
請求項1の発明と同様な効果を得ることができるととも
に、電力本線と非接触で事故発生方向を判別し、事故区
間を標定することができる。
According to a fourth aspect of the present invention, in the first or second aspect of the invention, an oscillator provided with a microwave oscillating element having a different oscillation frequency is attached to each line or each phase of the power mains. Therefore, it is possible to identify the line, phase, etc. through which the surge wave propagated. In the invention of claim 5 of the present invention, two or more transmitters that oscillate at different frequencies when surge waves propagate through the power main line are attached to different positions of the power main line of the overhead power transmission line, and
By installing a receiving unit that receives the output signal of each of the above-mentioned transmitters at a location different from the power mains of the overhead power transmission line, and detecting the phase difference between the output signals of the above-mentioned respective transmitting units received by the receiving unit, , I decided to determine the direction of the accident,
The same effect as that of the invention of claim 1 can be obtained, and the accident occurrence direction can be determined and the accident section can be located without contact with the power main line.

【0014】[0014]

【実施例】図1は本発明の実施例の送電鉄塔を示す図で
あり、同図において、1aないし1fは電力本線に設置
されたガン発振素子などから構成される発振器を備えた
非接触サージ検出センサの発信部、2は電力本線、3は
送電鉄塔、4は送電鉄塔3に設置された非接触サージ検
出センサの受信部である。
1 is a diagram showing a power transmission tower according to an embodiment of the present invention. In the figure, reference numerals 1a to 1f are non-contact surges provided with an oscillator including a gun oscillation element installed on a power mains. A transmitting unit of the detection sensor, 2 is a power main line, 3 is a power transmission tower, and 4 is a receiving unit of a non-contact surge detection sensor installed in the power transmission tower 3.

【0015】図2は図1に示した発信部1aないし1f
の構成を示す図であり、同図において、11aはCTで
あり、CT11aとしては高周波CTもしくは高周波通
過フィルタ(HPF:High Pass Filter)を備えたCT
を用い、高周波成分のみを検出するようにしておく。ま
た、2は電力本線、11bはマイクロ波発振器であり、
マイクロ波発振器11bとしては、例えば、数ボルトの
電圧が印加されると素子固有のマイクロ波を発生するガ
ン・ダイオード等のバルク効果発振素子等を用いる。な
お、発信部1aないし1fのCTとして、ロゴスキ・コ
イルを使用することができる。
FIG. 2 shows the transmitters 1a to 1f shown in FIG.
11a is a CT, and as the CT 11a, a high-frequency CT or a CT including a high-pass filter (HPF: High Pass Filter) is shown.
Is used to detect only high-frequency components. Further, 2 is a power main line, 11b is a microwave oscillator,
As the microwave oscillator 11b, for example, a bulk effect oscillation element such as a Gunn diode or the like that generates a microwave unique to the element when a voltage of several volts is applied is used. A Rogowski coil can be used as the CT of the transmitters 1a to 1f.

【0016】図3は非接触サージ検出センサの受信部4
の構成を示す図であり、同図において、4aは非接触サ
ージ検出センサの検出部1aないし1fが出力するマイ
クロ波を受信するアンテナ、4bはアンテナ4aで受信
されたマイクロ波を復調して出力するマイクロ波受信機
である。図1ないし図3において、電力本線を伝播する
サージ波が非接触サージ検出センサの発信部1aないし
1fを通過すると、図2のCT11aから電圧/電流信
号が出力される。これによりマイクロ波発振器11bが
駆動され、ガン発振素子固有のマイクロ波が発生する。
FIG. 3 shows the receiver 4 of the non-contact surge detection sensor.
FIG. 4 is a diagram showing the configuration of FIG. 4, in which 4a is an antenna for receiving the microwaves output by the detection units 1a to 1f of the non-contact surge detection sensor, and 4b is a demodulated microwave output by the antenna 4a It is a microwave receiver. 1 to 3, when the surge wave propagating through the power main line passes through the transmitters 1a to 1f of the non-contact surge detection sensor, a voltage / current signal is output from the CT 11a in FIG. As a result, the microwave oscillator 11b is driven and microwaves specific to the Gunn oscillator are generated.

【0017】発信部1aないし1fがマイクロ波を出力
すると、このマイクロ波は送電鉄塔3側に設置された非
接触サージ検出センサの受信部4で受信され、電力本線
2にサージ波が通過したことが検出される。なお、送電
鉄塔3には図1に示すように、3相2回線、多回線など
の複数の電力本線が配置されており、サージ波がどの回
線、どの相を通過したのかを識別する必要がある場合に
は、各々の電力本線の発信部1aないし1fに設けたガ
ン発振素子の固有発振周波数を、例えば下記に示すよう
に異なる周波数としておけばよい。 発信部1aの固有発信周波数 f1 Hz 発信部1bの固有発信周波数 f2 Hz 発信部1cの固有発信周波数 f3 Hz 発信部1dの固有発信周波数 f4 Hz 発信部1eの固有発信周波数 f5 Hz 発信部1fの固有発信周波数 f6 Hz また、サージ波がどの回線を通過したかを識別する必要
がない場合等においては、全ての電力本線に発信器を設
置する必要はなく、いずれかの電力本線に発信部を設置
してもよい。
When the transmitters 1a to 1f output microwaves, the microwaves are received by the receiver 4 of the non-contact surge detection sensor installed on the side of the power transmission tower 3 and the surge wave has passed through the power main line 2. Is detected. As shown in FIG. 1, the transmission tower 3 is provided with a plurality of power mains such as a three-phase two-line and a multi-line, and it is necessary to identify which line and which phase the surge wave passed through. In some cases, the natural oscillation frequencies of the Gunn oscillation elements provided in the transmission sections 1a to 1f of the respective power mains may be set to different frequencies as shown below, for example. Inherent emission frequency of transmitter 1a f1 Hz Inherent emission frequency of transmitter 1b f2 Hz Inherent emission frequency of transmitter 1c f3 Hz Inherent emission frequency of transmitter 1d f4 Hz Inherent emission frequency of transmitter 1e f5 Hz Inheritance of transmitter 1f Transmission frequency f6 Hz In addition, when it is not necessary to identify which line the surge wave passed through, it is not necessary to install transmitters on all power mains, and transmitters are installed on either power mains. You may.

【0018】図4は本発明の第2の実施例を示す図であ
り、同図(a)はシステム構成を示し、同図(b)は受
信パルスを示している。同図(a)において、1−1は
電力本線に取り付けられた第1の発信部、1−2は同じ
く第2の発信部であり、第1の発信部1−1および第2
の発信部1−2はそれぞれ異なった周波数で発振する。
4aはアンテナ、4b−1および4b−2はそれぞれ第
1および第2の受信部であり、第1の受信部4b−1は
第1の発信部1−1が出力する周波数を受信し、第2の
受信部は第2の発信部1−2が出力する周波数を受信す
る。
FIG. 4 is a diagram showing a second embodiment of the present invention. FIG. 4 (a) shows the system configuration and FIG. 4 (b) shows the received pulse. In FIG. 1A, 1-1 is a first transmitting unit attached to the power mains, 1-2 is also a second transmitting unit, and the first transmitting unit 1-1 and the second transmitting unit are provided.
The oscillators 1-2 oscillate at different frequencies.
4a is an antenna, 4b-1 and 4b-2 are a 1st and 2nd receiving part, respectively, and the 1st receiving part 4b-1 receives the frequency which the 1st transmission part 1-1 outputs, The second receiving unit receives the frequency output by the second transmitting unit 1-2.

【0019】また、6は位相判定部であり、アンテナ4
a、第1および第2の受信部4b−1、4b−2および
位相判定部は、第1の実施例と同様、送電鉄塔などの電
力本線とは別の箇所に設置され、また、アンテナ4aは
発信部1−1と発信部1−2のほぼ中間部に設置されて
いる。図4(a)において、事故が第1の発信部1−1
の左側で発生し、サージ波Sが同図に示すように左側か
ら侵入すると、第1の発信部1−1が第2の発信部1−
2より先にサージ波Sを検出する。その結果、第1の発
信部1−1が発生するマイクロ波が先にアンテナ4aに
達し、ついで、第2の発信部1−2が発生するマイクロ
波がアンテナ4aに達する。すなわち、図4(b)に示
すように、第1の受信部4b−1で受信されるサージ波
検出パルス1−1aと第2の受信部4b−2で受信され
るサージ検出パルス1−2aの間には位相差dが生ず
る。
Reference numeral 6 denotes a phase determination unit, which is used for the antenna 4
a, the 1st and 2nd receiving parts 4b-1 and 4b-2, and the phase determination part are installed in the place different from the power mains, such as a power transmission tower like the 1st Example, and antenna 4a. Is installed approximately in the middle of the transmitters 1-1 and 1-2. In FIG. 4A, the accident is the first transmitting section 1-1.
When the surge wave S is generated from the left side of the first transmission part 1-1 and the surge wave S enters from the left side as shown in FIG.
The surge wave S is detected before 2. As a result, the microwave generated by the first transmitter 1-1 reaches the antenna 4a first, and then the microwave generated by the second transmitter 1-2 reaches the antenna 4a. That is, as shown in FIG. 4B, the surge detection pulse 1-1a received by the first receiving section 4b-1 and the surge detection pulse 1-2a received by the second receiving section 4b-2. There is a phase difference d between them.

【0020】同様に、事故が第2の発信部1−2の右側
で発生し、サージ波が右側から侵入すると、第2の発信
部1−2が第1の発信部1−1より先にサージ波を検出
し、その結果、第2の発信部1−2が発信するマイクロ
波が先にアンテナ4aに達し、ついで、第1の受信部1
−1が発信するマイクロ波がアンテナ4aに達する。位
相判定部6は第1の受信部4b−1と第2の受信部4b
−2で受信されるサージ波検出パルスの位相差を判定
し、サージ波検出パルスが第1の受信部4b−1で先に
受信された場合には、事故点が第1の受信部4b−1の
左側であると判定し、また、サージ波検出パルスが第2
の受信部4b−2で先に受信された場合には、事故点が
第2の受信部4b−2の左側であると判定する。
Similarly, when an accident occurs on the right side of the second transmitting section 1-2 and a surge wave enters from the right side, the second transmitting section 1-2 precedes the first transmitting section 1-1. The surge wave is detected, and as a result, the microwave transmitted from the second transmission section 1-2 reaches the antenna 4a first, and then the first reception section 1 is detected.
The microwave transmitted by -1 reaches the antenna 4a. The phase determination unit 6 includes a first reception unit 4b-1 and a second reception unit 4b.
-2, the phase difference of the surge wave detection pulse received is determined, and when the surge wave detection pulse is first received by the first reception unit 4b-1, the accident point is the first reception unit 4b-. 1 and the surge wave detection pulse is the second
If the receiving unit 4b-2 receives the first signal, the accident point is determined to be on the left side of the second receiving unit 4b-2.

【0021】図4(a)に示すシステムを架空送電線路
の各区間毎に設け、各位相判定部6において判定された
サージ波の伝播方向を判別することにより、事故区間を
標定することができる。以上のように、本実施例によれ
ば、サージ波の発生方向を判定することができ、電力本
線と非接触で事故区間を標定することが可能となる。
By providing the system shown in FIG. 4A for each section of the overhead power transmission line and discriminating the propagation direction of the surge wave determined by each phase determination section 6, the fault section can be located. . As described above, according to the present embodiment, it is possible to determine the generation direction of the surge wave, and to locate the accident section without contacting the power main line.

【0022】[0022]

【発明の効果】以上説明したように、本発明において
は、サージ波が伝播したとき、マイクロ波を発振する発
信部を電力本線に取り付けるとともに、電力本線とは別
の箇所にマイクロ波を受信する受信部を取り付け、電力
本線を伝播するサージ波を非接触で検出するようにした
ので、次の効果を得ることができる。 送電線路の電気的な絶縁性能を低下させることな
く、サージ波の検出が可能となる。 碍子装置等の格別の絶縁手段を用いる必要がないの
で、サージ検出センサを小型化することができ、送電鉄
塔への取り付けも容易となる。 マイクロ波を使用することにより、発信部、受信部
が塵粉で汚れても、信号伝達への影響が少ない。 発信部のマイクロ波発振素子をガン・ダイオードな
どのバルク効果発振素子で構成することにより、発信部
に太陽電池などの電源を設ける必要がなく、装置を小型
化することができるとともに、保守が容易となる。 電力本線の各回線もしくは各相に、発振周波数の異
なるマイクロ波発振素子を備えた発信器を取り付けるこ
とにより、サージ波が伝播した回線、相等の識別が可能
となる。 架空送電線路の電力本線の異なった位置に、電力本
線をサージ波が伝播した際、それぞれ異なる周波数で発
振する2以上の発信部を取り付け、上記各発信部の出力
信号の位相差を検出することにより、電力本線と非接触
で事故区間を標定することができる。
As described above, according to the present invention, when the surge wave propagates, the transmitting portion that oscillates the microwave is attached to the power main line, and the microwave is received at a place different from the power main line. Since the receiver is attached and the surge wave propagating through the power main line is detected in a non-contact manner, the following effects can be obtained. The surge wave can be detected without deteriorating the electrical insulation performance of the transmission line. Since it is not necessary to use a special insulating means such as an insulator device, the surge detection sensor can be downsized and can be easily attached to the power transmission tower. By using the microwave, even if the transmitting unit and the receiving unit are contaminated with dust, the influence on the signal transmission is small. By constructing the microwave oscillating element of the transmitter with a bulk effect oscillating element such as a gun diode, it is not necessary to provide a power source such as a solar cell in the transmitter, and the device can be downsized and easy to maintain. Becomes By attaching an oscillator equipped with a microwave oscillating element having a different oscillating frequency to each line or each phase of the power main line, it is possible to identify the line, phase, etc. through which the surge wave has propagated. Attaching two or more transmitters that oscillate at different frequencies when surge waves propagate through the power mains at different positions of the power mains of the overhead power transmission line, and detect the phase difference between the output signals of the transmitters. By this, it is possible to locate the accident section without contacting the main power line.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】本発明の実施例のサージ検出センサの発信部の
構成を示す図である。
FIG. 2 is a diagram showing a configuration of a transmitter of the surge detection sensor according to the embodiment of the present invention.

【図3】本発明の実施例のサージ検出センサの受信部の
構成を示す図である。
FIG. 3 is a diagram showing a configuration of a receiving unit of the surge detection sensor according to the embodiment of the present invention.

【図4】本発明の第2の実施例を示す図である。FIG. 4 is a diagram showing a second embodiment of the present invention.

【図5】PTを用いた従来のサージ検出センサの構成を
示す図である。
FIG. 5 is a diagram showing a configuration of a conventional surge detection sensor using PT.

【図6】CTを用いた従来のサージ検出センサの構成を
示す図である。
FIG. 6 is a diagram showing a configuration of a conventional surge detection sensor using CT.

【符号の説明】[Explanation of symbols]

1a,1b,1c,1d,1e,1f,1−1,1−2
発信部 2 電力本線 3 送電鉄塔 4,4b−1,4b−2 非接触サージ検出センサの
受信部 4a アンテナ 4b マイクロ波受信機 6 位相判別部 11a CT 11b マイクロ波発振器
1a, 1b, 1c, 1d, 1e, 1f, 1-1, 1-2
Transmission part 2 Electric power main line 3 Transmission tower 4,4b-1, 4b-2 Reception part of non-contact surge detection sensor 4a Antenna 4b Microwave receiver 6 Phase discrimination part 11a CT 11b Microwave oscillator

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 架空送電線路の電力本線に取り付けら
れ、電力本線を伝播するサージ波を検出する電流変成器
と、電流変成器が出力を発生したときマイクロ波を出力
するマイクロ波発振素子とを具備する発信部と、 電力本線とは別の箇所に設置され、上記発信器が出力す
るマイクロ波を受信する受信部とを備え、 上記電流変成器をサージ波が通過したとき発信部が出力
するマイクロ波を受信部で受信することにより、電力本
線を伝播するサージ波を電力本線と非接触で検出するこ
とを特徴とする非接触サージ検出センサ。
1. A current transformer, which is attached to a power main line of an overhead power transmission line and detects a surge wave propagating through the power main line, and a microwave oscillating element which outputs a microwave when the current transformer generates an output. It is equipped with a transmitter and a receiver that is installed at a location different from the mains line and receives the microwave output from the transmitter. When a surge wave passes through the current transformer, the transmitter outputs. A non-contact surge detection sensor, which detects a surge wave propagating through a power main line in a non-contact manner with the power main line by receiving a microwave at a receiving unit.
【請求項2】 発信部の電流変成器として、ロゴスキ・
コイルを用いたことを特徴とする請求項1の非接触サー
ジ検出センサ。
2. A Rogowski coil as the current transformer of the transmitter.
The non-contact surge detection sensor according to claim 1, wherein a coil is used.
【請求項3】 発信部のマイクロ波発振素子をガン発振
素子で構成したことを特徴とする請求項1または請求項
2の非接触サージ検出センサ。
3. The non-contact surge detection sensor according to claim 1 or 2, wherein the microwave oscillating element of the transmitting section is composed of a gun oscillating element.
【請求項4】 電力本線の各回線もしくは各相に、発振
周波数の異なるマイクロ波発振素子を備えた発信器を取
り付け、サージ波が伝播する電力本線の回線もしくは相
を、発信器の出力周波数により識別できるようにしたこ
とを特徴とする請求項1,2または請求項3の非接触サ
ージ検出センサ。
4. An oscillator equipped with a microwave oscillating element having a different oscillation frequency is attached to each line or each phase of the power main line, and the line or phase of the power main line in which the surge wave propagates is controlled by the output frequency of the oscillator. 4. The non-contact surge detection sensor according to claim 1, wherein the non-contact surge detection sensor is capable of being identified.
【請求項5】 架空送電線路の電力本線の異なった位置
に、電力本線をサージ波が伝播した際、それぞれ異なる
周波数で発振する2以上の発信部を取り付け、 また、架空送電線路の電力本線とは別の箇所に上記各発
信器の出力信号を受信する受信部を設置し、 上記受信部において受信された、上記各発信部からの出
力信号の位相差を検出することにより、事故発生方向を
判別することを特徴とする非接触サージ検出センサを用
いた事故区間標定方法。
5. At least two transmitters that oscillate at different frequencies when surge waves propagate through the main power line are installed at different positions on the main power line of the overhead power transmission line. Installs a receiver that receives the output signal of each transmitter at another location, and detects the phase difference of the output signal from each transmitter received by the receiver to determine the direction of the accident. A fault location method using a non-contact surge detection sensor characterized by making a distinction.
JP5015408A 1993-02-02 1993-02-02 Noncontact surge detecting sensor and location of accident section by using noncontact surge detecting sensor Pending JPH06230066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5015408A JPH06230066A (en) 1993-02-02 1993-02-02 Noncontact surge detecting sensor and location of accident section by using noncontact surge detecting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5015408A JPH06230066A (en) 1993-02-02 1993-02-02 Noncontact surge detecting sensor and location of accident section by using noncontact surge detecting sensor

Publications (1)

Publication Number Publication Date
JPH06230066A true JPH06230066A (en) 1994-08-19

Family

ID=11887916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5015408A Pending JPH06230066A (en) 1993-02-02 1993-02-02 Noncontact surge detecting sensor and location of accident section by using noncontact surge detecting sensor

Country Status (1)

Country Link
JP (1) JPH06230066A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997042512A1 (en) * 1996-05-08 1997-11-13 Mitsubishi Denki Kabushiki Kaisha Abnormality detection apparatus and abnormality detection method
CN102253271A (en) * 2011-06-30 2011-11-23 华北电力大学 Real-time measurement device and method for current of electrified overhead line
WO2013078871A1 (en) * 2011-12-01 2013-06-06 武汉华中电力电网技术有限公司 Method for determining position of forced power oscillation disturbance source in regional interconnected power grid
KR102016352B1 (en) * 2018-06-12 2019-08-30 한국전력공사 Protection Device from Theft of Power Cables
CN110501549A (en) * 2019-07-19 2019-11-26 武汉大学 A kind of measurement method of tower body impact high voltage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997042512A1 (en) * 1996-05-08 1997-11-13 Mitsubishi Denki Kabushiki Kaisha Abnormality detection apparatus and abnormality detection method
US5859590A (en) * 1996-05-08 1999-01-12 Mitsubishi Denki Kabushiki Kaisha Abnormality detection apparatus and abnormality detection method
CN102253271A (en) * 2011-06-30 2011-11-23 华北电力大学 Real-time measurement device and method for current of electrified overhead line
WO2013078871A1 (en) * 2011-12-01 2013-06-06 武汉华中电力电网技术有限公司 Method for determining position of forced power oscillation disturbance source in regional interconnected power grid
US9037425B2 (en) 2011-12-01 2015-05-19 State Grid Corporation Of China Method for determining position of forced power oscillation disturbance source in regional interconnected power grid
KR102016352B1 (en) * 2018-06-12 2019-08-30 한국전력공사 Protection Device from Theft of Power Cables
CN110501549A (en) * 2019-07-19 2019-11-26 武汉大学 A kind of measurement method of tower body impact high voltage

Similar Documents

Publication Publication Date Title
US5530366A (en) Acoustic optical system for partial discharge detection and location
JP4860795B2 (en) Power equipment
KR890004170A (en) Insulation Detection Method and Device
EP0767918B1 (en) Shield integrity monitor
CN101620004A (en) Method for measuring direct wave signal sound pressure of sound wave transmitted in limited regional medium
EP0165803A2 (en) A system and an apparatus for locating a grounding fault on electric power equipment
JPH06230066A (en) Noncontact surge detecting sensor and location of accident section by using noncontact surge detecting sensor
JPH10177055A (en) Accident-detected position location system for overhead power transmission line
KR100632078B1 (en) Noise discriminating device and method for detect the partial discharge in underground power cable
JP2009250847A (en) Accident-point standardizing device of gas insulation power apparatus
JP4342993B2 (en) Insulation monitoring device for metal closed type switchboard
JP4074805B2 (en) Partial discharge detector
KR100928534B1 (en) Transformer Deterioration Diagnosis Apparatus and Method Using Fiber Optic Sensor
JPH06235749A (en) Partial discharge detector for gas insulated machine
JPS61173175A (en) Partial discharge monitor device for high-voltage apparatus
KR102540979B1 (en) Multi-channel arc detection cutoff device using HF sensor and carrier frequency and method thereof
KR20240059307A (en) Sf6 gas density sensor based on quartz oscillator
JPH0599977A (en) Abnormality detecting apparatus
SU1525633A1 (en) Device for determining insulation damage of electric conductor
JP6234646B1 (en) Temperature measuring instrument, gas insulating device, and conductor temperature measuring method
JPH054047U (en) Ground fault section detection device for power cable line
JPH04296673A (en) Abnormality detector for rotary electric machine
JPH09145769A (en) Cable identifying device
JP3195862B2 (en) Partial discharge detection device
JPH0283463A (en) Internal partial discharge detection system of gas insulated switchgear