JPH06227874A - Production of porous sintered material - Google Patents

Production of porous sintered material

Info

Publication number
JPH06227874A
JPH06227874A JP4230093A JP4230093A JPH06227874A JP H06227874 A JPH06227874 A JP H06227874A JP 4230093 A JP4230093 A JP 4230093A JP 4230093 A JP4230093 A JP 4230093A JP H06227874 A JPH06227874 A JP H06227874A
Authority
JP
Japan
Prior art keywords
spherical particles
synthetic resin
molding
solvent
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4230093A
Other languages
Japanese (ja)
Other versions
JP2728838B2 (en
Inventor
Katsuyoshi Ina
克芳 伊奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP5042300A priority Critical patent/JP2728838B2/en
Publication of JPH06227874A publication Critical patent/JPH06227874A/en
Application granted granted Critical
Publication of JP2728838B2 publication Critical patent/JP2728838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To improve porosity by packing a slurry comprising a curable resin and inorganic powder to gaps of spherical particles of a synthetic resin foam coated with a specific hydrocarbon-based solvent and treating in a high-humidity atmosphere at >=a given temperature. CONSTITUTION:Spherical particles of a synthetic resin foam such as expanded PS are put in a container, a hydrocarbon-based solvent having >=150 deg.C initial boiling point, containing <=20vol.% aromatic solvent is dripped to the container while stirring to coat the surface of the spherical particles with the solvent. Then the spherical particles are packed into a given container and compressed to form a molding of the expanded synthetic resin. A slurry prepared so as to comprise inorganic powder such as Al2O3, a curable resin such as epoxy resin, a deflocculant and wader is cast into the molding of the expanded synthetic resin, heat-treated and demolded as a green molding. The molding is heat-treated and demolded as a green humidity atmosphere at >=50 deg.C, the expanded synthetic resin spheres are softened, shrunk and further heated and dried to remove the solvent. Then the molding is heated, defatted and successively burnt at 1,200-1,800 deg.C to give a porus sintered compact of ceramics having high porosity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔質焼結体の製造方
法に係り、更に詳細には、溶湯金属用フィルター,排ガ
スフィルター,触媒担体及び軽量耐火物等に好適な連通
気孔を有するセラミックス多孔質焼結体の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous sintered body, and more specifically, a ceramic having continuous ventilation holes suitable for a molten metal filter, an exhaust gas filter, a catalyst carrier and a lightweight refractory material. The present invention relates to a method for manufacturing a porous sintered body.

【0002】[0002]

【従来の技術】連通気孔を有するセラミックス多孔質焼
結体は、溶湯金属用フィルター,排ガスフィルター,触
媒担体及び軽量耐火物などに有用であり、既に数多く実
用化されている。これらのセラミックス多孔体を製造す
る方法としてはウレタンフォームにセラミックススラリ
ーを含浸させ、乾燥及び熱処理してウレタンフォームを
焼失しセラミックスを焼結させる方法、セラミックス粉
末と可燃性物質との混合物を成形し焼成する方法等が知
られている。
2. Description of the Related Art Porous ceramics sintered bodies having continuous ventilation holes are useful for a molten metal filter, an exhaust gas filter, a catalyst carrier, a lightweight refractory material, etc., and have been put to practical use in many cases. As a method for producing these ceramic porous bodies, urethane foam is impregnated with a ceramics slurry, dried and heat-treated to burn away the urethane foam to sinter the ceramics, and a mixture of ceramic powder and a combustible substance is molded and fired. There are known methods for doing so.

【0003】これらのうちウレタンフォームにセラミッ
クススラリーを含浸させる方法は高気孔率のセラミック
ス多孔体を得る有力な方法であるが、セラミックス焼結
体の骨格の中心部にウレタンフォームの焼却除去された
跡の空隙が残り強度が小さくなる欠点がある。この欠点
を克服する為気孔形成材として発泡スチロール等の可燃
性粒状物を用いる方法(例えば、特開昭63−2658
80号公報)が提案されている。この方法によれば、高
強度,高気孔率で且つ連通な気孔を有するセラミックス
多孔質焼結体を製造することは出来る。この方法の中
で、可燃性粒状物を除去する方法としては、焼成工程
中に焼失させる方法。セラミックスグリーン体の乾燥
前に有機溶媒にて溶解し除去する方法等がある。
Of these, the method of impregnating urethane foam with a ceramics slurry is a promising method for obtaining a ceramics porous body having a high porosity. There is a drawback that the voids remain and the strength becomes small. In order to overcome this drawback, a method of using a combustible granular material such as expanded polystyrene as a pore-forming material (for example, JP-A-63-2658).
No. 80) is proposed. According to this method, it is possible to manufacture a ceramic porous sintered body having high strength, high porosity, and continuous pores. Among these methods, the method of removing the combustible particles is a method of burning out during the firing step. There is a method of dissolving and removing the ceramic green body with an organic solvent before drying.

【0004】しかし、の方法では、焼成工程に先立つ
乾燥工程中には可燃性粒状物が除去されずに残存してい
る為、グリーン体の骨格部の乾燥収縮が阻害され、その
結果としてグリーン体に亀裂が発生する。その為、最終
製品の強度が小さくなる欠点がある。の方法では、有
機溶媒を用いる為、その作業上危険がともない、更にそ
の排ガス処理や廃液処理が煩雑となる欠点がある。
However, in the method (1), since the combustible particulate matter remains without being removed during the drying step prior to the firing step, the drying shrinkage of the skeleton portion of the green body is obstructed, and as a result, the green body is reduced. Cracks occur in the. Therefore, there is a drawback that the strength of the final product becomes small. In the method (1), since an organic solvent is used, there is a danger in its work and there is a drawback that the exhaust gas treatment and the waste liquid treatment are complicated.

【0005】[0005]

【発明が解決しようとする課題】本発明者は、従来のセ
ラミックス多孔質焼結体の製造方法が有する諸問題点に
鑑み鋭意研究を重ねた結果、本発明を完成したものであ
って、その目的とするところは、高気効率且つ連通気孔
を有するセラミックス多孔質焼結体の製造方法を提供す
るにある。
The present inventor has completed the present invention as a result of earnest research as a result of various problems in the conventional methods for producing a porous ceramics sintered body, and It is an object of the present invention to provide a method for producing a ceramic porous sintered body having high gas efficiency and continuous ventilation holes.

【0006】[0006]

【課題を解決するための手段】合成樹脂発泡体の球状粒
子の空隙に硬化型樹脂と無機物粉体とを含むスラリーを
充填し、多孔質焼結体を製造する方法において、下記
(A)及び(B)の工程を含むことを特徴とする連通気
孔を有する多孔質焼結体の製造方法により達成される。
[Means for Solving the Problems] In a method for producing a porous sintered body by filling a void of spherical particles of a synthetic resin foam with a slurry containing a curable resin and an inorganic powder, the following (A) and This is achieved by a method for producing a porous sintered body having continuous air holes, which comprises the step (B).

【0007】(A)合成樹脂発泡体の球状粒子に予め、
初留点が150℃以上で芳香族系溶剤の含有量が20容
量%以下の炭化水素系溶剤を塗布する工程。 (B)硬化型樹脂と無機物粉体とを含むスラリーを充填
したグリーン体を50℃以上、高湿度雰囲気下で処理す
る工程。
(A) The spherical particles of synthetic resin foam are previously
A step of applying a hydrocarbon solvent having an initial boiling point of 150 ° C. or higher and an aromatic solvent content of 20% by volume or less. (B) A step of treating a green body filled with a slurry containing a curable resin and an inorganic powder in a high humidity atmosphere at 50 ° C. or higher.

【0008】本発明において、発泡スチロール等の合成
樹脂発泡体の球状粒子(以下発泡体の球状粒子と記す)
を結着し形成された樹脂粒子成型体の空隙にセラミック
ススラリーを充填する。次いで加熱処理により発泡体の
球状粒子を軟化収縮させるのであるが、高湿度雰囲気で
処理される為セラミックススラリー部、即ちセラミック
スの骨格部の水分の蒸発は抑制される。従ってセラミッ
クスの骨格部は事実上乾燥収縮は起こさない。
In the present invention, spherical particles of synthetic resin foam such as expanded polystyrene (hereinafter referred to as spherical particles of foam).
The ceramics slurry is filled into the voids of the resin particle molded body formed by binding. Next, the spherical particles of the foam are softened and shrunk by heat treatment, but since the treatment is performed in a high humidity atmosphere, evaporation of water in the ceramics slurry portion, that is, the skeleton portion of the ceramics is suppressed. Therefore, the skeleton part of the ceramic does not substantially shrink due to drying.

【0009】この発泡体の球状粒子の収縮が完了して
後、初めて骨格部の乾燥処理を実施する。従来法に見ら
れるような発泡体の球状粒子の成型体の拘束に起因する
骨格部の乾燥収縮亀裂の発生もなく、均一で亀裂のない
乾燥体を得ることができる。発泡体の球状粒子に予め塗
布される石油系炭化水素溶剤は、発泡体の球状粒子の軟
化収縮をより容易に実施する重要な役割を果す。
After the contraction of the spherical particles of the foam is completed, the skeleton is dried for the first time. A uniform and crack-free dried product can be obtained without the occurrence of dry shrinkage cracks in the skeleton due to the restraint of the molded product of the spherical particles of the foam as seen in the conventional method. The petroleum-based hydrocarbon solvent pre-applied to the spherical particles of the foam plays an important role in facilitating the softening shrinkage of the spherical particles of the foam.

【0010】本発明における発泡体の球状粒子は、セラ
ミックス多孔体の気孔部を形成する働きをするものであ
る。発泡体の球状粒子は、ポリスチレン発泡体球状粒子
の場合、通常粒子中にブタン等の発泡ガスを含有せしめ
たビーズを100〜140℃の蒸気中にて3〜10分間
処理することにより製造できる。粒径は0.5〜10m
mまでビーズの種類、発泡条件により適宜制御できる。
The spherical particles of the foam in the present invention function to form the pores of the ceramic porous body. In the case of polystyrene foam spherical particles, the spherical particles of the foam can be usually produced by treating beads in which a foaming gas such as butane is contained in the particles in steam at 100 to 140 ° C. for 3 to 10 minutes. Particle size is 0.5-10m
It can be controlled up to m depending on the type of beads and foaming conditions.

【0011】本発明において使用される炭化水素系溶剤
は、前記の通り気孔を形成する発泡体球状粒子を、通常
の加熱装置で実現可能な比較的低温状態にて容易に軟化
収縮せしめる働きをするものである。炭化水素系溶剤は
パラフィン系,ナフテン系及び芳香族系炭化水素の混合
物として得られるものであるが、その組成比及び蒸留温
度範囲により発泡体の球状粒子の軟化収縮作用に与える
効果が著しく異なる。
The hydrocarbon solvent used in the present invention has a function of easily softening and shrinking the spherical foam particles forming pores as described above at a relatively low temperature which can be realized by an ordinary heating device. It is a thing. The hydrocarbon solvent is obtained as a mixture of paraffinic, naphtheneic and aromatic hydrocarbons, and the effect on the softening / shrinking action of the spherical particles of the foam remarkably differs depending on the composition ratio and the distillation temperature range.

【0012】本発明に用いる炭化水素系溶剤は、初留点
が150℃以上で且つ芳香族系溶剤の含有量が20容量
%以下である。初留点が150℃未満であると発泡体の
球状粒子を軟化収縮させる効果が過大であり、高湿度雰
囲気での加熱工程以前に発泡の球状粒子の収縮が起こ
り、得られる多孔質焼結体の気孔径を厳密に制御できな
い。同様に、芳香族系溶剤の含有量が20容量%を越え
ると発泡体の球状粒子を軟化収縮させる効果が過大であ
り、得られる多孔質焼結体の気孔径を厳密に制御できな
い。
The hydrocarbon solvent used in the present invention has an initial boiling point of 150 ° C. or higher and an aromatic solvent content of 20% by volume or lower. If the initial boiling point is lower than 150 ° C, the effect of softening and shrinking the spherical particles of the foam is excessive, and the foaming spherical particles shrink before the heating step in a high humidity atmosphere, resulting in a porous sintered body. It is not possible to strictly control the pore size of. Similarly, when the content of the aromatic solvent exceeds 20% by volume, the effect of softening and shrinking the spherical particles of the foam is excessive, and the pore diameter of the obtained porous sintered body cannot be strictly controlled.

【0013】本発明において発泡体の球状粒子に炭化水
素系溶剤を塗布する方法は、例えば、発泡体の球状粒子
が発泡スチロール球の場合、炭化水素系溶剤として石油
系炭化水素溶剤を密閉型容器に入れ振動を与える方法、
発泡スチロール球を攪拌装置にて攪拌しながら石油系炭
化水素溶剤を滴下する方法、予め成型された発泡スチロ
ール球成型体に石油系炭化水素を注入しその後余剰の溶
剤を取り除く方法等がある。石油系炭化水素溶剤の添加
量は発泡スチロール球の表面を一層覆う程度が良い。
In the present invention, the method of applying the hydrocarbon solvent to the spherical particles of the foam is, for example, in the case where the spherical particles of the foam are styrofoam spheres, a petroleum hydrocarbon solvent is used as the hydrocarbon solvent in a closed container. How to give the insertion vibration,
There are a method of dropping a petroleum-based hydrocarbon solvent while agitating expanded polystyrene balls with a stirrer, a method of injecting a petroleum hydrocarbon into a preformed molded polystyrene foam ball, and then removing an excess solvent. The amount of the petroleum hydrocarbon solvent added is preferably such that the surface of the Styrofoam spheres is further covered.

【0014】本発明において発泡体の球状粒子を結着し
形成された樹脂粒子成型体を作製する方法は、例えば適
宜の容器に発泡体の球状粒子を充填し圧縮する方法、予
備発泡した発泡体の球状粒子を適宜の容器に入れ容器内
に100℃以上の蒸気を注入し発泡体の球状粒子同志を
融着する方法等がある。本発明におけるスラリーは、無
機物粉体,硬化作用によりグリーン体強度を高める硬化
型樹脂及び分散媒体を用いて作製する。
In the present invention, the method for producing the resin particle molded body formed by binding the spherical particles of the foam is, for example, a method in which the spherical particles of the foam are packed in an appropriate container and compressed, or the pre-foamed foam is used. There is a method in which the spherical particles of (1) are put in an appropriate container and steam at 100 ° C. or higher is injected into the container to fuse the spherical particles of the foam. The slurry in the present invention is prepared by using an inorganic powder, a curable resin that enhances the green body strength by the curing action, and a dispersion medium.

【0015】無機物粉体としては、例えばアルミナ,ジ
ルコニア,ジルコン,コージェライト,ムライト,チタ
ニア,シリカ,チタン酸アルミニウム,マグネシア等の
酸化物や、窒化珪素,窒化アルミニウム,炭化珪素,サ
イアロン等の非酸化物粉体が挙げられる。更に、反応焼
結による窒化珪素,窒化アルミニウム及び炭化珪素の製
造を目的として金属珪素粉,金属アルミニウム粉及び炭
素粉等を挙げることができるがこれらに限定されるもの
でない。耐熱性,耐熱衝撃性,耐腐食性,耐酸性,耐酸
化性等その用途に応じて無機物粉体の種類及びその配合
量を適宜選定することができる。無機物粉体の粒子径は
焼結性及びスラリーの安定性より10μm以下、好まし
くは2μm以下、最も好ましくは1μm以下である。
Examples of the inorganic powder include oxides such as alumina, zirconia, zircon, cordierite, mullite, titania, silica, aluminum titanate and magnesia, and non-oxidizing materials such as silicon nitride, aluminum nitride, silicon carbide and sialon. An example of the powder is a powder. Further, for the purpose of producing silicon nitride, aluminum nitride and silicon carbide by reaction sintering, metal silicon powder, metal aluminum powder, carbon powder and the like can be mentioned, but not limited to these. The type and blending amount of the inorganic powder can be appropriately selected according to its application such as heat resistance, thermal shock resistance, corrosion resistance, acid resistance, and oxidation resistance. The particle size of the inorganic powder is 10 μm or less, preferably 2 μm or less, and most preferably 1 μm or less in view of sinterability and stability of the slurry.

【0016】本発明において用いられる硬化型樹脂は、
その硬化作用によりグリーン体強度を高めるものであ
る。硬化型樹脂としては三次元網目結合する架橋反応型
樹脂が好ましく、例えば、エポキシ,フェノール,尿
素,メラミン等の可溶型または分散型の樹脂を挙げるこ
とが出来る。これらのうち特に解膠剤が有効に作用する
アルカリ性領域で架橋反応が起こるエポキシ樹脂が好ま
しい。
The curable resin used in the present invention is
The curing action enhances the strength of the green body. As the curable resin, a cross-linking reaction type resin that bonds three-dimensionally is preferable, and examples thereof include soluble or dispersed resins such as epoxy, phenol, urea and melamine. Of these, an epoxy resin in which a crosslinking reaction occurs particularly in an alkaline region where the peptizer effectively acts is preferable.

【0017】本発明において硬化型樹脂の添加量は、本
発明の目的を達成する範囲内で必要最小限度に留めるの
がよい。即ち硬化型樹脂はセラミックス焼結体の製造工
程にて燃焼除去され最終製品には残存しないものであ
り、過度の添加は経済的に不利である。更に硬化型樹脂
の添加量が多くなると脱脂工程での亀裂の発生が助長さ
れる傾向があり、この点からも過度の添加は避けるのが
よい。硬化型樹脂の含有量は無機物粉体に対し好ましく
は1〜35重量%、更に好ましくは5〜25重量%であ
る。
In the present invention, the addition amount of the curable resin is preferably kept to the minimum necessary within the range where the object of the present invention is achieved. That is, the curable resin is burned and removed in the manufacturing process of the ceramics sintered body and does not remain in the final product, and excessive addition is economically disadvantageous. Further, when the amount of the curable resin added is increased, the occurrence of cracks in the degreasing process tends to be promoted, and from this point too, it is preferable to avoid excessive addition. The content of the curable resin is preferably 1 to 35% by weight, more preferably 5 to 25% by weight, based on the inorganic powder.

【0018】本発明においてスラリーの分散媒体として
は、水,メチルアルコール,エチルアルコール,トルエ
ン,キシレン,アセトン,メチルエチルケトン,ケロシ
ン等を挙げることができる。通常、分散媒体として取扱
いの容易性から水が最も好ましい。しかし、耐水性に劣
る非酸化物系セラミックスの場合は非水系溶媒を使用す
ると良い。
In the present invention, examples of the dispersion medium of the slurry include water, methyl alcohol, ethyl alcohol, toluene, xylene, acetone, methyl ethyl ketone, kerosene and the like. Usually, water is the most preferable as the dispersion medium because it is easy to handle. However, in the case of non-oxide ceramics having poor water resistance, it is preferable to use a non-aqueous solvent.

【0019】本発明におけるスラリーは、上記無機物粉
体,硬化作用によりグリーン体強度を高める硬化型樹脂
を主成分とする混合相であるが、これら以外に消泡剤,
無機物粉体を分散媒体に効果よく安定に分散させる為の
解膠剤、スラリーの作業性を好適にする為の粘性調製
剤、乾燥速度調製剤等を適宜含有せしめることができ
る。スラリーの調製は常法に従い実施される。例えば先
ず、分散溶媒中に無機物粉体及び硬化型樹脂をボールミ
ル,アトライター等で混合する。
The slurry according to the present invention is a mixed phase containing, as a main component, the above-mentioned inorganic powder and a curable resin for increasing the strength of the green body by the curing action.
A peptizing agent for effectively and stably dispersing the inorganic powder in the dispersion medium, a viscosity adjusting agent for making the workability of the slurry suitable, a drying rate adjusting agent and the like can be appropriately contained. The slurry is prepared according to a conventional method. For example, first, an inorganic powder and a curable resin are mixed in a dispersion solvent with a ball mill, an attritor or the like.

【0020】上述のように調製されたスラリーは、予め
作製した発泡スチロール球状樹脂成形体容器の空隙に充
填される。充填する方法として単なる流し込み法,加圧
注入法,減圧注入法,振動注入法等を挙げることができ
る。常温放置または加熱処理により硬化型樹脂を硬化せ
しめたハンドリング可能なグリーン体を得る。次いで容
器からグリーン体を取り出し、50℃以上の高湿度雰囲
気で処理し発泡したスチロール球を30分から3時間以
内に軟化収縮させる。次いで風乾あるいは加熱乾燥によ
り分散溶媒を除去する。次いで脱脂工程で硬化型樹脂を
焼却除去し引き続いて焼成する。脱脂は比較的緩やかな
昇温速度例えば10〜200℃/hrで500℃〜60
0℃まで昇温することにより行ない、含有する有機物を
分解し焼却除去するのが好ましい。焼成は1200℃〜
1800℃で実施するのが好適であり、通常大気雰囲気
で行なうが、セラミックス原料粉体の種類等により適宜
選択すると良い。
The slurry prepared as described above is filled in the voids of the polystyrene foamed resin molded body container prepared in advance. Examples of the filling method include a simple pouring method, a pressure injection method, a reduced pressure injection method, and a vibration injection method. A handleable green body obtained by curing a curable resin by leaving at room temperature or by heat treatment is obtained. Next, the green body is taken out of the container, and the styrene balls foamed by treating in a high humidity atmosphere of 50 ° C. or higher are softened and shrunk within 30 minutes to 3 hours. Then, the dispersion solvent is removed by air drying or heat drying. Next, in the degreasing step, the curable resin is incinerated and removed, followed by firing. Degreasing is performed at a relatively moderate temperature rising rate, for example, 10 to 200 ° C / hr and 500 ° C to 60 ° C.
It is preferable that the heating is performed to 0 ° C. to decompose the contained organic matter and remove by incineration. Baking is 1200 ℃ ~
It is suitable to carry out at 1800 ° C., and usually it is carried out in an atmosphere of air, but it may be appropriately selected depending on the type of ceramic raw material powder and the like.

【0021】[0021]

【発明の効果】本発明のセラミックス多孔質焼結体は、
高気孔率且つ高強度であり、溶湯金属用フィルター,排
ガスフィルター,軽量耐火物,触媒担体等に好適であ
る。以下実施例を挙げて本発明を具体的に説明する。
The ceramic porous sintered body of the present invention is
It has high porosity and high strength, and is suitable for molten metal filters, exhaust gas filters, lightweight refractories, catalyst carriers, etc. The present invention will be specifically described below with reference to examples.

【0022】実施例1 先ず、粒径3mmに分級した発泡スチロール球嵩にして
500ccを2 lのビーカーに入れ攪拌させながら表1
に示すシェル化学(株)製石油系炭化水素溶剤10cc
を滴下し、発泡スチロール球表面に石油系炭化水素溶剤
を塗布した。次いで、これらを50×100×100m
m寸法のポリプロピレン製メス型容器に振動充填した
後、中央に注入口を有するオス型にて40×100×1
00mm寸法に圧縮し固定して発泡スチロール球成型体
を用意した。
Example 1 First, 500 cc of styrofoam spheres classified to a particle size of 3 mm were put into a 2 l beaker and stirred, and the results are shown in Table 1.
Petroleum hydrocarbon solvent 10cc manufactured by Shell Chemical Co., Ltd.
Was dropped, and a petroleum hydrocarbon solvent was applied to the surface of the Styrofoam spheres. Then, these are 50x100x100m
After vibrating and filling a female container made of polypropylene of m size, 40 × 100 × 1 with a male type having an injection port in the center
A styrofoam sphere molding was prepared by compressing and fixing to a size of 00 mm.

【0023】続いて以下に示す純分組成のスラリーをア
ルミナ製ボールミルを用いて24時間混合分散すること
により作製した。スラリー組成 酸化アルミニウム 77重量% 水溶性エポキシ樹脂 8重量% 水 14重量% 解膠剤 1重量% 酸化アルミニウムは0.5重量%のマグネシアを含有す
る平均粒径2μmのものを用い、水溶性エポキシ樹脂に
はナガセ化成工業製デナコールEX−421を用いた。
解膠剤は花王製ポイズ530を用いた。水溶性エポキシ
樹脂量としては水溶性エポキシと水溶性アミンの合算量
を固型分換算した。
Subsequently, a slurry having a pure composition shown below was mixed and dispersed in an alumina ball mill for 24 hours. Slurry composition Aluminum oxide 77% by weight Water-soluble epoxy resin 8% by weight Water 14% by weight Peptizer 1% by weight Aluminum oxide containing 0.5% by weight magnesia and having an average particle size of 2 μm is used. The used was Denacol EX-421 manufactured by Nagase Kasei Kogyo.
Kao Poise 530 was used as the peptizer. As the amount of the water-soluble epoxy resin, the total amount of the water-soluble epoxy and the water-soluble amine was converted into the solid component.

【0024】上述のごとく作製したスラリーを予め用意
した発泡スチロール球成型体の上部注入口より注入し、
40℃にて12時間熱処理し硬化型樹脂硬化後グリーン
体を脱型した。次いで70℃,湿度100%の条件で4
8時間処理し発泡スチロール球を軟化収縮させた。次い
で、90℃,湿度70%で96時間処理し一次乾燥した
後次いで100℃で完全乾燥した。
The slurry prepared as described above is injected from the upper injection port of the Styrofoam spherical molded body prepared in advance,
After heat treatment at 40 ° C. for 12 hours to cure the curable resin, the green body was removed. Then 4 at 70 ℃ and 100% humidity
The styrofoam balls were treated for 8 hours to soften and shrink. Then, it was treated at 90 ° C. and 70% humidity for 96 hours, primary dried, and then completely dried at 100 ° C.

【0025】焼成は、大気雰囲気電気炉を用い400℃
までは0.5℃/分それ以降は10℃/分の速度で昇温
し1500℃にて1時間保持した後、冷却した。
The firing is carried out at 400 ° C. in an air atmosphere electric furnace.
Up to 0.5 ° C./min, and thereafter, the temperature was raised at a rate of 10 ° C./min, and the temperature was maintained at 1500 ° C. for 1 hour, and then cooled.

【表1】 [Table 1]

【0026】石油系炭化水素溶剤の発泡スチロール球へ
の溶解性評価は以下の基準に従って行った。 ○:室温では溶解しない △:若干溶解し、発泡スチロール球の粒径が変化 ×:完全に溶解し、使用できない グリーン体の外観評価は以下の基準で行なった。 ○:発泡スチロール球が十分軟化収縮され亀裂の発生も
認められない ×:発泡スチロールが軟化収縮されず残存し亀裂がその
周囲に認められる
The solubility of petroleum hydrocarbon solvent in Styrofoam balls was evaluated according to the following criteria. ◯: Not dissolved at room temperature Δ: Slightly dissolved, particle diameter of styrofoam spheres changed ×: Completely dissolved, unusable green body was evaluated according to the following criteria. ◯: Styrofoam spheres are sufficiently softened and shrunk and no cracks are observed. ×: Styrofoam spheres are not softened and shrunk and remain, and cracks are observed around them.

【0027】焼成体の外観評価は以下の基準で行なっ
た。 ○:亀裂の発生がなく焼成できた △:亀裂が若干発生した ×:亀裂が発生した
The appearance of the fired body was evaluated according to the following criteria. ◯: Firing was possible without generation of cracks Δ: Some cracks were generated ×: Cracks were generated

【0028】ここで曲げ強度は、作製したセラミックス
多孔体を10×30×80mmに切り出し、JIS規格
(R1601)に準拠してスパン60mm、クロスヘッ
ドスピード0.5mm/minで3点曲げ試験を行なっ
た。表1から石油系炭化水素を塗布しないセラミックス
多孔体はその強度は小さく、更に微構造観察により微細
な亀裂が多数発生することがわかる。又、芳香族系溶剤
の含有量の多い石油系溶剤は室温で発泡スチロールを溶
解し、使用できない。芳香族型溶媒の含有量は20容量
%以下、好ましくは1容量%以下であり、初留点は15
0℃以上であることがわかる。
For the bending strength, the produced ceramic porous body was cut into a size of 10 × 30 × 80 mm, and a three-point bending test was conducted at a span of 60 mm and a crosshead speed of 0.5 mm / min in accordance with JIS standard (R1601). It was It can be seen from Table 1 that the strength of the ceramic porous body not coated with petroleum hydrocarbons is low, and a large number of fine cracks are generated by observing the microstructure. Further, petroleum-based solvents containing a large amount of aromatic solvents dissolve styrofoam at room temperature and cannot be used. The content of the aromatic solvent is 20% by volume or less, preferably 1% by volume or less, and the initial boiling point is 15%.
It can be seen that the temperature is 0 ° C or higher.

【0029】実施例2 粒径1mmに分級した発泡スチロール球を用い、平均粒
径0.5μmの酸化アルミニウムを80重量%と平均粒
径0.3μmのジルコニアを20重量%混合させた無機
物粉体を用い、石油系炭化水素による発泡スチロールを
溶解し除去する工程の湿度を95%とし処理温度を適宜
変化する以外はすべて実施例1に準じて、各種セラミッ
クス体を作製した。尚、ここで使用した石油系炭化水素
はシェル化学製DOSBである。結果を表2に示す。
Example 2 An inorganic powder obtained by mixing 80% by weight of aluminum oxide having an average particle size of 0.5 μm and 20% by weight of zirconia having an average particle size of 0.3 μm using expanded polystyrene balls classified to have a particle size of 1 mm. Various ceramic bodies were produced in accordance with Example 1 except that the humidity in the step of dissolving and removing styrofoam using petroleum hydrocarbon was 95% and the treatment temperature was changed appropriately. The petroleum hydrocarbon used here is DOSB manufactured by Shell Chemical. The results are shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂発泡体の球状粒子の空隙に硬化
型樹脂と無機物粉体とを含むスラリーを充填し多孔質焼
結体を製造する方法において、下記(A)及び(B)の
工程を含むことを特徴とする連通気孔を有する多孔質焼
結体の製造方法。 (A)合成樹脂発泡体の球状粒子に予め、初留点が15
0℃以上で芳香族系溶剤の含有量が20容量%以下の炭
化水素系溶剤を塗布する工程。 (B)硬化型樹脂と無機物粉体とを含むスラリーを充填
したグリーン体を50℃以上、高湿度雰囲気下で処理す
る工程。
1. A method for producing a porous sintered body by filling a void of spherical particles of a synthetic resin foam with a slurry containing a curable resin and an inorganic powder, in the following steps (A) and (B): A method for producing a porous sintered body having continuous air holes, comprising: (A) The initial boiling point of the spherical particles of the synthetic resin foam is 15 in advance.
A step of applying a hydrocarbon solvent having an aromatic solvent content of 20% by volume or less at 0 ° C. or higher. (B) A step of treating a green body filled with a slurry containing a curable resin and an inorganic powder in a high humidity atmosphere at 50 ° C. or higher.
JP5042300A 1993-02-04 1993-02-04 Method for producing porous sintered body Expired - Lifetime JP2728838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5042300A JP2728838B2 (en) 1993-02-04 1993-02-04 Method for producing porous sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5042300A JP2728838B2 (en) 1993-02-04 1993-02-04 Method for producing porous sintered body

Publications (2)

Publication Number Publication Date
JPH06227874A true JPH06227874A (en) 1994-08-16
JP2728838B2 JP2728838B2 (en) 1998-03-18

Family

ID=12632183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5042300A Expired - Lifetime JP2728838B2 (en) 1993-02-04 1993-02-04 Method for producing porous sintered body

Country Status (1)

Country Link
JP (1) JP2728838B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004132A1 (en) * 2001-07-05 2003-01-16 Sekisui Chemical Co., Ltd. Method for manufacturing porous ceramic filter
JPWO2002072671A1 (en) * 2001-03-14 2004-07-02 積水化学工業株式会社 Hollow polymer particles, method for manufacturing hollow polymer particles, porous ceramic filter, and method for manufacturing porous ceramic filter
EP1282477B2 (en) 2000-08-31 2007-10-03 Foseco International Limited Refractory articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1282477B2 (en) 2000-08-31 2007-10-03 Foseco International Limited Refractory articles
JPWO2002072671A1 (en) * 2001-03-14 2004-07-02 積水化学工業株式会社 Hollow polymer particles, method for manufacturing hollow polymer particles, porous ceramic filter, and method for manufacturing porous ceramic filter
US7319114B2 (en) 2001-03-14 2008-01-15 Sekisui Chemical Co., Ltd. Hollow polymer particles, method for preparing hollow polymer particles, porous ceramic filter, and method for preparing porous ceramic filter
WO2003004132A1 (en) * 2001-07-05 2003-01-16 Sekisui Chemical Co., Ltd. Method for manufacturing porous ceramic filter

Also Published As

Publication number Publication date
JP2728838B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
US4551436A (en) Fabrication of small dense silicon carbide spheres
US4039480A (en) Hollow ceramic balls as automotive catalysts supports
US4744831A (en) Hollow inorganic spheres and methods for making such spheres
JP4188194B2 (en) High porosity porous ceramics produced from inflatable microspheres and preceramic polymer and method for producing the same
KR100668574B1 (en) Core Compositions and Articles with Improved Performance for Use in Castings for Gas Turbine Applications
Guzman Certain principles of formation of porous ceramic structures. Properties and applications (a review)
US4255197A (en) Process for obtaining refractory materials with controlled characteristics of porosity and density
US4814300A (en) Porous ceramic shapes, compositions for the preparation thereof, and method for producing same
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
JP2000510807A (en) Stabilization of sintered foam and production of open-cell sintered foam
US4127629A (en) Process of forming silicon carbide bodies
Zhu et al. Reaction bonding of open cell SiC-Al2O3 composites
JP2728838B2 (en) Method for producing porous sintered body
JP2651170B2 (en) Ceramics porous body
JP4054872B2 (en) Alumina porous ceramics and method for producing the same
EP0796831A1 (en) Method of producing porous ceramic molded material
RU2233700C2 (en) Composition of charge for high-porous cellular- structure material for catalyst carriers
JPH0597537A (en) Production of ceramic porous material
JPH1121182A (en) Production of porous ceramic
JP2566886B2 (en) Method for producing porous sintered body having continuous pores
JP4967111B2 (en) Alumina-based porous ceramics and method for producing the same
JPH0820186B2 (en) Heat treatment tool and manufacturing method thereof
JPH04160078A (en) Production of ceramic porous body
JPH03257081A (en) Production of porous ceramics
JP2506502B2 (en) Method for manufacturing ceramic porous body