JPH06224127A - Method and device for growth of silicon film - Google Patents

Method and device for growth of silicon film

Info

Publication number
JPH06224127A
JPH06224127A JP2961493A JP2961493A JPH06224127A JP H06224127 A JPH06224127 A JP H06224127A JP 2961493 A JP2961493 A JP 2961493A JP 2961493 A JP2961493 A JP 2961493A JP H06224127 A JPH06224127 A JP H06224127A
Authority
JP
Japan
Prior art keywords
silicon
germanium
raw material
nozzle
material containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2961493A
Other languages
Japanese (ja)
Other versions
JP2798576B2 (en
Inventor
Masayuki Hiroi
政幸 廣井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5029614A priority Critical patent/JP2798576B2/en
Publication of JPH06224127A publication Critical patent/JPH06224127A/en
Application granted granted Critical
Publication of JP2798576B2 publication Critical patent/JP2798576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly grow a silicon film on a wide area including a recessed part by a method wherein, a silicon film containing carbon and germanium is grown by using gaseous raw material containing silicon atoms, carbon atoms and germanium atoms, CONSTITUTION:A substrate retaining part 2, having a heating means, is provided in a vacuum container 1. A disilane feeding nozzle 4 and a disilane gas cylinder 7, which is connected to the nozzle 4, are provided above the retaining part. Also, an acetylene-feeding nozzle 5, an acetylene gas cylinder 8 connected to the nozzle 5, a germanium feeding nozzle 6, and a germanium gas cylinder 9, connected to the nozzle 6, are provided. A silicon substrate 3, having surface (100), is attached to the substrate retaining part 2, the disilane, acetylene and germanium are allowed to flow under control of a massflow controller, and a silicon epitaxial film is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリコンエピタキシャル
膜の成長方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for growing a silicon epitaxial film.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】シリ
コンを用いてヘテロ接合を形成するために従来は炭化シ
リコンまたはシリコンゲルマニウム混晶が用いられてき
た。炭化シリコンおよびシリコンゲルマニウム混晶は、
固体、液体、ガスのそれぞれを原料として成長が行われ
ており、シリコン酸化膜やシリコン窒化膜などのマスク
パターンをシリコン基板上に形成して露出したシリコン
表面部分のみの上に成長を行う選択成長も行われてい
る。しかし、炭化シリコンはシリコンよりも格子が短
く、シリコンゲルマニウム混晶はシリコンより格子が長
いため、シリコンとの接合部に応力がかかって転位、欠
陥が発生してしまい、良質の結晶が得られなかった。炭
素とゲルマニウムをともに含有させることによって、シ
リコンと同じ格子の長さをもつエピタキシャル膜が成長
できる。炭素とゲルマニウムをともに含有するシリコン
エピタキシャル膜の成長は、これまで Applied Physics
Letters vol.60, pp.3033, 1992 に報告されている、
固体のゲルマニウム、シリコン等をソースとする分子線
結晶成長法によって行われた例しかなかった。しかし、
固体をソースに用いた分子線結晶成長法では、活性種が
分子線源から直線的に飛来して成長が起きるために、図
4に示すように、基板上に窪んだ部分があると、分子線
源13からみて陰になる部分には成長しないほか、中心
から離れるほど成長しにくいので広い面積に均一に成長
することが困難であるなどの問題点があった。さらに固
体をソースとした分子線結晶成長法では、使用によって
ソースが無くなった場合に、装置を開けてソースを充填
せねばならず、生産に応用する場合に大きな問題となっ
ていた。
2. Description of the Related Art Silicon carbide or silicon germanium mixed crystals have hitherto been used for forming heterojunctions using silicon. Silicon carbide and silicon germanium mixed crystal,
Selective growth is performed by using solid, liquid, and gas as raw materials, and forming a mask pattern such as a silicon oxide film or silicon nitride film on a silicon substrate and growing only on the exposed silicon surface portion. Has also been done. However, since silicon carbide has a shorter lattice than silicon and silicon germanium mixed crystal has a longer lattice than silicon, stress is applied to the junction with silicon, dislocations and defects occur, and high quality crystals cannot be obtained. It was By containing both carbon and germanium, an epitaxial film having the same lattice length as silicon can be grown. The growth of silicon epitaxial films containing both carbon and germanium has so far been carried out by Applied Physics.
Letters vol.60, pp.3033, 1992,
There was only an example of the molecular beam crystal growth method using solid germanium, silicon, etc. as a source. But,
In the molecular beam crystal growth method using a solid as a source, active species linearly fly from the molecular beam source to cause growth. Therefore, as shown in FIG. There is a problem in that it does not grow in a shaded area as viewed from the radiation source 13 and that it is difficult to grow as it goes away from the center, so that it is difficult to grow uniformly over a wide area. Further, in the molecular beam crystal growth method using a solid as a source, when the source is exhausted by use, the device has to be opened to fill the source, which has been a serious problem when applied to production.

【0003】本発明はこのような従来の事情に対処して
なされたもので、窪みのある部分を含めて広い面積に均
一に成長することが可能で、またソースがなくなった場
合にも装置を運転したままガスボンベを交換するだけで
連続的に使用が可能なシリコン膜の成長方法およびその
装置を提供することを目的とする。
The present invention has been made in consideration of such a conventional situation, and it is possible to uniformly grow in a wide area including a recessed portion, and the apparatus can be used even when the source is lost. It is an object of the present invention to provide a method for growing a silicon film and an apparatus for the same, which can be continuously used only by replacing a gas cylinder while operating.

【0004】[0004]

【課題を解決するための手段】本発明は、シリコン原子
を含むガス状原料および炭素原子を含むガス状原料およ
びゲルマニウム原子を含むガス状原料を用いて炭素およ
びゲルマニウムを含むシリコン膜を成長させることを特
徴とするシリコン膜の成長方法である。またこの方法を
実施するためのシリコンエピタキシャル膜の成長装置
は、真空容器内に、シリコン原子を含むガス状原料を導
入するノズルと、炭素原子を含むガス状原料を導入する
ノズルと、ゲルマニウム原子を含むガス状原料を導入す
るノズルとを備えたことを特徴とする。
According to the present invention, a silicon film containing carbon and germanium is grown using a gaseous raw material containing silicon atoms, a gaseous raw material containing carbon atoms and a gaseous raw material containing germanium atoms. Is a method for growing a silicon film. Further, the apparatus for growing a silicon epitaxial film for carrying out this method is, in a vacuum container, a nozzle for introducing a gaseous raw material containing silicon atoms, a nozzle for introducing a gaseous raw material containing carbon atoms, and a germanium atom. And a nozzle for introducing a gaseous raw material containing the same.

【0005】ここでシリコンのソースとしてはシラン、
ジシランなど、炭素のソースとしてはアセチレンなど、
ゲルマニウムのソースとしてはゲルマンなどを用いる。
また炭素とシリコンをともに含むメチルシランのよう
な、シリコンおよび炭素およびゲルマニウムのうち複数
を含むガスもソースとして用いることが可能である。シ
リコンにゲルマニウムを添加していくと格子が長くな
り、シリコンに炭素を添加していくと格子が短くなる。
したがってシリコンにゲルマニウムと炭素をともに添加
することによってシリコンと同じ長さの格子をもつ膜を
形成することが可能である。シリコン、炭素、ゲルマニ
ウムのいずれも原料にガスを用いることによって広い面
積に均一にゲルマニウムおよび炭素を含んだシリコン膜
を成長させることが可能である。
Here, silane is used as the source of silicon,
As a source of carbon such as disilane, acetylene,
Germane or the like is used as the source of germanium.
A gas containing silicon and a plurality of carbon and germanium such as methylsilane containing both carbon and silicon can also be used as a source. The lattice becomes longer as germanium is added to silicon, and the lattice becomes shorter as carbon is added to silicon.
Therefore, it is possible to form a film having a lattice of the same length as silicon by adding germanium and carbon to silicon. It is possible to grow a silicon film containing germanium and carbon uniformly over a wide area by using gas as a raw material for any of silicon, carbon and germanium.

【0006】また、本発明によれば、少なくとも表面に
シリコン層が形成され、該シリコン層上にマスクパター
ンが形成された基板を容器内に配置し、気相反応が無視
できる真空度で前記基板表面にシリコン原子を含むガス
状原料および炭素原子を含むガス状原料およびゲルマニ
ウム原子を含むガス状原料を同時に照射して、炭素およ
びゲルマニウムを含むシリコン膜を前記シリコン層が露
呈した領域のみに選択的に成長させる工程を含むことを
特徴とするシリコン膜の選択成長方法が提供される。こ
の方法を実施するためのシリコン膜の選択成長装置は、
真空容器内に、シリコン原子を含むガス状原料を導入す
るノズルと、炭素原子を含むガス状原料を導入するノズ
ルと、ゲルマニウム原子を含むガス状原料を導入するノ
ズルを備え、成長中の真空度を気相反応が無視できる1
-2Torr以下に保持できる真空排気手段を備えてな
ることを特徴とする。
Further, according to the present invention, a substrate on which a silicon layer is formed at least on the surface and a mask pattern is formed on the silicon layer is placed in a container, and the substrate is placed at a degree of vacuum where vapor phase reaction can be ignored. A surface of a gaseous raw material containing silicon atoms, a gaseous raw material containing carbon atoms and a gaseous raw material containing germanium atoms are simultaneously irradiated to selectively expose a silicon film containing carbon and germanium only to a region where the silicon layer is exposed. There is provided a method of selectively growing a silicon film, which comprises the step of growing the silicon film. An apparatus for selectively growing a silicon film for carrying out this method is
The vacuum container is provided with a nozzle for introducing a gaseous raw material containing silicon atoms, a nozzle for introducing a gaseous raw material containing carbon atoms, and a nozzle for introducing a gaseous raw material containing germanium atoms, and the degree of vacuum during growth Gas phase reaction can be ignored 1
It is characterized in that it is provided with an evacuation means capable of maintaining the pressure below 0 -2 Torr.

【0007】このように、気相反応が無視できる条件で
成長を行うことによって、シリコン酸化膜やシリコン窒
化膜などのマスクパターンをシリコン基板上に形成して
露出したシリコン表面部分の上のみに成長を行う選択成
長も可能である。
As described above, by performing the growth under the condition that the vapor phase reaction can be ignored, a mask pattern such as a silicon oxide film or a silicon nitride film is formed on the silicon substrate and grown only on the exposed silicon surface portion. Selective growth is also possible.

【0008】[0008]

【作用】従来、シリコン基板上にヘテロ接合を形成する
場合に材料として炭化シリコン、シリコンゲルマニウム
が用いられてきた。これらの場合は、炭素はシリコンよ
りも格子が短く、ゲルマニウムはシリコンよりも格子が
長いために、どちらの場合でも歪が生じ、転位、欠陥が
発生した。炭素とゲルマニウムをほぼ1:8.5の割合
で含有させることによって、シリコンと格子の長さを揃
えることができるために、転位、欠陥を発生させずにシ
リコン基板上にヘテロ接合を形成することができる。本
発明では、シリコン、炭素およびゲルマニウムをいずれ
もガスとして供給する。ガスは成長室内壁などによって
散乱されて基板表面に到達するために、基板全体に平均
的に供給される。シリコン、炭素およびゲルマニウムの
全てのソースをガスにすることによって、窪んだ部分を
含めて広い面積に均一に結晶成長を行うことが可能であ
る。
In the past, silicon carbide and silicon germanium have been used as materials when forming a heterojunction on a silicon substrate. In these cases, since carbon has a shorter lattice than silicon and germanium has a longer lattice than silicon, strain occurred in both cases, and dislocations and defects occurred. Since carbon and germanium are contained in a ratio of approximately 1: 8.5, the length of the lattice can be made uniform with that of silicon, so that a heterojunction is formed on a silicon substrate without generating dislocations and defects. You can In the present invention, silicon, carbon, and germanium are all supplied as gas. Since the gas is scattered by the inner wall of the growth chamber and reaches the surface of the substrate, the gas is uniformly supplied to the entire substrate. By using gas for all sources of silicon, carbon, and germanium, it is possible to uniformly grow crystals over a wide area including the recessed portion.

【0009】気相反応が無視できる条件では、ガス状原
料は基板表面でのみ分解を起こす。ここでマスクとなる
シリコン酸化膜やシリコン窒化膜上に比べてシリコン表
面上での分解吸着効率が高いために、シリコン表面上で
のみ成長が起きる。
Under conditions where the gas phase reaction can be ignored, the gaseous raw material decomposes only on the substrate surface. Here, since the decomposition and adsorption efficiency on the silicon surface is higher than that on the silicon oxide film or the silicon nitride film serving as a mask, the growth occurs only on the silicon surface.

【0010】[0010]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は本発明によるシリコン膜の成長装置
の一実施例を示す装置の構成図である。図1に示すよう
に、この成長装置は、排気量1000l/sのターボ分
子ポンプ(図示せず。)を主排気ポンプに用いた真空容
器1の内部に加熱手段を有する基板保持部2が設置さ
れ、当該保持部上に載置された基板3に向けてジシラン
供給用のノズル4およびノズル4に接続したジシランガ
スボンベ7と、アセチレン供給用のノズル5およびノズ
ル5に接続したアセチレンガスボンベ8と、ゲルマン供
給用のノズル6およびノズル6に接続したゲルマンガス
ボンベ9とが備えられている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a block diagram of an apparatus showing an embodiment of a silicon film growth apparatus according to the present invention. As shown in FIG. 1, in this growth apparatus, a substrate holder 2 having a heating means is installed inside a vacuum container 1 in which a turbo molecular pump (not shown) having an exhaust volume of 1000 l / s is used as a main exhaust pump. And a disilane gas cylinder 7 connected to the nozzle 4 for supplying disilane toward the substrate 3 placed on the holding part, a nozzle 5 for supplying acetylene, and an acetylene gas cylinder 8 connected to the nozzle 5, The nozzle 6 for supplying germane and the germane gas cylinder 9 connected to the nozzle 6 are provided.

【0011】この装置を用いた結晶成長方法は、基板保
持部2に4インチの(100)面を有するシリコン基板
3を取り付け、基板温度を850℃に設定し、ジシラ
ン、アセチレン、ゲルマンをマスフローコントローラで
流量制御して流し、基板3上に炭素とゲルマニウムとを
含むシリコンエピタキシャル膜を形成する。成長させた
基板3は大気中に取り出し、X線回折によって格子の長
さの変化を観測し、TEM(Transmission Electron Mi
croscopy)によって結晶性を評価した。成長した結晶中
のシリコン、炭素およびゲルマニウムの含有量はSIM
S(Secondary Ion Mass Spectroscopy)によって求め
た。
In the crystal growth method using this apparatus, a silicon substrate 3 having a 4-inch (100) plane is attached to the substrate holder 2, the substrate temperature is set to 850 ° C., and disilane, acetylene, and germane are used as a mass flow controller. Then, the silicon epitaxial film containing carbon and germanium is formed on the substrate 3 by controlling the flow rate. The grown substrate 3 was taken out into the atmosphere, and the change in the length of the lattice was observed by X-ray diffraction, and TEM (Transmission Electron Mi
The crystallinity was evaluated by croscopy. The content of silicon, carbon and germanium in the grown crystal is SIM
It was determined by S (Secondary Ion Mass Spectroscopy).

【0012】基板温度を850℃に設定し、1SCCM
(Standard Cubic Centimeter perMinute)のジシラン
を流すと成長室内のジシラン分圧は1×10-5Torr
となり、シリコン基板上にシリコンが成長する。この試
料を取り出してX線回折スペクトルを測定すると、図2
(a)に示すように、シリコンのピークのみが観測され
た。この試料をTEMによって観察したところ、転位、
欠陥はみられなかった。1SCCMのジシランと2SC
CMのゲルマンを同時に流すと、ゲルマニウムを約30
%含んだシリコンエピタキシャル膜が形成された。この
試料を取り出してX線回折スペクトルを観測すると、図
2(b)のように低角度側にゲルマニウムを含んだシリ
コンエピタキシャル膜のピークが観測され、シリコンよ
り長い格子をもった結晶が成長しているのが確認され
た。この試料をTEMによって観察したところ、多数の
転位が観察された。1SCCMのジシランと0.7SC
CMのアセチレンを流すと、炭素を約3.5%含んだシ
リコンエピタキシャル膜が形成された。この試料のX線
回折スペクトルを観測すると、図2(c)に示すよう
に、シリコンより高角度側にピークが観測された。ピー
クの位置からシリコンと炭素が1:1で結合した形の化
合物が成長した膜中に存在することが確認された。この
試料をTEMによって観察したところ、成長した膜中に
0.01μm程度の径をもつ微粒子が多数観測され、こ
の微粒子の周りに多数の転位、欠陥が観察された。
The substrate temperature is set to 850 ° C. and 1 SCCM
When the (Standard Cubic Centimeter per Minute) disilane is flown, the partial pressure of disilane in the growth chamber is 1 × 10 -5 Torr.
Then, silicon grows on the silicon substrate. This sample was taken out and the X-ray diffraction spectrum was measured.
As shown in (a), only the silicon peak was observed. When this sample was observed by TEM, dislocation,
No defects were found. 1 SCCM disilane and 2 SC
When germane of CM is flowed at the same time, germanium is about 30
% Of the silicon epitaxial film was formed. When this sample was taken out and the X-ray diffraction spectrum was observed, a peak of the silicon epitaxial film containing germanium was observed on the low angle side as shown in FIG. 2B, and a crystal having a lattice longer than that of silicon grew. Was confirmed. When this sample was observed by TEM, many dislocations were observed. 1 SCCM disilane and 0.7 SC
When CM acetylene was flowed, a silicon epitaxial film containing about 3.5% carbon was formed. When the X-ray diffraction spectrum of this sample was observed, a peak was observed on the higher angle side than silicon as shown in FIG. From the position of the peak, it was confirmed that a compound in which silicon and carbon were bonded at a ratio of 1: 1 was present in the grown film. When this sample was observed by a TEM, many fine particles having a diameter of about 0.01 μm were observed in the grown film, and many dislocations and defects were observed around the fine particles.

【0013】1SCCMのジシランと2SCCMのゲル
マンと0.7SCCMのアセチレンを同時に流したとこ
ろ、約30%のゲルマニウムと約3.5%の炭素を含ん
だシリコンエピタキシャル膜が成長した。この試料のX
線回折スペクトルを観測したところ、図2(a)と同様
にシリコンより低角度側、高角度側のどちらにもピーク
は観察されなかった。この結果は、成長した膜がシリコ
ンと同じ格子の長さをもつことを示す。この試料をTE
Mによって観察したところ、転位、欠陥はみられなかっ
た。これらの結果は、4インチ型基板の中心から0c
m、1cm、2cm、3cm、4cmの全ての点で同じ
であった。以上のように、ジシラン、アセチレンおよび
ゲルマンを同時に流すことによって、シリコンと同じ格
子の長さをもつ炭素およびゲルマニウムを含むシリコン
エピタキシャル膜をシリコン上に形成できることが確認
された。
When 1 SCCM of disilane, 2 SCCM of germane and 0.7 SCCM of acetylene were simultaneously flown, a silicon epitaxial film containing about 30% germanium and about 3.5% carbon was grown. X of this sample
When the line diffraction spectrum was observed, no peak was observed on either the low angle side or the high angle side of silicon, as in FIG. 2 (a). The results show that the grown film has the same lattice length as silicon. This sample is TE
When observed by M, no dislocation or defect was observed. These results are 0c from the center of the 4-inch substrate.
m, 1 cm, 2 cm, 3 cm, 4 cm were all the same. As described above, it was confirmed that a silicon epitaxial film containing carbon and germanium having the same lattice length as silicon can be formed on silicon by simultaneously flowing disilane, acetylene, and germane.

【0014】さらに、マスクパターンとしてシリコン酸
化膜を基板上に形成したシリコン(100)基板上にお
いて上記と同様の成長を行い、走査型電子顕微鏡によっ
て成長した試料を観測したところ、図3に示すようにシ
リコン酸化膜11上には成長が起きず、シリコン基板1
0の表面上にのみ選択的に成長層12が形成されている
ことが確認された。
Further, the same growth as above was carried out on a silicon (100) substrate having a silicon oxide film formed on the substrate as a mask pattern, and the grown sample was observed by a scanning electron microscope. As shown in FIG. In addition, no growth occurs on the silicon oxide film 11 and the silicon substrate 1
It was confirmed that the growth layer 12 was selectively formed only on the surface of 0.

【0015】なお、本実施例では(100)表面をもつ
シリコン基板を対象としたが、他の面方位のシリコン基
板、表面のみにシリコンが存在するSOI(Silicon on
Insulator)基板にも適用できる。さらに、成長の初期
段階以降は炭素およびゲルマニウムを含んだシリコン表
面上で成長が進行していくことからもわかるように、基
板表面が炭化シリコン、シリコンゲルマニウム、炭素と
ゲルマニウムを含んだシリコン表面となっている基板に
も適用可能である。また、マスクパターンとしてシリコ
ン酸化膜を用いたが、シリコン窒化膜をマスクパターン
として用いた基板を含め、その他の構造を有し、部分的
にシリコン表面が露出している基板にも適用できる。
In this embodiment, a silicon substrate having a (100) surface is targeted, but a silicon substrate having another plane orientation, or SOI (Silicon on) in which silicon exists only on the surface.
Insulator) board can also be applied. Furthermore, as can be seen from the fact that the growth proceeds on the silicon surface containing carbon and germanium after the initial stage of growth, the substrate surface becomes silicon carbide, silicon germanium, or a silicon surface containing carbon and germanium. It can also be applied to a printed circuit board. Although the silicon oxide film is used as the mask pattern, the present invention can be applied to substrates having other structures including a substrate using a silicon nitride film as the mask pattern and having a partially exposed silicon surface.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
ガスをソースとすることによって窪みのある部分を含め
て広い面積に均一に炭素およびゲルマニウムを含有する
シリコンエピタキシャル膜をシリコン上に成長すること
ができる。またシリコン酸化膜やシリコン窒化膜などの
マスクパターンをシリコン基板上に形成して、露出した
シリコン表面部分の上のみに成長を行う選択成長も可能
である。さらに、ガスをソースとしているのでソースの
充填を必要としないため、生産効率が高くなる。
As described above, according to the present invention,
By using gas as a source, a silicon epitaxial film containing carbon and germanium can be uniformly grown on silicon over a wide area including a recessed portion. It is also possible to perform selective growth in which a mask pattern such as a silicon oxide film or a silicon nitride film is formed on a silicon substrate and growth is performed only on the exposed silicon surface portion. Furthermore, since gas is used as the source, it is not necessary to fill the source, so that the production efficiency is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による装置の一実施例を示す構成図であ
る。
FIG. 1 is a block diagram showing an embodiment of an apparatus according to the present invention.

【図2】本発明の方法の一実施例におけるX線回折スペ
クトルを示す図である。
FIG. 2 is a diagram showing an X-ray diffraction spectrum in an example of the method of the present invention.

【図3】本発明の方法の一実施例における成長後の試料
断面形状を示す図である。
FIG. 3 is a diagram showing a sample cross-sectional shape after growth in an example of the method of the present invention.

【図4】従来例によってシリコン基板上に炭素およびゲ
ルマニウムを含有するシリコンエピタキシャル膜を成長
させた時の試料断面形状を示す図である。
FIG. 4 is a diagram showing a sample cross-sectional shape when a silicon epitaxial film containing carbon and germanium is grown on a silicon substrate according to a conventional example.

【符号の説明】[Explanation of symbols]

1 真空容器 2 基板保持部 3 基板 4,5,6 ノズル 7 ジシランボンベ 8 アセチレンボンベ 9 ゲルマンボンベ 10 シリコン基板 11 シリコン酸化膜 12 成長層 13 分子線源 14 シリコン基板 15 成長層 1 Vacuum Container 2 Substrate Holding Part 3 Substrate 4, 5, 6 Nozzle 7 Disilane Cylinder 8 Acetylene Cylinder 9 Germanman Cylinder 10 Silicon Substrate 11 Silicon Oxide Film 12 Growth Layer 13 Molecular Beam Source 14 Silicon Substrate 15 Growth Layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコン原子を含むガス状原料および炭
素原子を含むガス状原料およびゲルマニウム原子を含む
ガス状原料を用いて炭素およびゲルマニウムを含むシリ
コン膜を成長させることを特徴とするシリコン膜の成長
方法。
1. A growth of a silicon film comprising growing a silicon film containing carbon and germanium using a gaseous raw material containing silicon atoms, a gaseous raw material containing carbon atoms and a gaseous raw material containing germanium atoms. Method.
【請求項2】 真空容器内に、シリコン原子を含むガス
状原料を導入するノズルと、炭素原子を含むガス状原料
を導入するノズルと、ゲルマニウム原子を含むガス状原
料を導入するノズルとを備えたことを特徴とするシリコ
ンエピタキシャル膜の成長装置。
2. A vacuum container comprising a nozzle for introducing a gaseous raw material containing silicon atoms, a nozzle for introducing a gaseous raw material containing carbon atoms, and a nozzle for introducing a gaseous raw material containing germanium atoms. An apparatus for growing a silicon epitaxial film, characterized in that
【請求項3】 少なくとも表面にシリコン層が形成さ
れ、該シリコン層上にマスクパターンが形成された基板
を容器内に配置し、気相反応が無視できる真空度で前記
基板表面にシリコン原子を含むガス状原料および炭素原
子を含むガス状原料およびゲルマニウム原子を含むガス
状原料を同時に照射して、炭素およびゲルマニウムを含
むシリコン膜を前記シリコン層が露呈した領域のみに選
択的に成長させる工程を含むことを特徴とするシリコン
膜の選択成長方法。
3. A substrate having a silicon layer formed on at least the surface thereof and having a mask pattern formed on the silicon layer is placed in a container, and silicon atoms are contained on the surface of the substrate at a vacuum degree where vapor phase reaction can be ignored. A step of simultaneously irradiating a gaseous raw material and a gaseous raw material containing a carbon atom and a gaseous raw material containing a germanium atom to selectively grow a silicon film containing carbon and germanium only in a region where the silicon layer is exposed; A method for selectively growing a silicon film, which is characterized by the above.
【請求項4】 真空容器内に、シリコン原子を含むガス
状原料を導入するノズルと、炭素原子を含むガス状原料
を導入するノズルと、ゲルマニウム原子を含むガス状原
料を導入するノズルを備え、成長中の真空度を気相反応
が無視できる10-2Torr以下に保持できる真空排気
手段を備えてなることを特徴とするシリコン膜の選択成
長装置。
4. A vacuum container is provided with a nozzle for introducing a gaseous raw material containing silicon atoms, a nozzle for introducing a gaseous raw material containing carbon atoms, and a nozzle for introducing a gaseous raw material containing germanium atoms, A selective growth apparatus for a silicon film, comprising a vacuum evacuation means capable of maintaining the degree of vacuum during growth at 10 -2 Torr or less at which vapor phase reaction can be ignored.
JP5029614A 1993-01-27 1993-01-27 Silicon film growth method Expired - Lifetime JP2798576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5029614A JP2798576B2 (en) 1993-01-27 1993-01-27 Silicon film growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5029614A JP2798576B2 (en) 1993-01-27 1993-01-27 Silicon film growth method

Publications (2)

Publication Number Publication Date
JPH06224127A true JPH06224127A (en) 1994-08-12
JP2798576B2 JP2798576B2 (en) 1998-09-17

Family

ID=12280956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5029614A Expired - Lifetime JP2798576B2 (en) 1993-01-27 1993-01-27 Silicon film growth method

Country Status (1)

Country Link
JP (1) JP2798576B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073827A1 (en) * 2000-03-27 2001-10-04 Matsushita Electric Industrial Co., Ltd. Semiconductor wafer and production method therefor
US6537369B1 (en) 2000-03-27 2003-03-25 Matsushita Electric Industrial Co., Ltd. SiGeC semiconductor crystal and production method thereof
US6649496B2 (en) 2000-03-23 2003-11-18 Matsushita Electric Industrial Co., Ltd. Production method for semiconductor crystal
US6667489B2 (en) 2001-11-29 2003-12-23 Hitachi, Ltd. Heterojunction bipolar transistor and method for production thereof
US6852602B2 (en) 2001-01-31 2005-02-08 Matsushita Electric Industrial Co., Ltd. Semiconductor crystal film and method for preparation thereof
US7019341B2 (en) 1996-12-09 2006-03-28 Ihp Gmbh - Innovations For High Performance Microelectronics/Instut Fur Innovative Mikroelektronik Silicon germanium hetero bipolar transistor having a germanium concentration profile in the base layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011915A (en) 2003-06-18 2005-01-13 Hitachi Ltd Semiconductor device, semiconductor circuit module and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437008A (en) * 1987-07-31 1989-02-07 Sharp Kk Manufacture of amorphous semiconductor film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437008A (en) * 1987-07-31 1989-02-07 Sharp Kk Manufacture of amorphous semiconductor film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019341B2 (en) 1996-12-09 2006-03-28 Ihp Gmbh - Innovations For High Performance Microelectronics/Instut Fur Innovative Mikroelektronik Silicon germanium hetero bipolar transistor having a germanium concentration profile in the base layer
US6649496B2 (en) 2000-03-23 2003-11-18 Matsushita Electric Industrial Co., Ltd. Production method for semiconductor crystal
WO2001073827A1 (en) * 2000-03-27 2001-10-04 Matsushita Electric Industrial Co., Ltd. Semiconductor wafer and production method therefor
US6537369B1 (en) 2000-03-27 2003-03-25 Matsushita Electric Industrial Co., Ltd. SiGeC semiconductor crystal and production method thereof
US6645836B2 (en) * 2000-03-27 2003-11-11 Matsushita Electric Industrial Co., Ltd. Method of forming a semiconductor wafer having a crystalline layer thereon containing silicon, germanium and carbon
US6660393B2 (en) 2000-03-27 2003-12-09 Matsushita Electric Industrial Co., Ltd. SiGeC semiconductor crystals and the method producing the same
US6930026B2 (en) 2000-03-27 2005-08-16 Matsushita Electric Industrial Co., Ltd. Method of forming a semiconductor wafer having a crystalline layer thereon containing silicon, germanium and carbon
US6852602B2 (en) 2001-01-31 2005-02-08 Matsushita Electric Industrial Co., Ltd. Semiconductor crystal film and method for preparation thereof
US6667489B2 (en) 2001-11-29 2003-12-23 Hitachi, Ltd. Heterojunction bipolar transistor and method for production thereof

Also Published As

Publication number Publication date
JP2798576B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
US5250148A (en) Process for growing GaAs monocrystal film
JPH06224127A (en) Method and device for growth of silicon film
JP3399642B2 (en) Method for forming semiconductor light emitting element layer
JP2646961B2 (en) Method and apparatus for growing silicon-carbon mixed crystal epitaxial film
JP3149464B2 (en) Method and apparatus for selective growth of silicon epitaxial film
JPH04139819A (en) Method and apparatus for selective growth of silicon epitaxial film
JPH05238880A (en) Method for epitaxial growth
JP2861601B2 (en) Method and apparatus for selective growth of silicon epitaxial film
JP2861600B2 (en) Method and apparatus for selective growth of silicon epitaxial film
JP3047523B2 (en) Selective epitaxial growth method
JPH01158721A (en) Method and apparatus for light irradiation type low temperature mocvd
JPH0645257A (en) Method for forming semiconductor thin film
JPH0556650B2 (en)
JPH0572742B2 (en)
JPH0682622B2 (en) Method for forming gallium arsenide thin film
JP2577543B2 (en) Single crystal thin film growth equipment
JP2596135B2 (en) Molecular beam epitaxial growth method of silicon germanium mixed crystal
JPS63248796A (en) Molecular beam epitaxy and its device
JPH01286991A (en) Method for molecular-beam epitaxial growth and apparatus therefor
KR20210058577A (en) A method for bandgap engineering of diamond by hybridization with graphene
JPH06112124A (en) Organometallic molecular-beam epitaxial growth method
JPH07206595A (en) Method for molecular beam epitaxial growth
JPH01184817A (en) Growth method for semiconductor crystal
JPS6253933B2 (en)
JPS6325914A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20070703

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080703

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090703

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100703

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110703

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110703

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120703

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 15