JPH06224025A - Current lead - Google Patents

Current lead

Info

Publication number
JPH06224025A
JPH06224025A JP4120155A JP12015592A JPH06224025A JP H06224025 A JPH06224025 A JP H06224025A JP 4120155 A JP4120155 A JP 4120155A JP 12015592 A JP12015592 A JP 12015592A JP H06224025 A JPH06224025 A JP H06224025A
Authority
JP
Japan
Prior art keywords
current lead
oxide superconductor
current
thin tube
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4120155A
Other languages
Japanese (ja)
Inventor
Junji Sakuraba
順二 桜庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP4120155A priority Critical patent/JPH06224025A/en
Publication of JPH06224025A publication Critical patent/JPH06224025A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a current lead in excellent cooling down efficiency by furnishing an oxide superconductor with a mechanism for quenching and an excellent reinforcement structure. CONSTITUTION:Multiple tied up capillaries 1 comprising metallic excellent conductors are integrated with an oxide superconductors 4 while excellent conductor metallic plates are integrated with both ends of the oxide superconductor 4 to provide cable connecting plates 2, 3. On the other hand, the capillaries 1 are cooled down by making a refrigerant evaporated from a superconducting device cooing tank pass through so as to manufacture the title evaporated gas cooling down type current lead.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は極低温下において作動す
る超電導装置に電流供給を行う超電導体電流リードに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconductor current lead for supplying current to a superconducting device which operates at cryogenic temperatures.

【0002】[0002]

【従来の技術】従来の超電導コイル装置の構造を図面と
ともに説明する。図4は従来の超電導コイル装置の構造
の一例を示す断面図である。コイル容器15内に冷媒1
4を満たし、その中に超電導コイル13が設置されてい
る。コイル容器15は熱シールド板17で遮蔽され、ク
ライオスタット16の内に収められている。
2. Description of the Related Art The structure of a conventional superconducting coil device will be described with reference to the drawings. FIG. 4 is a sectional view showing an example of the structure of a conventional superconducting coil device. Refrigerant 1 in the coil container 15
4 and the superconducting coil 13 is installed therein. The coil container 15 is shielded by a heat shield plate 17 and is housed in a cryostat 16.

【0003】超電導コイル13に正極用電流リード11
および負極用電流リード12を接続して、電源18から
給電する。冷媒14が消費されて蒸発すると電流リード
を通って上昇する構造となっている。この構造の装置で
は蒸発するガスを通して電流リードが冷却され、外部か
らの熱侵入を減少させて冷却効率を上げる。
The superconducting coil 13 has a current lead 11 for the positive electrode.
And the current lead 12 for negative electrode is connected, and power is supplied from the power supply 18. When the refrigerant 14 is consumed and evaporated, it rises through the current lead. In the device of this structure, the current lead is cooled through the vaporized gas, and the heat penetration from the outside is reduced to improve the cooling efficiency.

【0004】超電導コイルに給電するのに使用される電
流リードの一例について図面とともに説明する。図5は
従来型の電流リードの構造の一例を示す斜視図である。
銅や銀等の金属製の良電導体の細管あるいは細線21を
束ねた構造の電流リードである。蒸発ガス冷却タイプで
は細管あるいは細線の間隙にコイル容器から蒸発した冷
媒を通して電流リードを冷却している。電流リード両端
の電極部の側面あるいは底面に、板状や分フィン状のケ
ーブル接続板22・23がハンダ付け等で電気的に接続
されていて、一方が極低温側の内部ケーブル接続板2
3、他方が常温側の外部ケーブル接続板22となってい
る。図に示したような電流リードを正極用、負極用の2
本用いて超電導コイル装置に給電を行っている。
An example of a current lead used to supply power to a superconducting coil will be described with reference to the drawings. FIG. 5 is a perspective view showing an example of the structure of a conventional current lead.
This is a current lead having a structure in which thin tubes or thin wires 21 made of a good electric conductor made of metal such as copper or silver are bundled. In the evaporative gas cooling type, the current lead is cooled by passing the refrigerant evaporated from the coil container through the gap between the thin tubes or the thin wires. Plate-shaped or split fin-shaped cable connection plates 22 and 23 are electrically connected by soldering or the like to the side surface or the bottom surface of the electrode portions at both ends of the current lead, and one of them is an internal cable connection plate 2 on the cryogenic side.
3 and the other is the external cable connection plate 22 on the room temperature side. The current leads shown in the figure are used for the positive and negative electrodes.
This is used to supply power to the superconducting coil device.

【0005】従来型の電流リードは侵入熱によって、お
およそであるが、定格通電量が500Aのもので通電時
に1.4l/hrの液体ヘリウム、定格通電量が100
Aのもので0.56l/hrの液体ヘリウムを消費して
いる。電流リードの侵入熱を考慮して冷媒の貯量と補給
インターバルや液化装置、冷凍装置の性能が選定されて
いる。蒸発ガス冷却タイプを採用したことにより1Aあ
たりに換算すると液体ヘリウムの消費量を0.0028
l/hrまでに抑えている。
A conventional type current lead has a rated energization amount of 500 A, which is about 1.4 A / hr of liquid helium when energized, and a rated energization amount is 100, although it is approximately due to invasion heat.
The one of A consumes 0.56 l / hr of liquid helium. The amount of refrigerant stored, the replenishment interval, and the performance of the liquefying device and the refrigerating device are selected in consideration of the heat entering the current leads. By adopting the evaporative gas cooling type, the consumption of liquid helium is 0.0028 when converted per 1A.
It is suppressed to 1 / hr.

【0006】上に説明したような金属製の電流リードの
他、酸化物超電導体を用いた電流リードも開発されてい
る。酸化物超電導体電流リードの場合、高温超電導体を
選んで液体窒素等の液体ヘリウムより高温の冷媒タンク
等を備えて冷却し、通電を行っている。
In addition to the metallic current leads described above, current leads using oxide superconductors have also been developed. In the case of an oxide superconductor current lead, a high-temperature superconductor is selected and equipped with a coolant tank or the like having a temperature higher than that of liquid helium such as liquid nitrogen to cool and conduct electricity.

【0007】[0007]

【発明が解決しようとする課題】このように極低温に冷
却されて作動する超電導コイル装置に電流を供給する電
流リードには、優れたエネルギー効率で大電流を供給で
き、電流リードを介しての熱侵入が起こらないような構
造や材質が要求されている。侵入熱と通電時の発熱を減
らして冷媒の消費を抑え、冷却効率を上げることが重要
な課題となっている。
As described above, the current lead for supplying a current to the superconducting coil device which is cooled to a cryogenic temperature and can be operated can supply a large current with excellent energy efficiency. Structures and materials that prevent heat from entering are required. It is an important issue to reduce the invasion heat and the heat generation when energized to reduce the consumption of the refrigerant and increase the cooling efficiency.

【0008】金属製等の良電導体の電流リードはジュー
ル熱による発熱が大きく、通電時には電流リードから超
電導コイル装置への侵入熱が60%程度増加する。従来
型のなかで冷却効率の優れた蒸発ガス冷却タイプの電流
リードであっても、通電量が大きく侵入熱が大きくなる
ほど冷媒の消費量が増加し、大型の液化装置や冷凍装置
が必要となるため、コスト面に問題があり、冷却効率も
思うようには改善されていない。
The current lead of a good electric conductor made of metal or the like generates a large amount of heat due to Joule heat, and the heat entering the superconducting coil device from the current lead increases by about 60% when energized. Even with the evaporative gas cooling type current lead, which has a superior cooling efficiency among the conventional types, the larger the energization amount and the larger the inflow heat, the more the refrigerant consumption increases, and a large liquefaction device or refrigeration device is required. Therefore, there is a cost problem and the cooling efficiency has not been improved as expected.

【0009】酸化物超電導体は低温での熱伝導率が極め
て小さく、比較的高温でも超電導状態を呈するため、極
低温部から低温部までの温度勾配のある熱侵入を極力抑
えたい環境で大電流を供給するのに適した材質である。
しかし、酸化物超電導体電流リードを冷却するための冷
媒や冷却装置がさらに必要となるため、装置の大型化や
コストの上昇を招いている。また酸化物超電導体は機械
的強度の小さい脆い材質であるため取扱いがむずかし
く、クエンチ発生時の対策も講じなければならないな
ど、電流リードに利用するためには、解決しなければな
らない問題が多くある。
Oxide superconductors have extremely low thermal conductivity at low temperatures and exhibit superconducting state even at relatively high temperatures. It is a suitable material for supplying.
However, since a refrigerant and a cooling device for cooling the oxide superconductor current lead are further required, the device is upsized and the cost is increased. In addition, oxide superconductors are brittle materials with low mechanical strength and are difficult to handle.Therefore, there are many problems that must be solved before they can be used for current leads. .

【0010】本発明は、酸化物超電導体にクエンチ対策
機構と良好な補強構造を得て、冷却効率に優れた電流リ
ードを提供することを目的とする。
It is an object of the present invention to provide a quench countermeasure mechanism and a good reinforcing structure in an oxide superconductor to provide a current lead excellent in cooling efficiency.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明では金属製の良電導体の細管を複数本束ね
たものを酸化物超電導体と一体成形化し、蒸発ガス冷却
タイプの酸化物超電導体電流リードとする。電流リード
の両端には良電導体の金属板を取り付けてケーブル接続
板を設ける。金属製の細管が酸化物超電導体と一体化さ
れているため、酸化物超電導体がクエンチを起こした場
合、細管が電流のバイパス路となり、焼損の恐れがなく
なる。また細管が酸化物超電導体を機械的に補償し、破
損防止の役割も果たしている。
In order to solve the above problems, according to the present invention, a plurality of thin tubes made of a metal good electric conductor are bundled together and integrally molded with an oxide superconductor to obtain an evaporative gas cooling type. Oxide superconductor Current lead. A metal plate of good conductor is attached to both ends of the current lead to provide a cable connection plate. Since the metal thin tube is integrated with the oxide superconductor, when the oxide superconductor is quenched, the thin tube serves as a current bypass path and there is no risk of burning. In addition, the thin tube mechanically compensates for the oxide superconductor and plays a role of preventing damage.

【0012】本発明の電流リードの構造を図面とともに
説明する。図1、図2は本発明の電流リードの構造の一
例を説明する図面で、図1は斜視図、図2は断面図であ
る。図1の電流リードの矢線Aの示す部分は常温側端
で、図2(A)の断面図を見るとわかるように、周囲が
銅製の金属管7で内部に銀製の細管1が複数束ねられて
いる。金属管7と細管1の間隙、および、金属管7の外
周と銅等の外部ケーブル接続板2は、ハンダ付け等で電
気的に接続されている。細管1は銀あるいは銅などの良
電導体に銀鍍金を施したものが適当である。この細管は
電流リードの他端の極低温側まで通じている。図1中の
矢線Bで示したのは、電流リードの本体部分で図2
(B)の断面図を見るとわかるように、酸化物超電導体
4と常温部から通じている細管1が埋め込まれて一体化
されている。図1の矢線Cで示す部分は極低温側端で、
図2(C)の断面図を見るとわかるように、常温側端か
ら細管1が通じている。銀製の内部ケーブル接続板3が
酸化物超電導体4に一部埋め込まれて一体化され、超電
導コイル装置に接続できるようになっている。超電導コ
イル装置に備えられている冷媒タンクからの蒸発ガス電
流リードの細管を通って酸化物超電導体を冷却する、蒸
発ガス冷却タイプの電流リードである。
The structure of the current lead of the present invention will be described with reference to the drawings. 1 and 2 are drawings for explaining an example of the structure of the current lead of the present invention, FIG. 1 is a perspective view, and FIG. 2 is a sectional view. The portion indicated by the arrow A of the current lead in FIG. 1 is the room temperature side end, and as can be seen from the cross-sectional view of FIG. 2A, the periphery is a metal tube 7 made of copper and a plurality of silver thin tubes 1 are bundled inside. Has been. The gap between the metal tube 7 and the thin tube 1, and the outer circumference of the metal tube 7 and the external cable connecting plate 2 such as copper are electrically connected by soldering or the like. The thin tube 1 is preferably made of a good electric conductor such as silver or copper plated with silver. This thin tube leads to the cryogenic side at the other end of the current lead. The arrow B in FIG. 1 indicates the main body of the current lead.
As can be seen from the sectional view of (B), the oxide superconductor 4 and the thin tube 1 communicating from the room temperature portion are embedded and integrated. The portion indicated by the arrow C in FIG. 1 is the cryogenic temperature side end,
As can be seen from the cross-sectional view of FIG. 2 (C), the thin tube 1 communicates from the room temperature side end. An internal cable connecting plate 3 made of silver is partially embedded in the oxide superconductor 4 and integrated so that it can be connected to the superconducting coil device. It is an evaporative gas cooling type current lead for cooling an oxide superconductor through a thin tube of an evaporative gas current lead from a refrigerant tank provided in a superconducting coil device.

【0013】図3に本発明の電流リードの成形方法の一
例を説明するCIP成形容器の断面図を示す。円筒形の
CIP成形容器5の底部には銀製の内部ケーブル接続板
を立てて酸化物超電導体原料粉6を充填し、CIP、焼
結等の処理を行う。焼結法の他、溶融法、部分溶融法等
の適当な方法で加工しても、酸化物超電導体と細管、接
続板の複合体を得る。得られた複合体に銅製の金属管を
露出している細管に取り付けて細管と金属管の間隙にハ
ンダを入れて電気的接続を保つ。金属管に銅製の外部ケ
ーブル接続板を電気的に接続すると電流リードとなる。
FIG. 3 shows a sectional view of a CIP molded container for explaining an example of the method for molding the current lead of the present invention. At the bottom of the cylindrical CIP molding container 5, an internal cable connection plate made of silver is erected, filled with the oxide superconductor raw material powder 6, and subjected to treatments such as CIP and sintering. A composite of an oxide superconductor, a thin tube, and a connecting plate can be obtained by processing by an appropriate method such as a melting method or a partial melting method other than the sintering method. A metal tube made of copper is attached to the exposed thin tube in the obtained composite, and solder is put in a gap between the thin tube and the metal tube to maintain electrical connection. When the copper external cable connection plate is electrically connected to the metal tube, it becomes a current lead.

【0014】電流リードに通じている細管に冷媒の蒸発
ガスが通り、細管と酸化物超電導体が冷却されて臨界温
度以下になる。超電導体の電気抵抗が極めて小さくなる
ため、ジュール熱は無視できるほど小さく、非通電時と
大差のない侵入熱となる。常温側に近い部分では蒸発ガ
スでは臨界温度以下に冷却されない場合も考えられる
が、酸化物超電導体からごく一部が細管を経て銅等の金
属管、外部ケーブル接続板へと電流が流れるだけで、問
題となるような侵入熱の増加は起こらない。超電導体に
万一クエンチが発生しても、抵抗の急上昇した超電導体
を避けて細管へと電流が流れ込むため、超電導体の焼損
を防ぎ、安定した電力供給を得られる。さらに細管が脆
性の酸化物超電導体の強度を補償し、破損を防止してい
る。金属管、接続板や細管が超電導体と一体成形してあ
るため、互いに電気的接触が良好で接触抵抗が低く、ジ
ュール熱の発生も低い。本発明の電流リードではジュー
ル熱を無視できるほど小さくすることも出来るため、1
Aあたり0.0028×0.6=0.0017程度まで
液体ヘリウムの消費量を低減させることも可能である。
The evaporative gas of the refrigerant passes through the thin tube communicating with the current lead, and the thin tube and the oxide superconductor are cooled to a temperature below the critical temperature. Since the electric resistance of the superconductor is extremely small, the Joule heat is so small that it can be ignored, and it becomes the invasion heat that is not much different from the non-energized state. In the part near the room temperature side, it may be considered that the evaporative gas does not cool below the critical temperature. However, there is no problematic increase in penetration heat. Even if a quench occurs in the superconductor, a current flows into the thin tube while avoiding the superconductor with a sharp increase in resistance, so that the superconductor can be prevented from being burnt and a stable power supply can be obtained. Furthermore, the thin tube compensates for the strength of the brittle oxide superconductor and prevents damage. Since the metal tube, the connecting plate, and the thin tube are integrally formed with the superconductor, they have good electrical contact with each other, have low contact resistance, and have low Joule heat generation. In the current lead of the present invention, the Joule heat can be made so small that it can be ignored.
It is also possible to reduce the consumption of liquid helium to about 0.0028 × 0.6 = 0.017 per A.

【0015】[0015]

【発明の効果】上記のように本発明の電流リードによれ
ば、銀等の良電導性の細管と酸化物超電導体を一体化し
て構成するため、超電導体の機械的強度が補償され、ク
エンチ発生時の電流バイパスが確保され、安定して超電
導コイル装置に給電することが出来る。細管に冷媒の蒸
発ガスを通じることにより優れた冷却効率を備えた酸化
物超電導体電流リードが得られ、冷却効率に優れた超電
導コイルシステムを提供することが出来る。酸化物超電
導体を用いているため、ジュール熱の発生が極めて小さ
く、電流リードを介する侵入熱は減少するため、冷媒の
消費量を低減し、冷却装置の小型化、高効率化を図るこ
とが出来る。
As described above, according to the current lead of the present invention, since the thin tube having good conductivity such as silver and the oxide superconductor are integrally formed, the mechanical strength of the superconductor is compensated and the quenching is performed. A current bypass at the time of occurrence is secured, and it is possible to stably supply power to the superconducting coil device. By passing the evaporative gas of the refrigerant through the thin tube, an oxide superconductor current lead having excellent cooling efficiency can be obtained, and a superconducting coil system having excellent cooling efficiency can be provided. Since an oxide superconductor is used, the generation of Joule heat is extremely small and the heat entering through the current leads is reduced, so that it is possible to reduce the amount of refrigerant consumed, downsize the cooling device, and improve efficiency. I can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電流リードの構造の一例を示す側面図
である。
FIG. 1 is a side view showing an example of a structure of a current lead of the present invention.

【図2】本発明の電流リードの構造の一例を示す断面図
である。
FIG. 2 is a sectional view showing an example of the structure of a current lead of the present invention.

【図3】本発明の電流リードの成形方法の一例を説明す
るCIP成形容器の断面図である。
FIG. 3 is a cross-sectional view of a CIP molded container for explaining an example of the method of molding the current lead of the present invention.

【図4】従来の超電導コイル装置の構造の一例を示す断
面図である。
FIG. 4 is a sectional view showing an example of a structure of a conventional superconducting coil device.

【図5】従来型の電流リードの構造の一例を示す側面図
である。
FIG. 5 is a side view showing an example of the structure of a conventional current lead.

【符号の説明】[Explanation of symbols]

1 細管 2 外部ケーブル接続板 3 内部ケーブル接続板 4 酸化物超電導体 5 CIP成形容器 6 酸化物超電導体原料粉 11 正極用電流リード 12 負極用電流リード 13 超電導コイル 14 液体ヘリウム 15 コイル容器 16 クライオスタット 17 熱シールド板 18 電源 21 細管または細線 22 外部ケーブル接続板 23 内部ケーブル接続板 DESCRIPTION OF SYMBOLS 1 Capillary tube 2 External cable connecting plate 3 Internal cable connecting plate 4 Oxide superconductor 5 CIP molding container 6 Oxide superconductor raw material powder 11 Positive electrode current lead 12 Negative current lead 13 Superconducting coil 14 Liquid helium 15 Coil container 16 Cryostat 17 Heat shield plate 18 Power supply 21 Thin tube or thin wire 22 External cable connection plate 23 Internal cable connection plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒ガスが通過する中空部を備えた良電
導性金属細管と酸化物超電導体を一体に成形焼結した電
流路を備えたことを特徴とする電流リード。
1. A current lead provided with a current path formed by integrally molding and sintering a good-conductivity metal thin tube having a hollow portion through which a refrigerant gas passes and an oxide superconductor.
【請求項2】 前記良電導性金属細管が銀または銀メッ
キした良電導性金属であることを特徴とする請求項1記
載の電流リード。
2. The current lead according to claim 1, wherein the good conductive metal thin tube is silver or a silver-plated good conductive metal.
JP4120155A 1992-04-14 1992-04-14 Current lead Pending JPH06224025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4120155A JPH06224025A (en) 1992-04-14 1992-04-14 Current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4120155A JPH06224025A (en) 1992-04-14 1992-04-14 Current lead

Publications (1)

Publication Number Publication Date
JPH06224025A true JPH06224025A (en) 1994-08-12

Family

ID=14779321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4120155A Pending JPH06224025A (en) 1992-04-14 1992-04-14 Current lead

Country Status (1)

Country Link
JP (1) JPH06224025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104625280A (en) * 2014-12-29 2015-05-20 中国科学院电工研究所 Welding structure for superconducting coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104625280A (en) * 2014-12-29 2015-05-20 中国科学院电工研究所 Welding structure for superconducting coil
CN104625280B (en) * 2014-12-29 2016-08-17 中国科学院电工研究所 A kind of Welding Structure for superconducting coil

Similar Documents

Publication Publication Date Title
US5884485A (en) Power lead for electrically connecting a superconducting coil to a power supply
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
JPH07142237A (en) Superconducting magnet device
JP2006324325A (en) Super-conducting magnet apparatus
JP2756551B2 (en) Conduction-cooled superconducting magnet device
JP3569997B2 (en) Current leads for superconducting devices
JPH06224025A (en) Current lead
JP3377350B2 (en) Thermoelectric cooling type power lead
JP2009230912A (en) Oxide superconductive current lead
JP2004111581A (en) Superconducting magnet unit
JP2003324013A (en) Oxide superconductor current lead
JP3450318B2 (en) Thermoelectric cooling type power lead
JP2981810B2 (en) Current lead of superconducting coil device
JP2008130860A (en) Superconductive device, and current lead
JP3127705B2 (en) Current lead using oxide superconductor
JPH11297524A (en) Current lead for superconducting device
JP3860070B2 (en) Thermoelectric cooling power lead
JP3715002B2 (en) Current lead for superconducting device and operation method thereof
JPH0955545A (en) Current lead for superconductive apparatus
JPH02256206A (en) Superconducting power lead
JPH09116200A (en) Current lead for superconductive device
JP2000082851A (en) Current lead for supfrconducting device
JPH07272921A (en) Current lead for superconducting device
JPH11214215A (en) Current lead for chiller cooled superconducting magnet
JPH03283678A (en) Current lead of superconducting magnet apparatus