JPH062206U - Insulator salt damage sensor - Google Patents

Insulator salt damage sensor

Info

Publication number
JPH062206U
JPH062206U JP4080392U JP4080392U JPH062206U JP H062206 U JPH062206 U JP H062206U JP 4080392 U JP4080392 U JP 4080392U JP 4080392 U JP4080392 U JP 4080392U JP H062206 U JPH062206 U JP H062206U
Authority
JP
Japan
Prior art keywords
insulator
optical waveguide
salt
amount
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4080392U
Other languages
Japanese (ja)
Inventor
康弘 宮田
光広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP4080392U priority Critical patent/JPH062206U/en
Publication of JPH062206U publication Critical patent/JPH062206U/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】 【目的】 光導波路の表面に付着した汚損物質を除去す
る作業の効率向上。 【構成】 碍子の表面に露出させて装着した光導波路の
光損失量から碍子表面に付着した塩分量を求める碍子塩
害センサにおいて、上記光導波路1の表面にこれと同一
屈折率の薄膜2を装着しておく。表面に付着した汚損物
質を除去する際には光導波路1から薄膜2を剥ぎ取る。
(57) [Summary] [Purpose] To improve the efficiency of the work of removing the contaminants adhering to the surface of the optical waveguide. [Structure] In an insulator salt damage sensor for determining the amount of salt adhering to the surface of an insulator from the optical loss amount of the optical waveguide exposed and mounted on the surface of the insulator, a thin film 2 having the same refractive index as that of the same is attached to the surface of the optical waveguide 1. I'll do it. The thin film 2 is stripped from the optical waveguide 1 when removing the fouling substance adhering to the surface.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、碍子表面に付着した塩分などの汚損物質の量を光導波路を用いて検 出する碍子塩害センサに関するものである。 The present invention relates to an insulator salt damage sensor that detects the amount of fouling substances such as salt adhering to the insulator surface using an optical waveguide.

【0002】[0002]

【従来の技術】[Prior art]

高圧電線と支柱鉄塔との間の電気的絶縁部材として碍子が広く用いられている 。しかし、碍子のおかれる環境は過酷なものであり、例えば工業地域や臨海地域 などにあっては碍子表面に塩分(NaCl)、その他の無機物質を主体とする塵 埃が付着して汚損されやすく、それらが碍子の絶縁耐圧を低下させて閃絡事故等 を引き起こす場合がある。 Insulators are widely used as an electrical insulating member between a high-voltage electric wire and a support tower. However, the environment in which insulators are placed is harsh, and, for example, in industrial areas and coastal areas, dust mainly composed of salt (NaCl) and other inorganic substances adheres to the insulator surface and is easily damaged. However, they may lower the dielectric strength of the insulator and cause a flashover accident.

【0003】 こうした事態を未然に防止するため、碍子表面に付着する汚損物質を定期的に 定量分析し、碍子汚損量を求めることが従来から行われている。In order to prevent such a situation, it has been conventionally practiced to periodically quantitatively analyze the fouling substances adhering to the surface of the insulator to obtain the fouling amount of the insulator.

【0004】 ところで、碍子に付着する汚損物質としては、塩分の他、十種類程度の無機物 質があるといわれているが、、その中でも特に塩分は碍子の絶縁耐圧を大きく劣 化させる要因となっている。そこで、碍子汚損量を表示するにあたり、汚損物質 を全て塩分から成ると仮定した場合の単位面積当りの塩分量(等価塩分付着量) を用いることが便宜上なされている。By the way, it is said that there are about 10 kinds of inorganic substances in addition to salt as the fouling substances that adhere to the insulator. Among them, especially the salt is a factor that greatly deteriorates the dielectric strength of the insulator. ing. Therefore, when displaying the amount of fouling of insulators, it is convenient to use the amount of salt per unit area (equivalent amount of adhering salt) on the assumption that the fouling substance is composed entirely of salt.

【0005】 従来行われている具体的手法を列記すれば以下の通りである。The following is a list of specific conventional methods.

【0006】 (1)筆洗い法・・・実運用中の碍子と素材、形状などが同一のパイロット碍子 を汚損量を測定したい場所に設置しておき、所定期間経過後これを取り外し、汚 損物質を筆で洗浄してその洗浄液の電気伝導度を測定することにより透過塩分付 着量を求める。(1) Brush cleaning method: A pilot insulator with the same material and shape as the insulator in actual operation is installed at the place where you want to measure the amount of contamination, and after a predetermined period of time, remove it and remove it. The permeation salt content is determined by washing the substance with a brush and measuring the electrical conductivity of the washing liquid.

【0007】 (2)露点式汚損量測定法・・・パイロット碍子に電子冷却素子を組み入れ、こ れを露点温度以下に冷却させて空気中の水分を集め、碍子に付着している汚損物 質を強制的に十分湿潤させた状態にして洩れ抵抗を測定する。次いで、別に求め ておいた洩れ抵抗と等価塩分付着量との関係から換算して当該汚損物質の等価塩 分付着量を求める。(2) Dew-point type pollution amount measuring method: An electronic cooling element is incorporated in a pilot insulator, and this is cooled to a temperature below the dew-point temperature to collect moisture in the air, and the contaminants adhering to the insulator Leak resistance is measured by forcing the sample to be sufficiently wet. Then, the equivalent salt deposit amount of the pollutant is calculated by converting from the relationship between the leak resistance and the equivalent salt deposit amount that have been separately obtained.

【0008】 (3)超音波洗浄式汚損量測定法・・・パイロット碍子を蒸留水の入った洗浄槽 内に入れ、碍子を回転させながら超音波洗浄により汚損物質を洗い落とし、汚損 物質の溶け込んだ洗浄液の電気伝導度を測定して等価塩分量を求める。(3) Ultrasonic cleaning-type fouling amount measuring method: The pilot insulator was put in a cleaning tank containing distilled water, and the fouling substance was washed off by ultrasonic cleaning while rotating the insulator, and the fouling substance was dissolved. The electrical conductivity of the cleaning liquid is measured to determine the equivalent salt content.

【0009】 (4)球形模擬碍子法・・・常時、穏やかに自転する球形の模擬碍子を設置して おき、これに付着した汚損物質をワイパ−ブラシで拭い取る。ワイパ−ブラシに 付着した汚損物質を循環する洗浄液で洗い落し、この洗浄液の電気伝導度を測定 して、換算された等価塩分付着量を求める。(4) Spherical simulated insulator method: A spherical simulated insulator that rotates gently gently is always installed, and the contaminants attached to it are wiped off with a wiper brush. The pollutant adhering to the wiper brush is washed off with a circulating cleaning solution, and the electrical conductivity of this cleaning solution is measured to obtain the converted equivalent salt content.

【0010】[0010]

【考案が解決しようとする課題】[Problems to be solved by the device]

上記した従来の方法において、(1)〜(3)の方法はいずれもいずれも運転 中の碍子を別に用意し、運転中の碍子と同一条件に設置する必要がある。そのた め測定箇所が高所、多地点に至る場合には測定に多大の労力と時間を要し、極め て不経済であった。また、(4)の方法では、球形模擬碍子と実際の碍子との間 にどうしても汚損物質の付着性の相違が生じるので、これを修正する必要があり 汚損量の決定に手間がかかる。 In the above-mentioned conventional methods, in any of the methods (1) to (3), it is necessary to separately prepare an operating insulator and install it under the same conditions as the operating insulator. Therefore, it takes a lot of labor and time to perform the measurement when the measurement points reach high places and many points, which is extremely uneconomical. Further, in the method of (4), since the adhesion property of the fouling substance is inevitably different between the spherical simulated insulator and the actual insulator, it is necessary to correct this and it is troublesome to determine the contamination amount.

【0011】 また、各手法を精度の面で考察すると、(1)の方法では測定に熟練を要し、 手間がかかる。(2)の方法では洩れ抵抗を等価塩分付着量に換算するための校 正表が必要となるが、これを各測定場所毎に作成しておく必要がある。(3)の 方法では測定の都度碍子が更新されるため、暴露期間の異なる実運用中の碍子の 汚損量推定が問題となるが、これを精度良く成し得る手法が確立されていない。 (4)の方法では降雨による雨洗い効果が換算値に誤差をもたらしやすい。Further, considering each method in terms of accuracy, the method (1) requires skill in measurement and is troublesome. The method (2) requires a calibration table for converting the leakage resistance into the equivalent salt content, but it is necessary to create this for each measurement location. In the method of (3), since the insulator is updated each time it is measured, estimation of the amount of contamination of the insulator during actual operation with different exposure periods becomes a problem, but a method that can do this accurately has not been established. In the method of (4), the rain washing effect due to rainfall easily causes an error in the converted value.

【0012】 かかる状況の下、実運用中の碍子に付着する汚損物質の量を定期的にではなく リアルタイムで測定したり、或いは碍子表面の汚損物質の分布を測定するといっ た、より高度な測定方法の開発が望まれていた。Under such a situation, more advanced measurement such as measuring the amount of the fouling substance adhering to the insulator during actual operation in real time rather than periodically or measuring the distribution of the fouling substance on the surface of the insulator Development of a method was desired.

【0013】 そこで最近、表面に塩分が付着すると光損失が生ずる光導波路を碍子表面に露 出させて装着し、その光導波路の一端から入射して他端から出射する透過光を受 光し、その透過光強度の変化から碍子に付着する塩分量を求める光学式測定方法 が提案された。この方法は上記要請にかなった優れた方法であり、通常の測定に おいては特に問題はない。しかし、以下の点で支障を来すことになる。Therefore, recently, an optical waveguide that causes optical loss when salt is attached to the surface is exposed and mounted on the insulator surface, and receives transmitted light that enters from one end of the optical waveguide and exits from the other end, An optical measurement method was proposed in which the amount of salt adhering to the insulator was determined from the change in transmitted light intensity. This method is an excellent method that meets the above requirements, and there is no particular problem in ordinary measurement. However, there are problems in the following points.

【0014】 すなわち、碍子汚損量があらかじめ設定した基準値を越えた場合には、碍子を 洗浄する必要がある。この場合の洗浄方法としては、地上からポンプ車などを用 いて鉄塔上に設置された碍子へ向けて噴水して洗浄を行うことが最も容易な方法 であるが、光導波路の機械的な強度が乏しいためこれが洗浄の際の水圧によって 破損される危険性がある。また、碍子が全く汚損されていない状態(碍子汚損量 が零)のときの光導波路の光損失量を最小とするようにセンサを調節(ゼロ調節 )する場合には、光導波路表面に付着した汚損物質を除去する必要があり、この 場合の汚損物質の洗浄、除去作業はその都度にセンサ本体を鉄塔下へ降ろして入 念に行わなければならず手間が多大である。That is, when the insulator contamination amount exceeds a preset reference value, it is necessary to clean the insulator. In this case, the easiest cleaning method is to spray water from the ground to the insulator installed on the tower using a pump car, etc., but the mechanical strength of the optical waveguide is Poor, there is a risk that it will be damaged by the water pressure during cleaning. If the sensor is adjusted (zero adjustment) to minimize the optical loss amount of the optical waveguide when the insulator is not completely polluted (insulator contamination amount is zero), it adheres to the optical waveguide surface. It is necessary to remove the fouling substance, and in this case, the cleaning and removal work of the fouling substance must be carefully carried out by lowering the sensor body under the steel tower each time, which is very troublesome.

【0015】 本考案の目的は、前記した従来技術の欠点を解消し、光導波路表面に付着した 汚損物質を容易に除去することができる碍子塩害センサを提供することにある。An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide an insulator salt damage sensor capable of easily removing a pollutant attached to the surface of an optical waveguide.

【0016】[0016]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するため本考案は、碍子の表面に露出させて装着した光導波路 の光損失量から碍子表面に付着した塩分量を求める碍子塩害センサにおいて、上 記光導波路表面にこれと同一屈折率の薄膜を装着したものである。 In order to achieve the above-mentioned object, the present invention provides an insulator salt damage sensor that obtains the amount of salt adhering to the insulator surface from the optical loss amount of the optical waveguide exposed and mounted on the insulator surface. It is equipped with a thin film of rate.

【0017】[0017]

【作用】[Action]

上記光導波路に一端から光を入射させると、光は薄膜と空気との界面で反射を 繰り返しつつ伝搬して他端から出射されるが薄膜の表面に塩分が付着していると そこから光が洩れて光損失が生じる。その光損失量を検出すれば塩分付着量をリ アルタイムで測定することができる。付着した汚損物質を除去する際には光導波 路から薄膜を剥ぎ取ればよい。 When light enters the above optical waveguide from one end, the light propagates while repeatedly reflecting at the interface between the thin film and air, and is emitted from the other end.However, if salt is attached to the surface of the thin film, the light will be emitted from it. Leakage causes light loss. If the amount of light loss is detected, the amount of salt attached can be measured in real time. The thin film may be stripped from the optical waveguide to remove the attached pollutant.

【0018】[0018]

【実施例】【Example】

以下、本考案の実施例を添付図面に従って説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0019】 図1に本考案に係る碍子塩害センサの光導波路構造を示す。この光導波路は碍 子表面に装着されて碍子塩害センサの塩分感知部を構成する。本考案の特徴は、 本来の光導波路1の表面にこれと同一屈折率の薄膜2を装着して光導波路を構成 した点にある。この光導波路の屈折率は、その表面に塩分が付着すると光損失を 生ずるように予め選定される(光導波路の屈折率をn1 、塩分の屈折率をn2 と するとn1 <n2 )。FIG. 1 shows an optical waveguide structure of an insulator salt damage sensor according to the present invention. This optical waveguide is mounted on the surface of the insulator to form a salt sensing portion of the insulator salt damage sensor. The feature of the present invention resides in that an optical waveguide is constructed by mounting a thin film 2 having the same refractive index as the original surface of the optical waveguide 1. The refractive index of this optical waveguide is preselected so that light loss occurs when salt is attached to its surface (n 1 <n 2 where n 1 is the refractive index of the optical waveguide and n 2 is the salt refractive index). .

【0020】 図2に本考案に係る碍子塩害センサのブロック図を示す。光源3から出射した 光は光ファイバ6を通って図1の光導波路からなる塩分感知部4に導入される。 塩分感知部4では光導波路表面の塩分付着箇所から光が洩れて光損失が生じ、残 りの光が光ファイバ6を介して受光部5に入射する。受光部5の受光信号は演算 部7で信号処理され、あらかじめ求めておいた光損失量と塩分付着量との関係式 によって当該碍子表面の塩分付着量が算出される。この碍子塩害センサによれば 、塩分感知部4における光損失量を検出することにより、碍子表面の塩分量をリ アルタイムで測定でき、さらには碍子表面の汚損物質の分布状態を検出すること もできる。FIG. 2 shows a block diagram of an insulator salt damage sensor according to the present invention. The light emitted from the light source 3 passes through the optical fiber 6 and is introduced into the salt content sensing unit 4 including the optical waveguide shown in FIG. In the salt sensing unit 4, light is leaked from the salt adhering portion on the surface of the optical waveguide to cause optical loss, and the remaining light is incident on the light receiving unit 5 via the optical fiber 6. The light-receiving signal of the light-receiving unit 5 is signal-processed by the calculation unit 7, and the salt deposition amount on the surface of the insulator is calculated by the relational expression between the light loss amount and the salt deposition amount obtained in advance. According to this insulator damage sensor, the amount of light loss in the salt sensing unit 4 can be detected to measure the amount of salt on the insulator surface in real time, and the distribution state of the pollutant on the insulator surface can also be detected. it can.

【0021】 さて、塩分感知部4の光導波路表面に付着した汚損物質の除去は、光導波路1 の表面から薄膜2を剥ぎ取ることにより容易に行うことができる。すなわち、こ の碍子塩害センサにおいては、洗浄しなくとも薄膜2を剥ぎ取ることによって塩 分感知部4の状態を汚損以前の状態に戻すことができる。したがって、薄膜2を 二重三重に装着しておけば、汚損物質の除去効果も2倍3倍となる。By the way, the contaminants attached to the surface of the optical waveguide of the salt sensing portion 4 can be easily removed by peeling the thin film 2 from the surface of the optical waveguide 1. That is, in this insulator salt damage sensor, the state of the salt sensing portion 4 can be returned to the state before the stain by peeling off the thin film 2 without cleaning. Therefore, if the thin film 2 is attached in double and triple layers, the effect of removing the fouling substances is doubled and tripled.

【0022】 なお、光導波路1と薄膜2との間にはこれらと同一屈折率のシリコ−ン樹脂を 介在させておくことが望ましい。光導波路1に対する薄膜2の装着性を向上させ ると共に、薄膜2を剥ぎ取る際にはこれがスム−ズに剥がれるようにするためで ある。It is desirable that a silicone resin having the same refractive index as that of the optical waveguide 1 and the thin film 2 be interposed between the optical waveguide 1 and the thin film 2. This is for improving the mountability of the thin film 2 to the optical waveguide 1 and for allowing the thin film 2 to be smoothly peeled off when the thin film 2 is peeled off.

【0023】 また、薄膜2の材質は合成樹脂からなることが望ましい。その合成樹脂として 、例えば光導波路1が石英ガラスからなる場合にはポリメチルメタクレ−トなど のプラスチック材、あるいはこれに置換合成した材料を用いることができる。The material of the thin film 2 is preferably made of synthetic resin. As the synthetic resin, for example, when the optical waveguide 1 is made of quartz glass, a plastic material such as polymethylmethacrylate, or a material synthesized by substitution of the plastic material can be used.

【0024】[0024]

【考案の効果】[Effect of device]

以上要するに本発明の碍子塩害センサによれば、光導波路表面にこれと同一屈 折率の薄膜を装着したので、表面に付着した汚損物質を薄膜を剥ぎ取ることによ り容易に除去することができ作業性が極めて良い。 In short, according to the insulator salt damage sensor of the present invention, since the thin film having the same refractive index as that of the optical waveguide surface is attached to the optical waveguide surface, the contaminants adhering to the surface can be easily removed by peeling off the thin film. The workability is extremely good.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案の一実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】この考案の一実施例を示すブロック図である。FIG. 2 is a block diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光導波路 2 薄膜 3 光源 4 塩分感知部 5 受光部 6 光ファイバ 7 演算部 1 optical waveguide 2 thin film 3 light source 4 salt sensing unit 5 light receiving unit 6 optical fiber 7 arithmetic unit

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 碍子の表面に露出させて装着した光導波
路の光損失量から碍子表面に付着した塩分量を求める碍
子塩害センサにおいて、上記光導波路表面にこれと同一
屈折率の薄膜を装着したことを特徴とする碍子塩害セン
サ。
1. A porcelain salt damage sensor for determining the amount of salt adhering to the surface of an insulator from the amount of optical loss of the optical waveguide exposed and mounted on the surface of the insulator, wherein a thin film having the same refractive index as that of the same is attached to the surface of the optical waveguide. An insulator salt damage sensor characterized by the above.
JP4080392U 1992-06-15 1992-06-15 Insulator salt damage sensor Pending JPH062206U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4080392U JPH062206U (en) 1992-06-15 1992-06-15 Insulator salt damage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4080392U JPH062206U (en) 1992-06-15 1992-06-15 Insulator salt damage sensor

Publications (1)

Publication Number Publication Date
JPH062206U true JPH062206U (en) 1994-01-14

Family

ID=12590800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4080392U Pending JPH062206U (en) 1992-06-15 1992-06-15 Insulator salt damage sensor

Country Status (1)

Country Link
JP (1) JPH062206U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169543A (en) * 2014-03-07 2015-09-28 東京電力株式会社 Method of optically measuring sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169543A (en) * 2014-03-07 2015-09-28 東京電力株式会社 Method of optically measuring sample

Similar Documents

Publication Publication Date Title
De La O et al. AC clean fog tests on nonceramic insulating materials and a comparison with porcelain
CN102053043A (en) Field complete pollution level detection method for running composite insulator
ATE343963T1 (en) METHOD AND DEVICE FOR MEASURING THE WATER CONTENT IN A SUBSTRATE
Carberry et al. Evaluation of RTV coating for station insulators subjected to coastal contamination
US3618374A (en) Method for measuring surface cleanliness
JPH062206U (en) Insulator salt damage sensor
JPH0436648A (en) Detecting method for insulator dirt quantity
US3905240A (en) Pilot insulator for detecting degree of contamination thereof
JPH0512660B2 (en)
JPH0687041B2 (en) Salt attachment density detector
JPH09218150A (en) Salt damage monitor system
DE59004755D1 (en) Method and device for locating the true location of a leak in a pipeline carrying a moist medium.
JP2872483B2 (en) Insulator fouling detector
CN213657957U (en) Channel measuring flowmeter with correction function
JP3410654B2 (en) Insulator contamination estimation method and apparatus
JP2778259B2 (en) Optical salt contamination detector
Mizuno et al. Dynamic simulation of risk of flashover of contaminated ceramic insulators
JPH0627022A (en) Optical salinity sensor
CN110554071A (en) System and method for detecting hydrophobicity of contaminated insulator based on phase angle difference method
JP2595767B2 (en) Insulator for measuring contamination
JPH1048131A (en) Light-transmission-type salinity deposit detection sensor
JPH05274937A (en) Prediction device for insulator pollution
Sirait Surface hydrophobicity of silicone rubber under natural tropical conditions
CN105956377B (en) Region filth appraisal procedure and system and insulator dirty degree appraisal procedure and system
Besztercey et al. A novel method to measure the contamination level of insulators-spot contamination measurement