JP2778259B2 - Optical salt contamination detector - Google Patents

Optical salt contamination detector

Info

Publication number
JP2778259B2
JP2778259B2 JP3018943A JP1894391A JP2778259B2 JP 2778259 B2 JP2778259 B2 JP 2778259B2 JP 3018943 A JP3018943 A JP 3018943A JP 1894391 A JP1894391 A JP 1894391A JP 2778259 B2 JP2778259 B2 JP 2778259B2
Authority
JP
Japan
Prior art keywords
salt
amount
optical waveguide
optical
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3018943A
Other languages
Japanese (ja)
Other versions
JPH04258747A (en
Inventor
康弘 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3018943A priority Critical patent/JP2778259B2/en
Publication of JPH04258747A publication Critical patent/JPH04258747A/en
Application granted granted Critical
Publication of JP2778259B2 publication Critical patent/JP2778259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、碍子等の表面に付着す
る塩分量を検出し、その量を光学的手法により検出する
光式塩分汚損量検出装置、特に塩分以外の外乱による影
響を除去した光式塩分汚損量検出装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical salt contamination detecting device for detecting the amount of salt adhering to the surface of an insulator or the like and detecting the amount by an optical method, in particular, eliminating the influence of disturbances other than salt. The present invention relates to an optical salt contamination detection device.

【0002】[0002]

【従来の技術】高圧送電線と支持鉄塔との間の電気的な
絶縁を確保するため、碍子は広く用いられているが、当
該碍子のおかれる環境は苛酷のものであり、例えば工業
地域や臨海地域などにあっては、碍子表面に塩分(Na
Cl)、その他の無機質を主体とする塵埃が付着して汚
損され易く、それらが碍子の絶縁耐圧を低下せしめて閃
絡事故などを引き起こす場合がある。
2. Description of the Related Art Insulators are widely used to ensure electrical insulation between high-voltage transmission lines and supporting towers. However, the environment in which the insulators are placed is severe, such as in industrial areas or in industrial areas. In coastal areas, salt (Na
Cl) and other dusts mainly composed of inorganic substances are liable to be attached and contaminated, which may lower the dielectric strength of the insulator and cause a flashover accident or the like.

【0003】こうした事態を未然に防止するため、碍子
表面を付着する汚損物質を定期的に定量分析し、碍子汚
損量を求めることが重要となる。碍子に付着する汚損物
質としては、塩分の他、十種類程度の無機物質があると
言われ、その中でも特に塩分は碍子の絶縁耐圧を大きく
劣化させる要因となっている。そこで、碍子汚損量を表
示するにあたり、汚損物質が全て塩分からなると仮定し
た場合の単位面積当たりの塩分量(等価塩分付着量)を
用いることが便宜上なされている。
In order to prevent such a situation from occurring, it is important to periodically analyze quantitatively the fouling substances adhering to the surface of the insulator to determine the amount of fouling of the insulator. It is said that there are about ten types of inorganic substances in addition to salts as fouling substances adhered to the insulator. Among them, salt is a factor which greatly deteriorates the dielectric strength of the insulator. Therefore, in displaying the amount of insulator fouling, it is convenient to use the amount of salt per unit area (equivalent amount of attached salt) when it is assumed that all fouling substances are made of salt.

【0004】従来行われている代表的手法は、(1) 筆洗
い法,(2)露点式汚損量測定法,(3) 超音波洗浄式汚損
量測定法,(4) 球形模擬碍子法等である。しかし、(1)
では測定に熟練を要し手間がかかる。(2) では漏れ抵抗
を等価塩分付着量に換算するための校正表が必要とな
る。(3) では測定の都度碍子が更新されるため、暴露期
間の異なる実運用中の碍子の汚損量推定方法が問題とな
り、これを精度よくなし得るものがない。(4) では降雨
による雨洗い効果が積算値に誤差をもたらし易い。
[0004] Representative methods that have been conventionally performed include (1) a brush washing method, (2) a dew point type soil amount measuring method, (3) an ultrasonic cleaning type soil amount measuring method, and (4) a spherical simulated insulator method. It is. However, (1)
In this case, the measurement requires skill and takes much time. In (2), a calibration table is required to convert leakage resistance into equivalent salt deposition. In (3), since the insulator is updated each time it is measured, the method of estimating the amount of contamination of the insulator during actual operation with different exposure periods becomes a problem, and there is nothing that can do this accurately. In (4), the effect of rain washing due to rainfall tends to cause errors in the integrated value.

【0005】これに対し、実運用中の碍子に付着する汚
損物質の量を定期的にではなくリアルタイムで測定し、
更には碍子表面の汚損物質の分布測定をも可能とする方
法として、(5) 光式の碍子汚損量測定方法がある。これ
は、表面に塩分が付着すると光損失が生ずる光導波路を
碍子表面に露出して装着し、該光導波路の一端から入射
されて他端から出射する透過光を受光し、該透過光強度
の変化から碍子に付着する塩分量を求める方法である。
[0005] On the other hand, the amount of fouling substances adhering to the insulator during actual operation is measured not in a regular manner but in real time.
Furthermore, as a method that enables the measurement of the distribution of contaminants on the insulator surface, there is (5) an optical method for measuring the amount of contaminated insulator. This is because an optical waveguide, which causes light loss when salt adheres to the surface, is mounted on the surface of the insulator by exposing it to the insulator, receives transmitted light that enters from one end of the optical waveguide and exits from the other end, and receives the transmitted light intensity. This is a method to determine the amount of salt attached to the insulator from the change.

【0006】上記(5) の光式の碍子汚損量測定方法は目
的に適った優れた方法であるが、光導波路の表面に空気
中の塵埃等、塩分以外の物質が付着した場合であっても
光損失が生じ、結果的に塩分付着を過大に評価してしま
う虞れがある。また、塩分の潮解性のため、塩分周囲の
湿度,温度等の変化に対し、その屈折率が種々に変化す
るために、単純に透過光強度の変化から塩分量を求める
と大きな誤差を生ずることになる。
[0006] The optical method for measuring the amount of insulator contamination of the above (5) is an excellent method suitable for the purpose. However, the method is applicable to a case where substances other than salt, such as dust in the air, adhere to the surface of the optical waveguide. However, there is also a risk that light loss occurs, and as a result, salt adhesion is overestimated. Also, due to the deliquescence of the salt, the refractive index varies in response to changes in humidity, temperature, etc. around the salt, so that simply calculating the amount of salt from the change in transmitted light intensity may cause a large error. become.

【0007】そこで、この誤差補正方法として、光導波
路を有する検出部の近傍に温湿度計を並置し、求める塩
分量を既知の塩分量換算式により校正することが提案さ
れている(特願平1−29855号)。
Therefore, as this error correction method, it has been proposed that a thermo-hygrometer is juxtaposed in the vicinity of a detecting section having an optical waveguide, and the salt content to be obtained is calibrated by a known salt content conversion formula (Japanese Patent Application No. Hei. 1-292955).

【0008】[0008]

【発明が解決しようとする課題】しかし、塩分付着量が
一定であっても、塩分・塵埃成分の混合比率が変わる
と、相対湿度と光減衰量の関係が変化する(図4参
照)。このため、上記のように湿度変化に応じて塩分量
を修正するだけでは、適切な誤差補正ができず、温湿度
計の測定精度が塩分量の校正に大きな影響を与えるとい
う問題がある。また、高湿度範囲(具体的には湿度80
%以上)では、塩分が潮解してしまい、ほとんど透過光
強度の変化が認められなくなるため、温湿度計のみでは
塩分量の校正が困難となるという問題点がある。
However, even if the amount of salt attached is constant, if the mixing ratio of salt and dust changes, the relationship between relative humidity and the amount of light attenuation changes (see FIG. 4). Therefore, only correcting the salt content according to the change in humidity as described above cannot perform appropriate error correction, and there is a problem that the measurement accuracy of the thermo-hygrometer greatly affects the calibration of the salt content. In addition, a high humidity range (specifically, a humidity of 80
% Or more), the salt content deliquesces, and almost no change in transmitted light intensity is observed. Therefore, there is a problem that it is difficult to calibrate the salt content using only a thermo-hygrometer.

【0009】本発明の目的は、前記した従来技術の欠点
を解消し、塩分以外の外乱の影響を適切に除去して高精
度に塩分付着量を求めること、更には高湿度範囲まで、
常時、高精度に塩分付着量を求めることができる光式塩
分汚損量検出装置を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to accurately remove the influence of disturbances other than salt to obtain the amount of salt attached with high accuracy.
It is an object of the present invention to provide an optical salt contamination detecting device capable of constantly determining the amount of salt attached with high accuracy.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、NaClの屈折率値より小さい屈折率値を
有する光導波路を検出部に有し、該光導波路の一端から
入射されて他端から出射する透過光を受光し、該光導波
路で生ずる光減衰量の変化量を元に検出部に付着する塩
分の単位面積当りの塩分量を演算部により求める光式塩
分汚損量検出装置において、上記検出部の近傍に、温湿
度計,風向・風速計,降雨計,日照計からなり塩分量の
増減の推定基準となる気象観測器を設け、 上記演算部に
は、塩分以外の外乱を除去する外乱除去手段として、こ
れらの気象観測器から入力される計測データを用いて塩
分,塵埃を含む汚損物による汚損過程を推測し、上記演
算部が求める塩分量から塩分以外の外乱を除去するよう
に修正或いは補正する神経網を設けた構成のものである
(請求項1)。
In order to achieve the above object, the present invention provides an optical waveguide having a refractive index smaller than the refractive index of NaCl in a detecting section, wherein the optical waveguide is incident from one end of the optical waveguide. Optical salt contamination amount detection device that receives transmitted light emitted from the other end and obtains the amount of salt per unit area of the salt adhered to the detection unit by a calculation unit based on the amount of change in the amount of light attenuation generated in the optical waveguide. In the vicinity of the detection unit,
It consists of a dosimeter, wind direction and anemometer, rain gauge, and sunshine meter.
The meteorological instrument the estimated reference increase or decrease is provided, to the arithmetic unit
Is a means of removing disturbances other than salt.
Using the measurement data input from these meteorological instruments,
Guess the fouling process due to fouling materials including
Remove disturbances other than salinity from the salinity calculated by the arithmetic unit.
And a neural network for correction or correction is provided (claim 1).

【0011】また、本発明は、NaClの屈折率値より
小さい屈折率値を有する光導波路を検出部に有し、該光
導波路の一端から入射されて他端から出射する透過光を
受光し、該光導波路で生ずる光減衰量の変化量を元に検
出部に付着する塩分の単位面積当りの塩分量を演算部に
より求める光式塩分汚損量検出装置において、 上記検出
部の近傍に、温湿度計からなり塩分量の増減の推定基準
となる気象観測器を設け、 上記演算部には、塩分以外の
外乱を除去する外乱除去手段として、この温湿度計から
の相対湿度データと検出部からの光減衰量とを用いて塩
分と塵埃の比率を決定し、その比率における相対湿度と
光減衰量との関係から塩分量を求める演算手段を設けた
構成のものである(請求項2)。
Further , the present invention provides a method for measuring the refractive index of NaCl.
An optical waveguide having a small refractive index value is provided in the detection unit,
The transmitted light that enters from one end of the waveguide and exits from the other end
The light is received and detected based on the amount of change in the amount of light attenuation occurring in the optical waveguide.
Calculation of the amount of salt per unit area of salt attached to the outlet
In the optical salt contamination amount detection device obtained from
A thermo-hygrometer near the part is used to estimate the change in salt content.
A weather observation device is provided, and
As a disturbance elimination means to eliminate disturbance,
Using relative humidity data and light attenuation from the detector
Determine the ratio between minute and dust, and determine the relative humidity and
Calculation means for calculating salt content from the relationship with light attenuation is provided.
(Claim 2).

【0012】[0012]

【作用】本発明では、検出部の近傍に設けた気象観測器
から塩分量の増減の推定基準となるデータが演算部に入
力される。演算部では光検出部の光減衰量より塩分汚損
量を算出するが、この検出量には塩分の他に塵埃成分等
の外乱による誤差が含まれている。演算部の外乱除去手
段は、この気象観測器から入力される計測データを用い
て、上記検出量から塩分以外の外乱を除去するように修
正或いは補正し、塩分のみの汚損量を検出する。従っ
て、気象状態の変化による塩分量の増減を考慮した精度
の良い塩分汚損量の検出ができる。
According to the present invention , data serving as a reference for estimating an increase or decrease in the amount of salt is input to a calculation unit from a weather observation device provided near the detection unit. The calculation unit calculates the amount of salt contamination from the amount of light attenuation of the light detection unit. This detection amount includes errors due to disturbances such as dust components in addition to the salt content. The disturbance elimination means of the arithmetic unit corrects or corrects the disturbance amount other than the salinity from the detected amount using the measurement data input from the meteorological observation device, and detects the contamination amount only of the salinity. Therefore, it is possible to accurately detect the amount of salt contamination in consideration of an increase or decrease in the amount of salt due to a change in weather conditions.

【0013】特に請求項では、気象観測器としての温
湿度計,風向・風速計,降雨計,日照計からの計測デー
タにより気状態が適確に判断される。しかも、上記演
算部の外乱除去手段をニューラルネットと呼ばれる神経
網で構成しているため、通常計測不能或いは計測誤差が
大きい場合であっても、精度良く塩分汚損量を求めるこ
とができる。
[0013] In particular according to claim 1, the temperature and humidity meter as meteorological instrument, wind direction and speed meter, rain gauge, meteorological conditions are determined to accurately by the measurement data from the sunshine meter. Moreover, since the disturbance elimination means of the arithmetic unit is constituted by a neural network called a neural network, the amount of salt contamination can be accurately obtained even when measurement is not normally possible or a measurement error is large.

【0014】また請求項では、上記演算部の外乱除去
手段が、温湿度計からの相対湿度データと検出部からの
光減衰量とを用いて塩分と塵埃の比率を決定し、その比
率における相対湿度と光減衰量との関係から塩分量を求
める演算手段であるため、気象観測器が温湿度計のみで
あっても精度の良い塩分汚損量の検出ができる。この形
態は、湿度範囲が狭く塩分と塵埃の比率が不明の場合に
有効となる。
According to a second aspect of the present invention , the disturbance removing means of the arithmetic unit determines the ratio of salt to dust using the relative humidity data from the thermo-hygrometer and the amount of light attenuation from the detecting unit. Since the calculation means calculates the amount of salt from the relationship between the relative humidity and the amount of light attenuation, the amount of salt contamination can be detected with high accuracy even if the weather observation device is only a thermo-hygrometer. This mode is effective when the humidity range is narrow and the ratio between salt and dust is unknown.

【0015】[0015]

【実施例】以下、本発明を図示の実施例に基づいて説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments.

【0016】第1図に塩分付着密度検出装置の構成を示
す。本装置は、光源部1,検出部2,受光部3,演算部
4の他に、気象観測器として、塩分量の増減の推定基準
となる温湿度計5,風向・風速計6,降雨計7,日照計
8を有する。光源部1及び検出部3間と光源部1及び受
光部3間は伝送用光ファイバ9で接続され、受光部3と
演算部4との間は信号ケーブル10で接続されている。
FIG. 1 shows the configuration of the apparatus for detecting the density of salt attached. The present apparatus includes a light-source unit 1, a detection unit 2, a light-receiving unit 3, and a calculation unit 4, as well as a temperature / humidity meter 5, a wind direction / wind speed meter 6, and a rain gauge that serve as a reference for estimating an increase or decrease in the amount of salt. 7. It has a sunshine indicator 8. The light source unit 1 and the detection unit 3 and the light source unit 1 and the light reception unit 3 are connected by a transmission optical fiber 9, and the light reception unit 3 and the calculation unit 4 are connected by a signal cable 10.

【0017】検出部2は、図2に示すように、光導波路
11の両端を固定治具12で支持して成る。この光導波
路11は塩分と塵埃の汚損物の検出用であり、塩分Na
Cl(屈折率1.54)より小なる屈折率を有する純粋石英
(屈折率1.46)を用いた石英棒から構成される。尚、塵
埃成分は硫酸カルシウム(屈折率1.58)やカオリナイト
Al2 SiO5 (OH)4 (屈折率1.56)等であり、光
導波路11は塵埃に対しても小さな屈折率値を有するこ
とになる。
As shown in FIG. 2, the detecting section 2 has both ends of an optical waveguide 11 supported by fixing jigs 12. This optical waveguide 11 is for detecting contaminants such as salt and dust.
It is composed of a quartz rod using pure quartz (refractive index 1.46) having a refractive index smaller than Cl (refractive index 1.54). The dust component is calcium sulfate (refractive index 1.58), kaolinite Al 2 SiO 5 (OH) 4 (refractive index 1.56), and the like, and the optical waveguide 11 has a small refractive index value for dust. .

【0018】光源部1から出射された光は、光ファイバ
9を介して検出部2に至り、光導波路11に導かれる。
光導波路11の表面に塩分及び塵埃の汚損物が付着して
いると、透過光が外部に漏れ、光強度変化を受ける。即
ち、光導波路11に汚損物がないときは、光導波路の周
囲は空気(屈折率=1.00)であるため、伝播光は損失を
受けないが、光導波路11に塩分及び塵埃成分が混入し
て付着した場合には、光導波路11の屈折率(屈折率1.
46)が、塩分(屈折率1.54)及び塵埃成分である硫酸カ
ルシウム(屈折率1.58),カオリナイト(屈折率1.56)
等より小であるため、透過光が外部へ漏れ、結果として
塩分及び塵埃成分による光損失を受ける。
The light emitted from the light source 1 reaches the detector 2 via the optical fiber 9 and is guided to the optical waveguide 11.
If salt and dust contaminants adhere to the surface of the optical waveguide 11, the transmitted light leaks to the outside and changes in light intensity. That is, when there is no contaminant in the optical waveguide 11, the surroundings of the optical waveguide are air (refractive index = 1.00), so that the propagating light is not lost, but salt and dust components are mixed in the optical waveguide 11. When it adheres, the refractive index of the optical waveguide 11 (refractive index 1.
46) is salt (refractive index 1.54) and dust components such as calcium sulfate (refractive index 1.58) and kaolinite (refractive index 1.56)
Because of this, transmitted light leaks to the outside, resulting in light loss due to salt and dust components.

【0019】検出部2において塩分及び塵埃の付着によ
る光損失変化を各々経験した光は、光ファイバ9を介し
て受光部3を構成している受光器に導かれ、透過光強度
に応じた電気的出力に変換される。
The light which has experienced the light loss change due to the attachment of salt and dust in the detection unit 2 is guided to the light receiving unit constituting the light receiving unit 3 through the optical fiber 9, and the electric light corresponding to the intensity of the transmitted light. It is converted to a target output.

【0020】演算部4は、基本的には、信号ケーブル1
0を通して受光部3より得られる透過光強度変化量(つ
まり検出部2に付着が無い場合を基準とした初期レベル
からの透過光強度の変化量)を基に、光導波路11につ
き予め分かっている透過光強度変化量と単位面積当りの
汚損物付着量との間の関係式から、塩分のみの付着量
(塩分付着密度)を算出する。上記したように、検出部
2の光導波路11に汚損物が付着した場合、透過光が塩
分及び塵埃成分による光損を受けるから、その透過光強
度変化量を評価することで塩分付着量を検出できる。し
かし、塩分の潮解性や塵埃成分への吸湿などから、相対
湿度の変化により、碍子の汚損形態が同一でも光損失量
が異なる現象が生ずる。この例を図3及び図4に示す。
The operation unit 4 basically includes the signal cable 1
The optical waveguide 11 is known in advance based on the transmitted light intensity change amount obtained from the light receiving unit 3 through 0 (that is, the transmitted light intensity change amount from the initial level based on the case where there is no adhesion to the detection unit 2). From the relational expression between the amount of change in transmitted light intensity and the amount of contaminant adhering per unit area, the amount of adhering salt alone (salinity adhering density) is calculated. As described above, when a contaminant adheres to the optical waveguide 11 of the detection unit 2, the transmitted light suffers light loss due to salt and dust components. Therefore, the amount of change in transmitted light intensity is evaluated to detect the amount of attached salt. it can. However, phenomena such as salt deliquescence and moisture absorption by dust components cause a phenomenon in which the amount of light loss is different due to the change in relative humidity even if the insulator is in the same form of contamination. This example is shown in FIG. 3 and FIG.

【0021】図3は、光導波路11に塩分と塵埃成分を
混合して付着させた状態(塩分・塵埃成分比一定)にお
いて周囲の相対湿度を変えた場合であり、光減衰量(相
対値)が周囲の湿度変化により図示のように変化する。
更に、この変化量は、図3中に複数の曲線で示すよう
に、塩分の付着量を 0.05 ,0.1 ,0.3 mg/cm2 と変え
た場合、汚損物の付着量に応じて、その光減衰量の絶対
値が大きくなるようにシフトする。図4は、塩分付着量
を一定( 0.08mg/cm2 )とし、塩分・塵埃成分の混合比
率をパラメータとして、混合比率(塩分対塵埃)を90:1
0 ,10:90 ,30:70 と変えたときた場合の相対湿度と光
減衰量の関係を示したものであり、塩分・塵埃成分の混
合比率を変えても図3と同じような傾向を示すことが分
かる。
FIG. 3 shows a case where the relative humidity of the surroundings is changed in a state where salt and dust components are mixed and adhered to the optical waveguide 11 (the ratio of salt and dust components is constant), and the amount of light attenuation (relative value) is shown. Changes as shown in the figure due to a change in ambient humidity.
Further, as shown by a plurality of curves in FIG. 3, when the amount of adhered salt is changed to 0.05, 0.1, and 0.3 mg / cm 2 , the light attenuation according to the amount of adhered contaminants is shown. Shift to increase the absolute value of the quantity. FIG. 4 shows that the mixing ratio (salinity to dust) is 90: 1, with the amount of salt attached being constant (0.08 mg / cm 2 ) and the mixing ratio of salt and dust components being used as a parameter.
It shows the relationship between relative humidity and light attenuation when changing to 0, 10:90, and 30:70. The same tendency as in FIG. 3 is obtained even when the mixing ratio of salt and dust is changed. It turns out that it shows.

【0022】しかし、ここで図3が塩分・塵埃成分比一
定の場合であり、図4が塩分・塵埃成分比をパラメータ
とした場合であることに着目すると、次のようにするこ
とで測定される塩分量の相対湿度に対する測定誤差を補
正することができる。
However, note that FIG. 3 shows a case where the salt / dust ratio is constant, and FIG. 4 shows a case where the salt / dust ratio is used as a parameter. The measurement error with respect to the relative humidity of the amount of salt can be corrected.

【0023】つまり、塩分と塵埃の混合された汚損物の
相対湿度に対する光損失(光減衰量)を求めて、その関
係から、まず塩分と塵埃成分の比率を知ること(図4の
パラメータの値の特定)ができる。更に、この比率を求
めてから、図3に示した相対湿度と光減衰量の関係か
ら、この特定された比率における相対湿度を考慮した塩
分付着量を算出することができる。具体的には、予め光
導波路11に塩分と塵埃成分の比率を変えて汚損物を付
着させ、それら各比率における相対湿度と光減衰量の関
係を求め、これを数式化して演算部4内のメモリに記憶
しておけばよい。
That is, the light loss (light attenuation) with respect to the relative humidity of the polluted matter in which the salt and the dust are mixed is obtained, and the ratio of the salt to the dust is first known from the relation (the value of the parameter in FIG. 4). Identification) can be. Further, after this ratio is determined, the amount of salt attached can be calculated from the relationship between the relative humidity and the amount of light attenuation shown in FIG. 3 in consideration of the relative humidity at the specified ratio. More specifically, the ratio of salt and dust components is changed in advance on the optical waveguide 11 to cause fouling to adhere, and the relationship between the relative humidity and the amount of light attenuation at each of these ratios is determined. What is necessary is just to store it in memory.

【0024】さて、実際に塩分汚損量を求める場合に
は、まず検出部2(光導波路11)を汚損させて、実験
により、塩分と塵埃成分の各比率における相対湿度と光
減衰量の対応関係(図4)及び各塩分付着量における相
対湿度と光減衰量の対応関係(図3)を求め、光減衰量
及び湿度から塩分・塵埃成分比率を決定する計算式(比
率決定式)及びこの決定された塩分・塵埃成分比率につ
き光減衰量及び湿度から塩分付着量を求める計算式(塩
分決定式)を、演算部4のメモリに記憶しておく。一
方、温湿度計5からの実際の湿度データを、また受光部
2からの光減衰量のデータを、演算部4に入力する。
When actually calculating the amount of salt contamination, the detection unit 2 (optical waveguide 11) is first contaminated, and the correspondence between the relative humidity and the amount of light attenuation in each ratio of salt and dust is determined by experiments. (FIG. 4) and the relationship (FIG. 3) between the relative humidity and the amount of light attenuation for each amount of attached salt is calculated, and a calculation formula (ratio determination formula) for determining the salt / dust component ratio from the amount of light attenuation and humidity and this determination. A calculation formula (salt determination formula) for calculating the salt adhesion amount from the light attenuation amount and the humidity for the calculated salt / dust component ratio is stored in the memory of the calculation unit 4. On the other hand, the actual humidity data from the thermo-hygrometer 5 and the data on the amount of light attenuation from the light receiving unit 2 are input to the arithmetic unit 4.

【0025】演算部4内部では、入力された受光部2か
らの光減衰量及び温湿度計5からの湿度のデータに基づ
き、これらを上記比率決定式により図4に示した関係と
比較し、それらの曲線群の中で最も近いパラメータ値の
ものを選択して、塩分・塵埃成分比率を決定する。続い
て、演算部4は、この決定された塩分比率に基づき、図
3に示した関係の曲線群中から当該塩分・塵埃成分比率
に相当する曲線(塩分決定式)を特定し、この特定され
た塩分決定式に、上記データとして入力された光減衰
量,湿度の値を代入して塩分付着量を求める。
In the arithmetic unit 4, based on the input data of the light attenuation from the light receiving unit 2 and the data of the humidity from the thermo-hygrometer 5, these are compared with the relationship shown in FIG. The closest parameter value is selected from among the curve groups, and the salt / dust component ratio is determined. Subsequently, the calculation unit 4 specifies a curve (salt determination formula) corresponding to the salt / dust component ratio from the curve group of the relationship shown in FIG. 3 based on the determined salt ratio. The values of the light attenuation and the humidity input as the above data are substituted into the salt determination formula to determine the salt deposition.

【0026】このように汚損物の光減衰量及び相対湿度
データを所定の計算式に乗せることで、汚損物中の塩分
の割合を決定し、塩分のみの汚損量を高精度に求めるこ
とができることになる。
As described above, by applying the light attenuation amount and the relative humidity data of the contaminated material to a predetermined calculation formula, the ratio of the salt in the contaminated material can be determined, and the contamination amount of only the salt can be obtained with high accuracy. become.

【0027】ところで、碍子等の送電線設備に対する塩
分汚損量を測定するときは、設置場所が通常屋外となる
ことが多いため、計測湿度範囲が限定されて上記した塩
分・塵埃成分比を求めることができなくなることが生じ
得る。このような環境下では、次の方法が有効である。
When measuring the amount of salt contamination of transmission line equipment such as insulators, since the installation location is usually outdoors, the measurement humidity range is limited and the above-mentioned salt / dust ratio must be determined. May not be possible. In such an environment, the following method is effective.

【0028】即ち、送電設備に対する塩分などによる汚
損過程、言い換えると、汚損物が付着したり脱落したり
する過程は、気象条件の変化によりある程度推測するこ
とが可能である。例えば、塩分付着量は平均風速の3乗
に比例して増加することとか、高湿度・降雨が続く場合
には汚損物が流れ落ちて塩分付着量が減少すること等の
推測である。この塩分量の増減の推測は、一般的には常
識として考えられることであり、その程度や状況によ
り、変化度合いは推定する人間によりまちまちである
が、この点に関し専門的知識を有するものであれば、そ
の推測はかなり実施の現象(実際の塩分付着量の値)に
ほぼ追随するものとなる。
That is, the process of soiling the power transmission equipment due to salt or the like, in other words, the process of attaching or falling off the contaminated material can be estimated to some extent from changes in weather conditions. For example, it is speculated that the amount of salt attached increases in proportion to the cube of the average wind speed, or that when high humidity and rainfall continue, fouling substances flow down and the amount of salt attached decreases. The estimation of the increase or decrease in the amount of salt is generally considered to be common sense, and depending on the degree and circumstances, the degree of change varies depending on the person to be estimated. If so, the estimation will follow the actual phenomenon (actual amount of salt deposition) substantially.

【0029】そこで、この塩分量の増減の推測基準とし
て必要なデータ、即ち温度・湿度風向・風速,降雨
量,日照量などを、温湿度計5,風向・風速計6,降雨
計7,日照計8から演算部4に入力する。一方、演算部
4には、これらのデータを比較判断して塩分付着量を求
めるべき神経網、即ちニューラル・ネットと呼ばれる演
算ソフトウエアを適用し、これを演算部4内に備えてお
く。ニューラル・ネットは、演算部4に入力した温度・
湿度風向・風速,降雨量,日照量などのデータに基づ
き、上記気象条件の変化による塩分量の増減の推測を行
って、その推定値により修正もしくは補正を行って塩分
付着量を直接に求める。
Therefore, data necessary as a criterion for estimating the increase / decrease of the amount of salt, namely, temperature / humidity , wind direction / wind speed, rainfall, sunshine, etc., are measured by using a temperature / humidity meter 5, a wind direction / wind speed meter 6, a rain gauge 7, The data is input from the sunshine meter 8 to the calculation unit 4. On the other hand, the arithmetic unit 4 is applied with a neural network for determining and determining the amount of salt attached by comparing and judging these data, that is, arithmetic software called a neural net. The neural net calculates the temperature and
Based on data such as humidity , wind direction / wind speed, rainfall, and sunshine, estimate the increase or decrease in the amount of salt due to the change in the weather conditions, and correct or correct the estimated value to directly calculate the amount of salt attached. .

【0030】このニューラル・ネットを用いた場合、演
算部4に入力したデータから塩分付着量が直接に求まる
ため、上記した塩分・塵埃成分の比率を求めてから塩分
付着量を求めるという複雑な処理をせずに済む。また、
長期間適用して相当数の実用例を実施すると、学習効果
によって測定精度が向上する。更には、通常計測不能と
思われる高湿度範囲での測定が可能となり、計測器誤差
の塩分付着量への影響も大幅に低減することができる。
When this neural net is used, since the amount of salt attached is directly determined from the data input to the arithmetic unit 4, a complicated process of calculating the above-mentioned salt / dust component ratio and then calculating the salt attached amount is performed. You don't have to. Also,
When a considerable number of practical examples are applied over a long period of time, the measurement accuracy is improved by the learning effect. Furthermore, it is possible to perform measurement in a high humidity range where measurement is usually considered impossible, and it is possible to greatly reduce the influence of a measurement instrument error on the amount of attached salt.

【0031】但し、適用期間が短い場合や、上記したよ
うに湿度変化範囲が狭く比率が不明の場合には、前者の
比率を求めてから塩分付着量を求める方法の適用が効果
的であり、この方が実際に求められる塩分付着量の測定
精度が良い。
However, when the application period is short, or when the humidity change range is narrow and the ratio is unknown as described above, it is effective to apply the former method of calculating the ratio and then calculating the salt deposition amount. This is better in the accuracy of actually measuring the amount of attached salt.

【0032】[0032]

【発明の効果】以上述べたように、本発明によれば、次
のような優れた効果を発揮する。
As described above, according to the present invention, the following excellent effects are exhibited.

【0033】(1) 気象観測器から入力される計測データ
が気象状況による塩分量の増減を推定する基準として用
いられ、演算部の外乱除去手段により、上記検出量から
塩分以外の外乱を除去するように修正或いは補正され
る。従って、碍子表面等に汚損物として塩分の他に硫酸
カルシウム,カオリナイト等の塵埃が付着した場合で
も、その塵埃成分の外乱を除き、塩分量だけを区別して
精度良く検出することができる。
(1) The measurement data input from the meteorological observation device is used as a reference for estimating the increase or decrease in the amount of salt due to weather conditions, and the disturbance removing means of the calculation unit removes disturbance other than salt from the detected amount. Is corrected or corrected as described above. Therefore, even when dust such as calcium sulfate or kaolinite adheres to the insulator surface or the like as a pollutant in addition to salt, it is possible to accurately detect the salt by distinguishing only the amount of salt except disturbance of the dust component .

【0034】(2) また、気象観測器として温湿度計,風
向・風速計,降雨計,日照計を用い、上記外乱除去手段
をニューラルネットと呼ばれる神経網で構成した形態
(請求項)では、通常計測不能と思われる高湿度範囲
での測定が可能となり、計測器誤差の塩分付着量への影
響も大幅に低減することができる。また、神経網で塩分
量の増減を推測する学習効果により専門家並みの知識を
得て正確に塩分汚損量を修正又は補正することができ
る。
(2) In a mode in which a temperature-humidity meter, a wind direction / anemometer, a rain gauge, a sunshine meter is used as a weather observation device, and the disturbance removing means is constituted by a neural network called a neural network (claim 1 ). In addition, it is possible to perform measurement in a high humidity range, which is usually considered to be impossible to measure, and it is possible to greatly reduce the influence of a measuring instrument error on the amount of attached salt. In addition, the learning effect of estimating the increase or decrease of the amount of salt in the neural network can obtain the knowledge of an expert and correct or correct the amount of salt contamination accurately.

【0035】(3) 更に、上記外乱除去手段を、温湿度計
からの相対湿度データと検出部からの光減衰量とを用い
て塩分と塵埃の比率を決定し、その比率における相対湿
度と光減衰量との関係から塩分量を求める演算手段とし
た形態(請求項)は、湿度範囲が狭く塩分と塵埃の比
率が不明の場合に有効であり、気象観測器が温湿度計の
みであっても精度の良い塩分汚損量の検出ができる。
(3) Further, the disturbance elimination means determines the ratio of salt to dust using the relative humidity data from the thermo-hygrometer and the amount of light attenuation from the detection unit, and determines the relative humidity and light in the ratio. The method of calculating the amount of salt from the relationship with the amount of attenuation (claim 2 ) is effective when the humidity range is narrow and the ratio of salt to dust is unknown, and the meteorological observation device is only a thermo-hygrometer. However, accurate detection of the amount of salt contamination can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の塩分汚損量検出装置の実施例を示すブ
ロック図である。
FIG. 1 is a block diagram showing an embodiment of a salt contamination amount detecting apparatus according to the present invention.

【図2】図1の検出部の具体的構成を示す図である。FIG. 2 is a diagram illustrating a specific configuration of a detection unit in FIG. 1;

【図3】塩分・塵埃成分の混合比率を一定として、その
塩分付着量を変えた場合の相対湿度と光減衰量の関係を
示す図である。
FIG. 3 is a diagram showing the relationship between relative humidity and light attenuation when the amount of salt attached is changed while the mixing ratio of salt and dust components is kept constant.

【図4】塩分付着量を一定とし、塩分・塵埃成分の混合
比率をパラメータとした場合の相対湿度と光減衰量の関
係を示す図である。
FIG. 4 is a diagram showing a relationship between relative humidity and light attenuation when a salt adhesion amount is constant and a mixture ratio of salt and dust components is used as a parameter.

【符号の説明】[Explanation of symbols]

1 光源部 2 検出部 3 受光部 4 演算部 5 温湿度計 6 風向・風速計 7 降雨計 8 日照計 DESCRIPTION OF SYMBOLS 1 Light source part 2 Detecting part 3 Light receiving part 4 Operation part 5 Temperature / humidity meter 6 Wind direction / wind velocity meter 7 Rain gauge 8 Sunshine meter

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】NaClの屈折率値より小さい屈折率値を
有する光導波路を検出部に有し、該光導波路の一端から
入射されて他端から出射する透過光を受光し、該光導波
路で生ずる光減衰量の変化量を元に検出部に付着する塩
分の単位面積当りの塩分量を演算部により求める光式塩
分汚損量検出装置において、上記検出部の近傍に、温湿度計,風向・風速計,降雨
計,日照計からなり塩分量の増減の推定基準となる気象
観測器を設け、 上記演算部には、塩分以外の外乱を除去する外乱除去手
段として、これらの気象観測器から入力される計測デー
タを用いて塩分,塵埃を含む汚損物による汚損過程を推
測し、上記演算部が求める塩分量から塩分以外の外乱を
除去するように修正或いは補正する神経網 を設けたこと
を特徴とする光式塩分汚損量検出装置。
An optical waveguide having a refractive index value smaller than the refractive index value of NaCl is provided in a detection unit, and transmitted light that is incident from one end of the optical waveguide and emitted from the other end is received, and the optical waveguide receives the transmitted light. In an optical-type salt-fouling-amount detecting apparatus for calculating the amount of salt per unit area of salt adhering to a detecting unit based on the amount of change in the amount of generated light attenuation by a calculating unit , a thermo-hygrometer, a wind direction / Anemometer, rainfall
Meteorology, which is composed of a total of
An observer is provided, and the operation unit includes a disturbance elimination means for eliminating disturbances other than salt.
The measurement data input from these meteorological instruments
The soiling process by pollutants containing salt and dust
And calculate disturbances other than salinity from the amount of salinity calculated by the calculation unit.
An optical salt fouling amount detecting device, comprising a neural network for correcting or correcting for removal .
【請求項2】NaClの屈折率値より小さい屈折率値を
有する光導波路を検出部に有し、該光導波路の一端から
入射されて他端から出射する透過光を受光し、該光導波
路で生ずる光減衰量の変化量を元に検出部に付着する塩
分の単位面積当りの塩分量を演算部により求める光式塩
分汚損量検出装置において、 上記検出部の近傍に、温湿度計からなり塩分量の増減の
推定基準となる気象観測器を設け、 上記演算部には、塩分以外の外乱を除去する外乱除去手
段として、この温湿度計からの相対湿度データと検出部
からの光減衰量とを用いて塩分と塵埃の比率を決定し、
その比率における相対湿度と光減衰量との関係から塩分
量を求める演算手段を設けたことを特徴とする光式塩分
汚損量検出装置。
2. The method of claim 1, wherein the refractive index value is smaller than the refractive index value of NaCl.
Having an optical waveguide having in the detection unit, from one end of the optical waveguide
Receives the transmitted light that is incident and exits from the other end, and
Salt attached to the detector based on the amount of change in the amount of light attenuation generated in the road
Optical salt for calculating the amount of salt per unit area per minute
In the separation fouling amount detection device, a temperature / humidity meter is provided in the vicinity of the detection unit to increase or decrease the salt content.
A meteorological observation device is provided as an estimation reference, and the operation unit includes a disturbance elimination method for eliminating disturbances other than salt.
As a stage, the relative humidity data from this thermo-hygrometer and the detection unit
Determine the ratio of salt and dust using the amount of light attenuation from
From the relationship between relative humidity and light attenuation at that ratio, salt content
Optical salinity characterized by providing calculation means for determining the amount
Soil amount detector.
JP3018943A 1991-02-12 1991-02-12 Optical salt contamination detector Expired - Lifetime JP2778259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3018943A JP2778259B2 (en) 1991-02-12 1991-02-12 Optical salt contamination detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3018943A JP2778259B2 (en) 1991-02-12 1991-02-12 Optical salt contamination detector

Publications (2)

Publication Number Publication Date
JPH04258747A JPH04258747A (en) 1992-09-14
JP2778259B2 true JP2778259B2 (en) 1998-07-23

Family

ID=11985728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3018943A Expired - Lifetime JP2778259B2 (en) 1991-02-12 1991-02-12 Optical salt contamination detector

Country Status (1)

Country Link
JP (1) JP2778259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118011163B (en) * 2024-04-08 2024-07-09 武汉凯源电力科技有限公司 Testing device and testing method for cross arm insulator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612338B2 (en) * 1989-02-10 1994-02-16 日立電線株式会社 Optical salt deposition amount detection sensor and salt deposition amount measuring device using the same
JPH0687041B2 (en) * 1990-07-06 1994-11-02 日立電線株式会社 Salt attachment density detector

Also Published As

Publication number Publication date
JPH04258747A (en) 1992-09-14

Similar Documents

Publication Publication Date Title
Whelpdale et al. Sulphur dioxide removal by turbulent transfer over grass, snow, and water surfaces
JPH01305341A (en) Method and apparatus for obtaining reading of non-transparency monitor periodically
JP2778259B2 (en) Optical salt contamination detector
KR20090070899A (en) Apparatus for measuring gas and visibility range in tunnel
US4201477A (en) Suspended solids meter
US6313645B1 (en) Method of determining the volumetric proportion of liquid water and the density of snow and a device for carrying out the method
JPH0436648A (en) Detecting method for insulator dirt quantity
JPH01147344A (en) Method and device for measuring quantity of insulator dirt
JPS6324267B2 (en)
JPH0465657A (en) Device for detecting adhesion density of salt component
Koe Ambient hydrogen sulphide levels at a wastewater treatment plant
JP2526077Y2 (en) Insulator contamination measurement sensor
JPH09218150A (en) Salt damage monitor system
JP2600418B2 (en) Optical salt adhesion sensor
RU2758843C1 (en) Method for determining main parameters of structure of air and droplet formations of clouds and fogs
JPH062206U (en) Insulator salt damage sensor
JP2008128888A (en) Water quality meter
JPH03251791A (en) Rain gauge fitted with rainfall correcting apparatus
Littfin et al. Determination of an air mass using nephelometer measurements and the Naval aerosol model
JP2589356B2 (en) Optical salt adhesion sensor
JP3234788B2 (en) Method for correcting insulator contamination amount and method and apparatus for estimating contamination amount using this correction method
Hasse et al. New instrumentation for measurement of precipitation at sea
Rusin Precipitation observation development
Wendler et al. Quality control for solar radiation data
JPH0612338B2 (en) Optical salt deposition amount detection sensor and salt deposition amount measuring device using the same