JPH06217784A - Method for separating and recovering 2',3'-dideoxyuridine - Google Patents

Method for separating and recovering 2',3'-dideoxyuridine

Info

Publication number
JPH06217784A
JPH06217784A JP4166693A JP4166693A JPH06217784A JP H06217784 A JPH06217784 A JP H06217784A JP 4166693 A JP4166693 A JP 4166693A JP 4166693 A JP4166693 A JP 4166693A JP H06217784 A JPH06217784 A JP H06217784A
Authority
JP
Japan
Prior art keywords
ddu
dideoxyuridine
unreacted
recovering
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4166693A
Other languages
Japanese (ja)
Inventor
Makoto Machida
誠 町田
Shuji Ishida
修治 石田
Kazumi Tsuda
一美 津田
Kunimutsu Murakami
邦睦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP4166693A priority Critical patent/JPH06217784A/en
Publication of JPH06217784A publication Critical patent/JPH06217784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To efficiently recover dideoxyuridine (ddU) important as a synthetic raw material for dideoxypurine hopeful as an anti-HIV agent from a solution having completed base exchange reaction with a microorganism or an enzyme. CONSTITUTION:Unreacted ddU is efficiently recovered from a solution having completed exchange reaction of a base comprising ddU and purine bases as a raw material with a microorganism or an enzyme by using a nonpolar porous resin containing divinylbenzene as a constituent element. Dideoxypurines promising as an anti-HIV agent are inexpensively obtained by efficiently recovering ddU.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2′,3′−ジデオキ
シウリジン(以下ddUと略)とブリン塩基類との微生
物または酵素による塩基交換反応後に、該反応終了液中
に残存する未反応のddUを分離回収する方法に関する
ものである。
The present invention relates to an unreacted reaction remaining in a reaction-completed liquid after a base exchange reaction between 2 ', 3'-dideoxyuridine (hereinafter abbreviated as ddU) and Bryn bases by a microorganism or an enzyme. The present invention relates to a method for separating and recovering ddU of.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ヒト免
疫不全ウイルス(Human Immune Defi
ciencyVirus、以下HIVと略)に対する有
効な治療薬としてHIVの逆転写酵素の阻害剤であるア
ジドチミジン(以下AZTと略)、2′,3′−ジデオ
キシシチジン(以下ddCと略)、2′,3′−ジデオ
キシイノシン(以下ddlと略)、2′,3′−ジデオ
キシグアノシン(以下ddGと略)、2−アミノ−6−
クロロ−2′,3′−ジデオキシグアノシン(以下6−
Cl−ddGと略)等が知られている。
2. Description of the Related Art Human Immunodeficiency Virus (Human ImmunoDefi)
Civic Cyrus (hereinafter abbreviated as HIV), azidothymidine (hereinafter abbreviated as AZT), an inhibitor of HIV reverse transcriptase, 2 ′, 3′-dideoxycytidine (hereinafter abbreviated as ddC), 2 ′, 3 ′ -Dideoxyinosine (hereinafter abbreviated as ddl), 2 ′, 3′-dideoxyguanosine (hereinafter abbreviated as ddG), 2-amino-6-
Chloro-2 ', 3'-dideoxyguanosine (hereinafter 6-
Cl-ddG) and the like are known.

【0003】これらの中で2′,3′−ジデオキシブリ
ン類(以下ジデオキシブリン類と略)であるddI、d
dG、6−Cl−ddG等は化学的安定生が低いため化
学合成が難しくかつ収率も低い。そこでより安定性の高
いddUとブリン塩基類を原料として大腸菌等の微生物
又はそれらより抽出した酵素を用いた塩基交換反応によ
り、目的としたジデオキシプリン類を合成する方法が有
力である。
Of these, ddI and d which are 2 ', 3'-dideoxybrines (hereinafter abbreviated as dideoxybrins).
Since chemical stability of dG, 6-Cl-ddG, etc. is low, chemical synthesis is difficult and the yield is low. Therefore, a method of synthesizing the desired dideoxy purines by a base exchange reaction using microorganisms such as Escherichia coli or enzymes extracted from them with ddU and brin bases having higher stability as raw materials is effective.

【0004】他方、微生物または酵素を用いたジデオキ
シブリン類合成後の塩基交換反応終了液中には、目的物
質のジデオキシプリン類の他、合成原料である未反応の
プリン塩基、ddU、及びddU由来のウラシル等が含
まれている。塩基交換反応は平衡反応であるから、通常
原料であるddUは30〜40%が未反応として塩基交
換反応終了液中に残存することになるが、目的物質であ
るジデオキシプリン類を分離した後の不純物を多く含有
する反応終了液中から効率的にddUを回収する手段は
なかった。一方ddUは杭HIV括性を有するジデオキ
シプリン類合成において、それらの製造原価を左右する
重要な物質であることから、効率的回収方法の確立が望
まれていた。
On the other hand, in the base exchange reaction completed liquid after the synthesis of dideoxybrines using microorganisms or enzymes, in addition to the target substance dideoxypurines, unreacted purine bases, ddU, and ddU, which are raw materials for synthesis, are derived. Uracil, etc. are included. Since the base exchange reaction is an equilibrium reaction, 30 to 40% of ddU as a raw material is left unreacted and remains in the liquid after the base exchange reaction, but after the target substance dideoxypurines are separated. There was no means for efficiently recovering ddU from the reaction-terminated solution containing a large amount of impurities. On the other hand, ddU is an important substance that affects the production cost of the dideoxy purines having the HIV-likeness in piles. Therefore, establishment of an efficient recovery method has been desired.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らは、
以上の問題点を解決すべく鋭意検討した結果、塩基交換
反応終了液中の未反応ddUをいわゆる非極性多孔質イ
オン交換樹脂に吸着させることにより簡便かつ効率的に
分離回収出来ることを見いだし、本発明に到達した。
Therefore, the present inventors have
As a result of intensive studies to solve the above problems, it was found that the unreacted ddU in the base exchange reaction-terminated liquid can be easily and efficiently separated and recovered by adsorbing it onto a so-called non-polar porous ion exchange resin. The invention was reached.

【0006】即ち、本発明は、2′,3′−ジデオキシ
ウリジン(以下ddUと略)とブリン塩基類との微生物
または酵素による塩基交換反応による2′,3′−ジデ
オキシプリン類の生産に際して、塩基交換反応終了液中
の未反応2′,3′−ジデオキシウリジンを非極性多孔
質イオン交換樹脂に吸着させることを特徴とする2′,
3′−ジデオキシウリジンの分離回収方法である。
That is, the present invention provides a method for producing 2 ', 3'-dideoxypurines by a base exchange reaction between 2', 3'-dideoxyuridine (hereinafter abbreviated as ddU) and brin bases by a microorganism or an enzyme. 2 ', characterized in that unreacted 2', 3'-dideoxyuridine in the solution after the base exchange reaction is adsorbed on a non-polar porous ion exchange resin.
This is a method for separating and recovering 3'-dideoxyuridine.

【0007】以下、本発明を詳細に説明する。先ず、本
発明に使用する微生物または酵素としては、塩基交換性
を有するものであればいかなるものでも使用することが
できるが、具体的にはエシェリヒア(Escherih
ia)属、クレブシェラ(Krebsiella)属、
あるいはエルビニア(Ervinia)属が塩基交換活
性の点から好ましい。他方、酵素としては、ピリミジン
ウクレオシドフォスホリラーゼ、プリンヌクレオシドフ
ォスフォリラーゼの両酵素を組み合わせることにより、
塩基交換反応を達成できる。以上の微生物又は酵素を使
用する場合、微生物又は酵素をそのままの形で使用して
も良いし、又固定化触媒を使用することも可能である。
また、ジデオキシブリン類合成後の塩基交換反応終了液
中には、目的物質のジデオキシプリン類の他、合成原料
である未反応のプリン塩基、ddU、及びddU由来の
ウラシル等が含まれているが、その組成は特に制限され
ない。
The present invention will be described in detail below. First, as the microorganism or enzyme used in the present invention, any microorganisms or enzymes having a base exchange property can be used. Specifically, specifically, Escherichia
ia genus, Krebsiella genus,
Alternatively, the genus Ervinia is preferable from the viewpoint of base exchange activity. On the other hand, as the enzyme, by combining both the pyrimidine nucleoside phosphorylase and purine nucleoside phosphorylase enzymes,
A base exchange reaction can be achieved. When the above-mentioned microorganisms or enzymes are used, the microorganisms or enzymes may be used as they are or an immobilized catalyst may be used.
In addition, in the liquid after the base exchange reaction after the synthesis of dideoxybrins, in addition to the target substance dideoxypurines, unreacted purine bases, ddU, and uracil derived from ddU, which are raw materials for synthesis, are contained. The composition is not particularly limited.

【008】次に、塩基交換反応終了液中の未反応の
2′,3′−ジデオキシウリジン分離回収に用いるイオ
ン交換樹脂について説明する。本発明に使用するイオン
交換樹脂としては、非極性多孔質イオン交換樹脂ならば
いかなる樹脂でも使用可能であるが、なかでもスチレン
ジビニルベンゼン系の共重合体またはその誘導体を含有
するものが特に優れている。その一例を挙げれば、ダイ
ヤイオンシリーズ、HPシリーズ、SPシリーズ(以上
三菱化成工業(株)製)、XAD−2、4、16(ロー
ム・アンド・ハース社製)等が使用可能である。これら
の非極性多孔質イオン交換樹脂中では、セパビーズSP
206が、操作性、吸着量の点から本発明における未反
応ddUの分離回収に適している。
Next, the ion exchange resin used for separating and recovering unreacted 2 ', 3'-dideoxyuridine in the solution after the base exchange reaction will be described. As the ion exchange resin used in the present invention, any resin can be used as long as it is a nonpolar porous ion exchange resin, and among them, those containing a styrenedivinylbenzene copolymer or its derivative are particularly excellent. There is. As an example thereof, Diaion series, HP series, SP series (all manufactured by Mitsubishi Kasei Kogyo Co., Ltd.), XAD-2, 4, 16 (manufactured by Rohm and Haas) can be used. In these non-polar porous ion exchange resins, SepaBeads SP
206 is suitable for separation and recovery of unreacted ddU in the present invention in terms of operability and adsorption amount.

【0009】樹脂充填カラムへのddU含有溶液の通液
速度には特に制限はないが、通常SV=0.3〜5.
0、望ましくはSV=1〜3が良い。なお、樹脂充填カ
ラムに供給するddU含有溶液の体積負荷量は、ddU
含有溶液のddU濃度により多少異なるが、10〜30
g/l(樹脂)、好ましくは20g/l(樹脂)程度が
分離性、操作性、経済性から考えて良好である。
The flow rate of the ddU-containing solution through the resin packed column is not particularly limited, but normally SV = 0.3-5.
0, preferably SV = 1 to 3 is preferable. The volume load of the ddU-containing solution supplied to the resin-filled column is ddU.
10 to 30 depending on the concentration of ddU in the solution
g / l (resin), preferably about 20 g / l (resin) is good in view of separability, operability and economy.

【0010】また、樹脂充填カラムに供給するddU含
有溶液のpHは、弱酸性から弱アルカリ性の範囲であれ
ば良いが、好ましくは中性付近がddUの安定性から考
えると適している。樹脂充填カラムへの通液温度は、1
0〜40℃であれば特に制限はされない。樹脂充填カラ
ムからの未反応ddUの溶離は、メタノール、エタノー
ル、プロパノール等の低級アルコール水溶液を用いるこ
とにより、容易に行うことが出来る。未反応ddUの溶
離は、通常SV=1〜2程度が良い。
The pH of the ddU-containing solution supplied to the resin-filled column may be in the range of weak acidity to weak alkalinity, but it is preferable to consider the neutrality from the viewpoint of stability of ddU. The passing temperature to the resin packed column is 1
There is no particular limitation as long as it is 0 to 40 ° C. Elution of unreacted ddU from the resin packed column can be easily performed by using a lower alcohol aqueous solution such as methanol, ethanol or propanol. The elution of unreacted ddU is usually about SV = 1 to 2.

【0011】次に、塩基交換反応終了液中の未反応dd
Uの分離回収方法について述べる。先ず、非極性多孔質
イオン交換樹脂をカラムに充填後、100%メタノール
等の有機溶剤でイオン交換樹脂中の不純物を除去し、十
分に水洗する。次いで水洗終了後の樹脂充填カラムに未
反応ddU含有溶液をSV=1程度の速さで通液し、塩
基交換反応終了液中の未反応ddUを吸着させる。その
後、樹脂充填カラムの3倍量程度の脱イオン水で洗浄す
る。樹脂充填カラムからのに反応ddUの溶離は、20
%程度のメタノール等のアルコール類をSV=1程度で
通液することにより行う。溶離した塩基交換反応終了液
中の未反応ddUは、常法により濃縮乾固、スプレード
ライ、凍結乾燥等の操作により粉末状にすることが出来
る。
Next, unreacted dd in the liquid after the base exchange reaction.
A method for separating and recovering U will be described. First, after filling the column with a non-polar porous ion exchange resin, impurities in the ion exchange resin are removed with an organic solvent such as 100% methanol, and the column is thoroughly washed with water. Next, the unreacted ddU-containing solution is passed through the resin-filled column after washing with water at a speed of about SV = 1 to adsorb unreacted ddU in the base exchange reaction completed liquid. Then, the column is washed with deionized water in an amount three times as much as that of the resin-filled column. The elution of the reaction ddU from the resin packed column was 20
% Of alcohols such as methanol is passed at SV = 1. The unreacted ddU in the eluted solution after the base exchange reaction can be made into a powder by a conventional method such as concentration and solidification, spray drying, and freeze drying.

【0011】[0011]

【実施例】以下、本発明の詳細を実施例により説明す
る。小島等の方法(特開平2−308797)に準じて
6−Cl−ddGを合成するため、2−アミノ−6−ク
ロロプリン(以下6−Cl−Gと略)及びddUそれぞ
れを20mMとなるように、10mMリン酸緩衝液(p
H6.5)100mlに加えた後、大腸菌(E.col
i JA300)250mg(乾燥重量)を添加し、5
0℃で8時間反応した。反応終了後遠心分離(1000
0rpm、10分)により大腸菌及び未反応の6−Cl
−Gを沈澱させ、得られた上清をダイヤイオンHP−2
0(三菱化成工業(株)製)100mlを充填したカラ
ムに通液した。未吸着液、水洗及び20%メタノール溶
出画分を混合し、減圧濃縮により約200mlとする。
HPLC分析の結果、この中には6.2mMのウラシ
ル、4.5mMのddUが含まれていた。
EXAMPLES The details of the present invention will be described below with reference to examples. In order to synthesize 6-Cl-ddG according to the method of Kojima et al. (Japanese Patent Laid-Open No. 308797/1990), 2-amino-6-chloropurine (hereinafter abbreviated as 6-Cl-G) and ddU each have a concentration of 20 mM. 10 mM phosphate buffer (p
H6.5) and added to 100 ml of E. coli (E.
i JA300) 250 mg (dry weight) was added, and 5
The reaction was carried out at 0 ° C for 8 hours. After completion of the reaction, centrifuge (1000
E. coli and unreacted 6-Cl by 0 rpm, 10 minutes)
-G was precipitated and the resulting supernatant was used as Diaion HP-2
The solution was passed through a column packed with 100 ml of 0 (manufactured by Mitsubishi Kasei Co., Ltd.). The unadsorbed liquid, the water wash, and the 20% methanol elution fraction are mixed and concentrated under reduced pressure to about 200 ml.
As a result of HPLC analysis, it contained 6.2 mM uracil and 4.5 mM ddU.

【0012】以上の操作で得られた溶液(pH約6.
8)を、セパビーズSP206(三菱化成工業(株)
製)30mlを充填したカラム(φxL=20×200
mm)に、通液速度SV=2で吸着させた。次いで、イ
オン交換樹脂量の2倍量の脱イオン水で洗浄した。この
未吸着及び洗浄液を高速液体クロマトグラフイー(以下
HPLCと略)で分析したところ、ウラシルのみが検出
されddUは含まれていなかった。次いで、イオン交換
樹脂の3倍量の20%メタノール水溶液でddUを溶離
後、溶離液をロータリーエバポレーターにより50ml
に濃縮した。濃縮液中のddU量は、HPLCの定量の
結果180mgであり、回収率は約95%、純度は97
%であった。
The solution obtained by the above operation (pH about 6.
8) to SepaBeads SP206 (Mitsubishi Kasei Co., Ltd.)
Column (φxL = 20 × 200) filled with 30 ml
(mm) at a liquid passing speed of SV = 2. Then, it was washed with deionized water in an amount twice the amount of the ion exchange resin. When the unadsorbed and washed liquids were analyzed by high performance liquid chromatography (hereinafter abbreviated as HPLC), only uracil was detected and ddU was not contained. Then, after eluting ddU with 20% methanol aqueous solution which is 3 times the amount of the ion exchange resin, 50 ml of the eluent was rotoevaporated.
Concentrated to. The amount of ddU in the concentrated solution was 180 mg as a result of HPLC quantification, and the recovery rate was about 95% and the purity was 97%.
%Met.

【0013】[0013]

【発明の効果】以上のように、本発明によれば非極性多
孔質イオン交換樹脂、特にスチレンジビニルベンゼン共
重合体またはその誘尊体を含有する非極性多孔質イオン
交換樹脂を用いることにより、微生物または酵素による
ddUとブリン塩基類との塩基交換反応終了液から未反
応のddUを効率的に回収することが可能であり、抗H
IV剤として有力なジデオキシプリン類を安価に供給に
できる道を開いたといえ、る。
As described above, according to the present invention, by using a nonpolar porous ion exchange resin, particularly a nonpolar porous ion exchange resin containing a styrenedivinylbenzene copolymer or its derivative, It is possible to efficiently recover unreacted ddU from the solution after the base exchange reaction between ddU and Bryn's bases by a microorganism or an enzyme.
It can be said that it paved the way for inexpensive supply of dideoxypurines, which are potent IV agents.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 邦睦 山口県岩国市飯田町二丁目8番1号 山陽 国策パルプ株式会社生物資源研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kunimitsu Murakami 2-8-1, Iida-cho, Iwakuni-shi, Yamaguchi Sanyo Kokusaku Pulp Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 微生物または酵素の作用により2′,
3′−ジデオキシプリン類合成した反応終了液から、未
反応2′,3′−ジデオキシウリジンを非極性多孔質イ
オン交換樹脂に吸着させることを特徴とする2′,3′
−ジデオキシウリジンの分離回収方法。
1. A 2'by the action of a microorganism or an enzyme,
Unreacted 2 ', 3'-dideoxyuridine is adsorbed on a non-polar porous ion-exchange resin from a reaction-completed solution prepared by synthesizing 3'-dideoxypurines.
-A method for separating and collecting dideoxyuridine.
【請求項2】 非極性多孔性樹脂がスチレンジビニルベ
ンゼン系の共重合体またはその誘導体である請求項1記
載の2′,3′−ジデオキシウリジンの分離回収方法。
2. The method for separating and recovering 2 ′, 3′-dideoxyuridine according to claim 1, wherein the non-polar porous resin is a styrenedivinylbenzene copolymer or a derivative thereof.
【請求項3】 反応終了液中に、不純物としてウラシ
ル、2′,3′−ジデオキシリボース、ブリン塩基誘導
体の少なくとも1種類が含まれている請求項1又は請求
項2のいずれか1項記載の2′,3′−ジデオキシウリ
ジンの分離回収方法。
3. The reaction-terminated solution according to claim 1, wherein at least one of uracil, 2 ′, 3′-dideoxyribose, and a Briin base derivative is contained as an impurity. A method for separating and recovering 2 ', 3'-dideoxyuridine.
JP4166693A 1993-01-22 1993-01-22 Method for separating and recovering 2',3'-dideoxyuridine Pending JPH06217784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4166693A JPH06217784A (en) 1993-01-22 1993-01-22 Method for separating and recovering 2',3'-dideoxyuridine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4166693A JPH06217784A (en) 1993-01-22 1993-01-22 Method for separating and recovering 2',3'-dideoxyuridine

Publications (1)

Publication Number Publication Date
JPH06217784A true JPH06217784A (en) 1994-08-09

Family

ID=12614717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4166693A Pending JPH06217784A (en) 1993-01-22 1993-01-22 Method for separating and recovering 2',3'-dideoxyuridine

Country Status (1)

Country Link
JP (1) JPH06217784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509447B2 (en) * 1999-09-30 2010-07-21 ヤマサ醤油株式会社 High purity guanosine 5'-diphosphate fucose and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509447B2 (en) * 1999-09-30 2010-07-21 ヤマサ醤油株式会社 High purity guanosine 5'-diphosphate fucose and process for producing the same

Similar Documents

Publication Publication Date Title
JPS6026482B2 (en) Method for producing cyclodextrin
JP2009538293A (en) Recovery of dimethylformamide and other solvents from the process stream of trichlorogalactosucrose production
CS258114B2 (en) Method of raw anthracycline glycosides purification
US7897794B2 (en) Method for purifying hydroxymethylfurfural using non-functional polymeric resins
JPH06217784A (en) Method for separating and recovering 2',3'-dideoxyuridine
JPS59104399A (en) Mutual separation of nucleotide and nucleoside
US6649755B1 (en) Process for preparing acarbose with high purity
JPH01501624A (en) Method for enriching and/or isolating cardiotonic glycosides using non-polar adsorption resins
JPS6147495A (en) Maltopentaose crystal and its preparation
US6414137B1 (en) Selective solvent extraction for the purification of protected nucleosides
CN108300744A (en) Synthetic method, kit and the application of D- heterocyclic amino acids
CA2101281C (en) Method of purifying nucleoside derivatives
KR19980701466A (en) Production Method of Palatinitol (New Method For Producing Palatinitol)
JPH11171895A (en) Separation and purification of aspartame and aspartame derivative
JPS6317825B2 (en)
JPH01175991A (en) Purifying method of dideoxyinosine
JPH0764845B2 (en) Purification method of dideoxyadenosine
JPH0533715B2 (en)
JPS61282094A (en) Production of natural cytokinin
KR970002038B1 (en) Refining method of ester
JPS648000B2 (en)
JPS6256491A (en) Production of high-purity methylcobalamin
JPH05339282A (en) Production of theanderose
JPH01102095A (en) Purification of dideoxyuridine
JPS5995298A (en) Separation and purification of vitamin b12