JPH06211570A - High sinterable powdery composition mainly containing zirconium compound and its production thereof - Google Patents

High sinterable powdery composition mainly containing zirconium compound and its production thereof

Info

Publication number
JPH06211570A
JPH06211570A JP31A JP10968891A JPH06211570A JP H06211570 A JPH06211570 A JP H06211570A JP 31 A JP31 A JP 31A JP 10968891 A JP10968891 A JP 10968891A JP H06211570 A JPH06211570 A JP H06211570A
Authority
JP
Japan
Prior art keywords
powder
compound
stabilized zirconia
zirconium compound
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31A
Other languages
Japanese (ja)
Inventor
Junichi Morishita
純一 森下
Nobuo Kimura
信夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kigenso Kagaku Kogyo Co Ltd
Original Assignee
Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Kigenso Kagaku Kogyo Co Ltd filed Critical Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority to JP31A priority Critical patent/JPH06211570A/en
Publication of JPH06211570A publication Critical patent/JPH06211570A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high sinterable powdery composition high in density and relative density and excellent in flexural strength by normal pressure sintering at a low temp., by adding a specific zirconium compound-containing powder to a solution containing a water- or organic solvent-soluble Fe compound. CONSTITUTION:The zirconium compound containing powder of at least one kind of a partially stabilized zirconia powder, a completely stabilized zirconia powder and a powdery precursor forming the partially stabilized or completely stabilized zirconia by heating is added to mix in the solution containing the water- or organic solvent-soluble Fe compound up to 0.01-0.5% atomic ratio of Fe to Zr. The desired high sinterable powdery composition is obtained by removing the solvent and drying. This high sinterable powder composition is capable of producing a zirconia sintered compact at a lower cost compared with hot press method or HIP method by applying normal pressure sintering method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジルコニウム化合物を
主成分とする高焼結性粉末組成物およびその製造方法に
係わり、さらに詳しくは部分安定化もしくは完全安定化
ジルコニアの高密度焼結体の常圧焼結法による製造の原
料となるジルコニウム化合物を主成分とする高焼結性粉
末組成物およびその製造方法に関する。部分安定化ジル
コニア焼結体は高強度、高靱性セラミックとして機械部
材への応用が期待され、また完全安定化ジルコニア焼結
体は、耐熱性部材、固体電解質として広く利用されてい
る機能性セラミック材料である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly sinterable powder composition containing a zirconium compound as a main component and a method for producing the same, and more particularly to a high density sintered body of partially stabilized or completely stabilized zirconia. The present invention relates to a highly sinterable powder composition containing a zirconium compound as a raw material for production by an atmospheric pressure sintering method, and a production method thereof. The partially stabilized zirconia sintered body is expected to be applied to mechanical members as a high strength and high toughness ceramic, and the fully stabilized zirconia sintered body is a functional ceramic material widely used as a heat resistant member and a solid electrolyte. Is.

【0002】[0002]

【従来の技術】ジルコニア焼結体は、ジルコニア結晶の
高温安定相である正方晶系あるいは立方晶系の結晶構造
を常温まで維持させるための安定化処理を行ったジルコ
ニア結晶微粉末を、成形、焼結して製造する。ジルコニ
ア結晶の安定化処理は、通常、ジルコニアにCaO、M
gO、Y23 等の酸化物類を固溶させることにより行
われ、立方晶系の結晶構造のみのジルコニアからなる焼
結体を完全安定化ジルコニア(通常「安定化ジルコニ
ア」と言う。)焼結体として、また、正方晶系の結晶構
造のジルコニアを含有する焼結体を部分安定化ジルコニ
ア焼結体として、広く利用されている。これらのジルコ
ニア焼結体が、目的とする機能たとえば酸素イオン伝導
性、機械的特性等を発現するためには、微細構造の制御
されたかつ、緻密な焼結体を製造する必要がある。従
来、微細構造の制御された、緻密なジルコニア焼結体
は、ホットプレス法、HIP法等の特殊な成形、焼結技
術を採用して製造されているが、これらの方法において
は、製造設備が大掛りなものを必要とし、かつ、操作も
煩雑であるため、製品は高価なものとなる。
2. Description of the Related Art A zirconia sintered body is obtained by molding a zirconia crystal fine powder which has been subjected to a stabilizing treatment to maintain a tetragonal or cubic crystal structure, which is a high temperature stable phase of zirconia crystals, to room temperature. It is manufactured by sintering. Stabilization of zirconia crystals is usually performed by adding CaO, M to zirconia.
A completely stabilized zirconia (usually referred to as "stabilized zirconia") is obtained by solid-dissolving oxides such as gO and Y 2 O 3 and made of zirconia having only a cubic crystal structure. Widely used as a sintered body and a sintered body containing tetragonal crystal structure zirconia as a partially stabilized zirconia sintered body. In order for these zirconia sintered bodies to exhibit desired functions such as oxygen ion conductivity and mechanical properties, it is necessary to manufacture a dense sintered body with a controlled fine structure. Conventionally, a fine zirconia sintered body with a controlled fine structure has been manufactured by adopting a special molding and sintering technique such as a hot pressing method and a HIP method. In these methods, manufacturing equipment is used. However, the product is expensive because it requires a large size and the operation is complicated.

【0003】微細構造の制御された緻密なジルコニア焼
結体を共沈法等の化学的手法を用いた粉末調整技術によ
り調整した原料粉末を成形し、比較的低温で焼結する方
法、たとえば、特開昭50−103510号公報には水
溶性ジルコニウム塩、安定化剤としてのカルシウム、マ
グネシウム、イツトリウム等の可溶性塩類及び焼結促進
剤としての遷移金属の可溶性塩類の混合水溶液に、アン
モニア水を加えて、含有する金属の水酸化物を共沈さ
せ、乾燥、仮焼して得られる粉末を原料とする高密度ジ
ルコニア焼結体の製造方法等が提案されている。これら
の化学的に処理された原料粉末を用いるジルコニア焼結
体の製造方法においては、比較的低い温度の焼結で、焼
結密度をかなりのレベルまで向上させることができる。
しかしながら、粉末は、一般に微粉化することによって
凝集力が強くなることが知られており、そのため、化学
的に処理された原料粉末を用いる方法において、再現性
良く高密度焼結体を製造することは困難であり、また、
現状においては、低温焼結性および焼結体の相対密度
(対理論密度)も十分であるとは言えない。前記引用し
た方法においても、実際上、焼結体の緻密化(高密度
化)を効果的に行うことは困難である。
A method of molding a raw material powder prepared by finely controlling a fine zirconia sintered body by a powder adjusting technique using a chemical method such as coprecipitation and sintering the powder at a relatively low temperature, for example, JP-A-50-103510 discloses that aqueous ammonia is added to a mixed aqueous solution of a water-soluble zirconium salt, soluble salts such as calcium, magnesium and yttrium as a stabilizer and soluble salts of transition metals as a sintering accelerator. Then, a method for producing a high-density zirconia sintered body using as a raw material a powder obtained by coprecipitating the contained metal hydroxide, drying and calcination has been proposed. In the method for manufacturing a zirconia sintered body using these chemically treated raw material powders, the sintering density can be improved to a considerable level by sintering at a relatively low temperature.
However, it is known that powders generally have a strong cohesive force when they are pulverized. Therefore, it is necessary to produce a high-density sintered body with good reproducibility in a method using a chemically treated raw material powder. Is difficult and also
At present, it cannot be said that the low temperature sinterability and the relative density (vs. theoretical density) of the sintered body are sufficient. Even in the method cited above, it is practically difficult to effectively densify (densify) the sintered body.

【0004】[0004]

【発明が解決しようとする課題】本発明は、高密度ジル
コニア焼結体を、比較的低温域での常圧焼結法で製造す
るに適した原料粉末組成物およびその製造方法を提供す
ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a raw material powder composition suitable for producing a high-density zirconia sintered body by an atmospheric pressure sintering method in a relatively low temperature range, and a method for producing the same. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明は、部分安定化ジ
ルコニア粉末、完全安定化ジルコニア粉末および加熱に
より部分安定化もしくは完全安定化ジルコニアを生成す
る前駆体粉末よりなる群から選ばれる少なくとも1種の
ジルコニウム化合物含有粉末と、FeのZrに対する原
子比で0.01〜0.5%のFe化合物とからなり、該
Fe化合物を前記ジルコニウム化合物含有粉末に被着さ
せてなるジルコニウム化合物を主成分とする高焼結体粉
末組成物およびその製造方法である。
The present invention provides at least one selected from the group consisting of partially stabilized zirconia powder, fully stabilized zirconia powder, and precursor powder that produces partially stabilized or fully stabilized zirconia by heating. Of the zirconium compound-containing powder and an Fe compound having an atomic ratio of Fe to Zr of 0.01 to 0.5%, and the zirconium compound obtained by depositing the Fe compound on the zirconium compound-containing powder as a main component. A high sinter powder composition and a method for producing the same.

【0006】本発明において、ジルコニウム化合物含有
粉末は、部分安定化ジルコニア粉末、完全安定化ジルコ
ニア粉末または加熱により部分安定化ジルコニアまたは
完全安定化ジルコニアを生成する前駆体粉末であれば、
特に制限はなく、常法、たとえば、酸化物法、共沈法、
加水分解法、熱分解法等で得られる、Y2 3 、MgO
およびCaOよりなる群から選ばれる少なくとも1種ま
たは、加熱によりY23 、MgOおよびCaOよりな
る群から選ばれる少なくとも1種を生成する化合物を含
有するジルコニウム化合物含有粉末のいずれをも使用で
きる。本発明において、高焼結性粉末組成物は、前記ジ
ルコニウム化合物含有粉末を水または有機溶媒可溶性F
e化合物を含有する溶液に、FeのZrに対する原子比
で0.01〜0.5%添加混合したのち、溶媒を除去、
乾燥することにより、該Fe化合物を、前記ジルコニウ
ム化合物含有粉末に被着させることにより製造すること
ができる。
In the present invention, the zirconium compound-containing powder may be a partially stabilized zirconia powder, a fully stabilized zirconia powder, or a precursor powder which produces a partially stabilized zirconia or a fully stabilized zirconia by heating.
There is no particular limitation, and conventional methods such as oxide method, coprecipitation method,
Y 2 O 3 , MgO obtained by hydrolysis, thermal decomposition, etc.
And at least one selected from the group consisting of CaO and a zirconium compound-containing powder containing a compound that produces at least one selected from the group consisting of Y 2 O 3 , MgO and CaO when heated. In the present invention, the highly sinterable powder composition may be prepared by dissolving the zirconium compound-containing powder in water or an organic solvent-soluble F
After adding and mixing 0.01 to 0.5% by atomic ratio of Fe to Zr to the solution containing the e compound, the solvent is removed,
By drying, the Fe compound can be produced by coating the zirconium compound-containing powder.

【0007】[0007]

【作用】本発明者等は、低温常圧焼結法によるジルコニ
ア焼結体の製造方法における技術的課題すなわち、焼結
体密度を向上させることについて鋭意研究した結果、溶
媒可溶性のFe化合物を被着した部分安定化ジルコニア
粉末を原料として用いることにより、比較的低温で常圧
焼結しても理論密度に対する相対密度が99%を越える
部分安定化ジルコニア焼結体が再現性よく容易に得られ
ることを見出し、さらに研究を展開して本発明を完成し
た。すなわち、本発明において、Fe化合物は、ジルコ
ニウム化合物含有粉末を被覆した状態で該粉末に被着し
ており、成形、焼結時には、ジルコニア粉末同志の結合
剤及び焼結温度を低下させる焼結促進剤として作用して
いる。Fe化合物のジルコニウム化合物含有粉末に対す
る被着量はジルコニウムに対する金属原子比で、好まし
くは0.01〜0.5%であり、0.01未満では被着
効果が少ない。
The present inventors have earnestly studied the technical problem in the method for producing a zirconia sintered body by the low temperature atmospheric pressure sintering method, that is, improving the density of the sintered body. By using the deposited partially stabilized zirconia powder as a raw material, a partially stabilized zirconia sintered body having a relative density of more than 99% with respect to the theoretical density can be easily obtained with good reproducibility even if it is sintered at a relatively low temperature under normal pressure. Based on this finding, the present invention was completed through further research. That is, in the present invention, the Fe compound is applied to the powder containing the zirconium compound-containing powder in the state of being coated, and during the molding and sintering, the binder of the zirconia powder and the sintering promotion that lowers the sintering temperature are promoted. Acting as an agent. The amount of Fe compound deposited on the zirconium compound-containing powder is preferably 0.01 to 0.5% in terms of metal atom ratio to zirconium, and if it is less than 0.01, the deposition effect is small.

【0008】本発明において、高焼結性粉末組成物は、
溶媒可溶性Fe化合物を、ジルコニウム化合物含有粉末
に被着させてなるが、溶媒可溶性Fe化合物として、硝
酸塩、硫酸塩、塩化物等の無機塩類、シュウ酸塩、酢酸
塩、プロピオン酸塩、高級脂肪酸塩等の有機酸塩類、キ
レート化合物類等を例示することができる。高焼結性粉
末組成物の製造は、ジルコニウム化合物含有粉末を前記
Fe化合物を溶解した溶液に添加混合した後、溶媒を除
去、乾燥することによる。Fe化合物を溶解する溶媒と
して、水および/または有機溶媒が使用でき、好ましく
は、有機溶媒、さらに好ましくは、低級アルコール類、
たとえばメタノール、エタノール、プロパノール、ブタ
ノール等が使用される。前記粉末の製造方法において、
溶媒の除去、乾燥は通常、蒸発法を採用する。したがっ
て、溶媒としての水の使用は蒸発エネルギーが大きく、
またFe化合物を溶解させるためにpH調整等を行う必
要があるので、有機溶媒を使用するのが好ましい。有機
溶媒としては、Fe化合物を溶解し得るものであればい
ずれをも使用できるが高沸点のものは溶媒除去が、また
高粘土のものはジルコニウム化合物含有粉末の均一分散
混合が困難となるので好ましくない。ジルコニウム化合
物含有粉末のFe化合物への添加混合は、単純な攪拌操
作でも十分効果を発揮できるが、ミリング等の粉砕・攪
拌操作を採用することにより、より一層、効果を確実に
することが可能である。溶媒の除去、乾燥は前記した如
く、通常、蒸発法を採用するが、噴霧乾燥法等を採用す
れば効率的、かつ効果的に大量の処理を行うことができ
る。
In the present invention, the highly sinterable powder composition is
The solvent-soluble Fe compound is deposited on the zirconium compound-containing powder. As the solvent-soluble Fe compound, nitrates, sulfates, inorganic salts such as chlorides, oxalates, acetates, propionates, and higher fatty acid salts are used. Examples thereof include organic acid salts, chelate compounds and the like. The highly sinterable powder composition is produced by adding the zirconium compound-containing powder to a solution in which the Fe compound is dissolved and mixing, then removing the solvent and drying. As a solvent for dissolving the Fe compound, water and / or an organic solvent can be used, preferably an organic solvent, more preferably a lower alcohol,
For example, methanol, ethanol, propanol, butanol, etc. are used. In the method for producing the powder,
The solvent is removed and dried by the evaporation method. Therefore, the use of water as a solvent has large evaporation energy,
Further, it is preferable to use an organic solvent because it is necessary to adjust the pH and the like in order to dissolve the Fe compound. As the organic solvent, any one can be used as long as it can dissolve the Fe compound, but a solvent having a high boiling point is preferable, and a solvent having a high clay is preferable because it is difficult to uniformly disperse and mix the zirconium compound-containing powder. Absent. The addition and mixing of the zirconium compound-containing powder to the Fe compound can sufficiently exert the effect even by a simple stirring operation, but the effect can be further ensured by adopting a crushing / stirring operation such as milling. is there. As described above, the evaporation method is usually employed for the removal and drying of the solvent. However, if the spray drying method or the like is employed, a large amount of treatment can be performed efficiently and effectively.

【0009】前記方法で製造した粉末組成物は、ジルコ
ニア焼結体の製造の原料として、そのまま使用すること
ができるが、400〜1200℃の温度で一端仮焼して
使用するのが好ましい。また、ジルコニア焼結体は、前
記した粉末組成物を成形、焼結することにより製造す
る。成形は、通常の金型成形で十分であるが、低圧によ
る金型成形後、静水圧加圧を行った方が、最終焼結体の
焼結体密度、機械的強度等の諸性能向上のためにより好
ましい。焼結は、常法であればいずれの方法をも採用で
きるが、空気雰囲気中での常圧焼結法を採用することで
十分に目的を達成することができる。
The powder composition produced by the above method can be used as it is as a raw material for producing a zirconia sintered body, but it is preferable to use it once calcined at a temperature of 400 to 1200 ° C. The zirconia sintered body is manufactured by molding and sintering the above powder composition. Normal molding is sufficient for molding, but it is better to apply hydrostatic pressure after molding with low pressure to improve various properties such as sintered body density and mechanical strength of the final sintered body. Therefore, it is more preferable. As for the sintering, any method can be adopted as long as it is a conventional method, but the purpose can be sufficiently achieved by adopting the atmospheric pressure sintering method in an air atmosphere.

【0010】[0010]

【実施例】以下に、実施例を挙げて、本発明をさらに詳
細に説明する。ただし、本発明の範囲は、下記実施例に
より何等限定されるものではない。 実施例1および比較例1 粉末組成物の調整: 酸化物モル換算:Y2 3 /(Y2 3 +ZrO2 )=
0.03のZrOCl2 およびYCl3 の混合水溶液
に、アンモニア水を添加して得られた混合水酸化物の沈
澱を濾取乾燥し、乾燥前駆体粉末を得た。該乾燥前駆体
粉末の一部を800℃の温度で1時間焼成し、部分安定
化ジルコニア粉末を得た。Fe化合物として、Fe(N
3 3 ・9H2Oをエタノールに溶解し、Fe化合物
溶液を調整した。上記調整したFe化合物溶液に、前記
製造した乾燥前駆体粉末もしくは部分安定化ジルコニア
粉末を添加混合したのち、エタノールを蒸発させて乾燥
し、Zrに対するFeの原子比率が0.05%、0.1
%、0.2%、0.3%に相当するFe化合物の被着し
た前駆体粉末および部分安定化ジルコニア粉末を得た。
得られたFe化合物の被着した前駆体粉末は、さらに8
00℃の温度で1時間仮焼し、前記Fe化合物の被着し
た部分安定化ジルコニアと共に、ジルコニア焼結体製造
用原料粉末組成物とした。
EXAMPLES The present invention will be described in more detail below with reference to examples. However, the scope of the present invention is not limited to the following examples. Example 1 and Comparative Example 1 Preparation of powder composition: oxide mole conversion: Y 2 O 3 / (Y 2 O 3 + ZrO 2 ) =
Ammonia water was added to a mixed aqueous solution of ZrOCl 2 and YCl 3 of 0.03, and the precipitate of the mixed hydroxide obtained was filtered and dried to obtain a dry precursor powder. A part of the dried precursor powder was calcined at a temperature of 800 ° C. for 1 hour to obtain a partially stabilized zirconia powder. As a Fe compound, Fe (N
O 3) 3 · 9H the 2 O was dissolved in ethanol and adjusted Fe compound solution. To the adjusted Fe compound solution, the dry precursor powder or the partially stabilized zirconia powder produced above was added and mixed, and then ethanol was evaporated to dryness, and the atomic ratio of Fe to Zr was 0.05%, 0.1%.
%, 0.2%, 0.3% Fe compound-deposited precursor powder and partially stabilized zirconia powder were obtained.
The obtained Fe compound-deposited precursor powder has an additional 8
It was calcined at a temperature of 00 ° C. for 1 hour to obtain a raw material powder composition for producing a zirconia sintered body together with the partially stabilized zirconia coated with the Fe compound.

【0011】ジルコニア焼結体の製造:各粉末を、20
0kg/cm2の圧力で金型成形した後、2t/cm2 の圧力で
静水圧加圧を行い、成形体を得た。得られた成形体を大
気中において1200℃および1300℃の温度で3時
間焼結し、部分安定化ジルコニア焼結体を得た。また、
比較として、前記調整した乾燥前駆体粉末および乾燥前
駆体粉末製造時にFe化合物を添加し、同時に共沈させ
て得た沈澱物を乾燥した粉末(共沈粉末という。)を使
用し、上記と同様の条件で成形、焼結し部分安定化ジル
コニア焼結体を得た。得られた部分安定化ジルコニア焼
結体の密度および理論密度:6.1g/cm3に対する相
対密度および一部についてJIS R−1601−19
81に基づいて実施した3点曲げ試験の結果の5点の平
均値を表1中に示す。表1中において、原料粉末の項の
A、Bは下記を表す。 A:部分安定化ジルコニア粉末にFe化合物を被着させ
た粉末 B:共沈粉末(比較例) C:Fe化合物の被着していない乾燥前前駆体粉末(比
較例)
Production of zirconia sintered body: 20% of each powder
After mold molding at a pressure of 0 kg / cm 2 , hydrostatic pressure was applied at a pressure of 2 t / cm 2 to obtain a molded body. The obtained molded body was sintered in the atmosphere at a temperature of 1200 ° C. and 1300 ° C. for 3 hours to obtain a partially stabilized zirconia sintered body. Also,
For comparison, the dried precursor powder prepared above and the Fe compound added during the production of the dried precursor powder and the precipitate obtained by co-precipitation at the same time were used as dry powder (coprecipitated powder), and the same as above. By molding and sintering under the conditions described above, a partially stabilized zirconia sintered body was obtained. Density and theoretical density of the obtained partially stabilized zirconia sintered body: relative density to 6.1 g / cm 3 and a part thereof JIS R-1601-19
Table 1 shows the average value of 5 points as a result of the 3-point bending test carried out based on 81. In Table 1, A and B in the item of raw material powder represent the following. A: Powder obtained by depositing Fe compound on partially stabilized zirconia powder B: Coprecipitated powder (Comparative example) C: Pre-dried precursor powder without depositing Fe compound (Comparative example)

【0012】[0012]

【表1】 [Table 1]

【0013】実施例2および比較例2 実施例1のYCl3 に代えてCaCl2 を酸化物モル換
算:CaO/(CaO+ZrO2 )=0.12に相当す
る量含有するZrOCl2 とCaCl2の混合水溶液に
アンモニア水を添加して得られた沈澱を濾取し、乾燥し
た後、800℃の温度で1時間仮焼し完全安定化ジルコ
ニア粉末を得た。得られた完全安定化ジルコニア粉末を
実施例1で調整したFe化合物溶液に添加混合し、溶媒
を蒸発・乾燥して、Zrに対するFeの原子比率が0.
3%に相当するFe化合物の被着した粉末組成物を得
た。得られた粉末組成物を実施例1と同一の条件で成形
した成形体を1300℃および1450℃の温度で焼結
し、完全安定化ジルコニア焼結体を得た。また、比較と
して、Fe化合物を被着してない完全安定化ジルコニア
粉末を使用して上記と同一の条件で成形・焼結し、完全
安定化ジルコニア焼結体を得た。得られた完全安定化ジ
ルコニア焼結体の密度を測定し、理論密度:5.68g
/cm3 に対する相対密度を求めた。結果を表2に示す。
[0013] The CaCl 2 instead of YCl 3 of Example 2 and Comparative Example 2 Example 1 oxide molar basis: mixing of ZrOCl 2 and CaCl 2 containing an amount equivalent to CaO / (CaO + ZrO 2) = 0.12 A precipitate obtained by adding aqueous ammonia to the aqueous solution was collected by filtration, dried and then calcined at a temperature of 800 ° C. for 1 hour to obtain a completely stabilized zirconia powder. The completely stabilized zirconia powder obtained was added to and mixed with the Fe compound solution prepared in Example 1, the solvent was evaporated and dried, and the atomic ratio of Fe to Zr was 0.1.
A powder composition with a Fe compound equivalent to 3% was obtained. The powder composition thus obtained was molded under the same conditions as in Example 1 and sintered at a temperature of 1300 ° C and 1450 ° C to obtain a completely stabilized zirconia sintered body. As a comparison, a completely stabilized zirconia sintered body was obtained by molding and sintering the completely stabilized zirconia powder not coated with the Fe compound under the same conditions as above. The density of the obtained completely stabilized zirconia sintered body was measured, and the theoretical density was 5.68 g.
The relative density to / cm 3 was determined. The results are shown in Table 2.

【0014】[0014]

【表2】 [Table 2]

【0015】実施例3および比較例3 実施例1と同様に処理して、ZrOCl2 とMgCl2
の混合水溶液から、酸化物モル換算MgO/(MgO+
ZrO2 )=0.081のMgOを含有するジルコニア
粉末を製造し、さらに実施例1と同様に処理してZrに
対するFeの原子比率が0.3のFe化合物の被着した
粉末組成物を得た。得られた粉末組成物を使用し、実施
例1と同一の条件で成形した成形体を1300℃の温度
で焼結しジルコニア焼結体を得た。また、比較としてF
e化合物を被着していないMgOを含有するジルコニア
粉末を使用して上記と同一の条件で成形、焼結しジルコ
ニア焼結体を得た。得られたジルコニア焼結体の密度お
よび理論密度:5.80g/cm3 に対する相対密度を表
3に示す。
Example 3 and Comparative Example 3 The same treatment as in Example 1 was conducted to obtain ZrOCl 2 and MgCl 2.
From the mixed aqueous solution of MgO / (MgO +
ZrO 2 ) = 0.081 MgO-containing zirconia powder was prepared and treated in the same manner as in Example 1 to obtain a powder composition coated with a Fe compound having an atomic ratio of Fe to Zr of 0.3. It was Using the obtained powder composition, a compact molded under the same conditions as in Example 1 was sintered at a temperature of 1300 ° C. to obtain a zirconia sintered compact. For comparison, F
Using a zirconia powder containing MgO not coated with the e compound, the zirconia powder was molded and sintered under the same conditions as above to obtain a zirconia sintered body. Table 3 shows the density and the relative density of the obtained zirconia sintered body to the theoretical density: 5.80 g / cm 3 .

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【発明の効果】本発明の粉末組成物を原料として使用し
たジルコニア焼結体は、前記実施例および比較例に示す
こどく、常圧焼結法を採用したに拘らず、Feを被着し
ていない原料粉末およびFe化合物を共沈させて固溶さ
せた原料粉末を使用して製造したジルコニア焼結体(比
較例)と比較して、高い密度、相対密度を有し、かつ、
優れた曲げ強度を有する。すなわち、本発明で得られる
高焼結性粉末組成物は、相対密度が99%以上とほぼ理
論密度に近いジルコニア焼結体を低温の常圧焼結法で製
造することが可能であり、さらに低温焼結が可能である
ので、グレイン径が0.1〜0.2μm でかつ、正方晶
100%のジルコニア焼結体を製造することも可能であ
る。したがって、強度の安定な、かつ、機械的、熱的応
力下における長期的耐久性等の期待できるジルコニア焼
結体の製造が可能である。また、本発明で得られる高焼
結性粉末組成物は、常圧焼結法を採用することができる
ため従来採用されてきたホットプレス法、HIP法と比
較して低コストでジルコニア焼結体を製造することがで
きる。本発明は、常圧焼結法で高密度のジルコニア焼結
体の製造を可能とする高焼結性粉末組成物およびその製
造方法を提供するものであり、その産業的意義は極めて
大きい。
The zirconia sintered body using the powder composition of the present invention as a raw material is coated with Fe regardless of whether the normal pressure sintering method is used as shown in the above Examples and Comparative Examples. Which has a high density and a relative density as compared with a zirconia sintered body (Comparative Example) produced by using a raw material powder prepared by coprecipitating a raw material powder and an Fe compound to form a solid solution, and
It has excellent bending strength. That is, the highly sinterable powder composition obtained by the present invention is capable of producing a zirconia sintered body having a relative density of 99% or more, which is close to the theoretical density, by a low temperature atmospheric pressure sintering method. Since low temperature sintering is possible, it is also possible to produce a zirconia sintered body having a grain diameter of 0.1 to 0.2 μm and a tetragonal crystal of 100%. Therefore, it is possible to manufacture a zirconia sintered body having stable strength and expected long-term durability under mechanical and thermal stress. Further, since the highly sinterable powder composition obtained by the present invention can adopt the atmospheric pressure sintering method, the zirconia sintered body can be manufactured at a low cost as compared with the hot pressing method and the HIP method which have been conventionally used. Can be manufactured. The present invention provides a highly sinterable powder composition capable of producing a high-density zirconia sintered body by an atmospheric pressure sintering method and a method for producing the same, and its industrial significance is extremely large.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 部分安定化ジルコニア粉末、完全安定化
ジルコニア粉末および加熱により部分安定化もしくは完
全安定化ジルコニアを生成する前駆体粉末よりなる群か
ら選ばれる少なくとも1種のジルコニウム化合物含有粉
末と、FeのZrに対する原子比で0.01〜0.5%
のFe化合物とからなり、該Fe化合物を前記ジルコニ
ウム化合物含有粉末に被着させてなるジルコニウム化合
物を主成分とする高焼結性粉末組成物。
1. A powder containing at least one zirconium compound selected from the group consisting of a partially stabilized zirconia powder, a fully stabilized zirconia powder, and a precursor powder which produces a partially stabilized or fully stabilized zirconia by heating, and Fe. 0.01 to 0.5% in atomic ratio of Zr to Zr
A highly sinterable powder composition comprising a zirconium compound as a main component, which is obtained by depositing the zirconium compound-containing powder with the Fe compound.
【請求項2】 部分安定化ジルコニア粉末、完全安定化
ジルコニア粉末および加熱により部分安定化もしくは完
全安定化ジルコニアを生成する前駆体粉末よりなる群か
ら選ばれる少なくとも1種のジルコニウム化合物含有粉
末を、水または有機溶剤可溶性Fe化合物を含有する溶
液にFeのZrに対する原子比で0.01〜0.5%添
加混合したのち、溶媒を除去、乾燥することを特徴とす
るジルコニウム化合物を主成分とする高焼結性粉末組成
物の製造方法。
2. A powder containing at least one zirconium compound selected from the group consisting of partially stabilized zirconia powder, fully stabilized zirconia powder and a precursor powder that produces partially stabilized or fully stabilized zirconia by heating, Alternatively, 0.01 to 0.5% by atomic ratio of Fe to Zr is added to and mixed with a solution containing an organic solvent-soluble Fe compound, and then the solvent is removed, followed by drying. A method for producing a sinterable powder composition.
JP31A 1984-05-11 1991-04-16 High sinterable powdery composition mainly containing zirconium compound and its production thereof Pending JPH06211570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31A JPH06211570A (en) 1984-05-11 1991-04-16 High sinterable powdery composition mainly containing zirconium compound and its production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31A JPH06211570A (en) 1984-05-11 1991-04-16 High sinterable powdery composition mainly containing zirconium compound and its production thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59094255A Division JPS60239356A (en) 1984-05-11 1984-05-11 Highly sinterable powder composition containing zirconium asmajor component, manufacture and manufacture of zirconia sintered body

Publications (1)

Publication Number Publication Date
JPH06211570A true JPH06211570A (en) 1994-08-02

Family

ID=14516674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31A Pending JPH06211570A (en) 1984-05-11 1991-04-16 High sinterable powdery composition mainly containing zirconium compound and its production thereof

Country Status (1)

Country Link
JP (1) JPH06211570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013116712A1 (en) * 2012-02-01 2013-08-08 Carelton Life Support Systems, Inc. Composite electrolyte consisting of fully stabilized zirconia and partially stabilized zirconia

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MATERIALS SCIENCE=1982 *
THE AMERICAN CERAMIC SOCIETY BULLETIN=1957 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013116712A1 (en) * 2012-02-01 2013-08-08 Carelton Life Support Systems, Inc. Composite electrolyte consisting of fully stabilized zirconia and partially stabilized zirconia
JP2015513759A (en) * 2012-02-01 2015-05-14 カールトン・ライフ・サポート・システムズ・インコーポレイテッドCarleton Life Support Systems Incorpporated Composite electrolyte consisting of fully stabilized zirconia and partially stabilized zirconia

Similar Documents

Publication Publication Date Title
US4520114A (en) Production of metastable tetragonal zirconia
US4772576A (en) High density alumina zirconia ceramics and a process for production thereof
IE911616A1 (en) Composition for ceramics and processes for obtaining it
WO1994012446A1 (en) Air-sinterable lanthanum chromite and process for its preparation
JPS5978928A (en) Manufacture of zirconia powder
JPS62168544A (en) Zirconia carrier and its preparation
JP3190060B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JP2631243B2 (en) Heat-resistant conductive ceramics and manufacturing method thereof
JPH06211570A (en) High sinterable powdery composition mainly containing zirconium compound and its production thereof
JPS63236713A (en) Production of inorganic fine powder of perovskite-type compound
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JP3355655B2 (en) Method for producing hydrated zirconia gel and zirconia powder
JPH0228536B2 (en)
JPH021112B2 (en)
JP2968608B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JPH0577630B2 (en)
JP2616772B2 (en) Method for producing proton conductive ceramics
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JP3012021B2 (en) Phosphoric acid-based sintered body and method for producing the same
JPH0420851B2 (en)
JPH01230432A (en) Production of lithium zirconate powder
JPS6291419A (en) Production of easy-to-sinter composite powder of alumina and zirconia
JP2607517B2 (en) Method for producing zirconia ceramics
JPS6221750A (en) Manufacture of ceramic sintered body
KR100234003B1 (en) Stabilized zirconia sintered body

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19950328