JPH06207903A - Measuring apparatus for concentration of gas - Google Patents

Measuring apparatus for concentration of gas

Info

Publication number
JPH06207903A
JPH06207903A JP1929293A JP1929293A JPH06207903A JP H06207903 A JPH06207903 A JP H06207903A JP 1929293 A JP1929293 A JP 1929293A JP 1929293 A JP1929293 A JP 1929293A JP H06207903 A JPH06207903 A JP H06207903A
Authority
JP
Japan
Prior art keywords
container
gas
temperature
measuring
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1929293A
Other languages
Japanese (ja)
Inventor
Isao Hishikari
功 菱刈
Katsuyuki Miyauchi
克之 宮内
Kosei Aikawa
孝生 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP1929293A priority Critical patent/JPH06207903A/en
Publication of JPH06207903A publication Critical patent/JPH06207903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a gas concentration measuring apparatus which can measure the concentration of a gas stably. CONSTITUTION:A gas is introduced into a container 1, which is heated to a predetermined temperature T1 by a heating body 3. The radiation energy through a window glass 2 is input to a detecting element 6 via a filter 5, whereby a detecting signal V1 is obtained. The detecting element 6 is held by a holding body 7. A measuring means 9 makes corrections based on the detecting signal V1 with using a temperature T2 of the holding body 7 itself which is detected by a temperature sensor 8. Accordingly, an output Eo corresponding to the concentration of the gas is obtained. True temperature of a heater 3 by the heating body 3 is controlled to be constant by a temperature sensor 30 and a controlling means 4. The output T1 is utilized for corrections by the measuring means upon necessities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光学的に炭酸ガス
(二酸化炭素、CO2 )等のガス濃度を測定するガス
濃度測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas concentration measuring device for optically measuring the concentration of carbon dioxide gas (carbon dioxide, CO2) or the like.

【0002】[0002]

【従来の技術】従来、CO2 等のガス濃度を測定する
場合、光源からの光を測定対象に投光し、その吸収から
ガス濃度を測定していた。また、測定ガスに関する測定
波長と基準波長との2色を利用して測定する方法もあ
る。
2. Description of the Related Art Conventionally, when measuring the gas concentration of CO2 or the like, light from a light source is projected onto a measurement object and the gas concentration is measured from its absorption. There is also a method of measuring using two colors of a measurement wavelength related to the measurement gas and a reference wavelength.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前者で
は、光源を使用するため、その電源変動、光路の汚れ等
による影響を受けやすく誤差を発生する問題点があっ
た。また、後者では、2色のためフィルタ、素子等を多
く必要となり、構造が複雑となる問題点があった。
However, in the former case, since the light source is used, there is a problem that it is easily affected by fluctuations in the power source, dirt on the optical path, etc., and an error occurs. In the latter case, since there are two colors, a large number of filters, elements, etc. are required, and the structure becomes complicated.

【0004】この発明の目的は、以上の点に鑑み、安定
的にガス濃度を測定することができるガス濃度測定装置
を提供することである。
In view of the above points, an object of the present invention is to provide a gas concentration measuring device capable of stably measuring the gas concentration.

【0005】[0005]

【課題を解決するための手段】この発明は、測定ガスが
供給され加熱体で所定温度に加熱される容器と、この容
器内からの放射エネルギーを検出する検出手段と、この
検出手段の温度を検出する温度センサと、前記検出手段
の出力を温度センサの出力で補正してガス濃度を測定す
る測定手段とを備えるようにしたガス濃度測定装置であ
り、また、前記容器は、上方に行くに従って狭くなる傾
斜状とされたことを特徴とするようにしたものである。
SUMMARY OF THE INVENTION According to the present invention, a container to which a measurement gas is supplied and heated to a predetermined temperature by a heating body, a detecting unit for detecting radiant energy from the container, and a temperature of the detecting unit are provided. A gas concentration measuring device equipped with a temperature sensor for detecting, and a measuring means for measuring the gas concentration by correcting the output of the detecting means with the output of the temperature sensor, and the container becomes higher as it goes upward. It is characterized by having a narrowed slope.

【0006】[0006]

【実施例】図1は、この発明の一実施例を示す構成説明
図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a structural explanatory view showing an embodiment of the present invention.

【0007】図において、1は、測定ガスAが導入口1
1から導入、供給され、排出口12から排出される容器
(測定セル)で、下部に窓2を有している。容器1は、
アルミニウムAl等で内面の反射率を高めてあり、その
外周には、加熱体(ヒータ)3が設けられ、温度センサ
30でその温度T1が測定され、制御手段4で図示しな
い電源から電力を供給し、所定温度となるよう制御され
る。そして、容器1は、外側が断熱材10で断熱されて
いる。
In the figure, reference numeral 1 indicates an inlet 1 for the measuring gas A.
A container (measurement cell) that is introduced and supplied from 1 and discharged from the discharge port 12, and has a window 2 at the bottom. Container 1
The reflectance of the inner surface is increased with aluminum Al or the like, and a heater (heater) 3 is provided on the outer periphery thereof, the temperature T1 is measured by a temperature sensor 30, and power is supplied from a power source (not shown) by the control means 4. Then, the temperature is controlled to reach a predetermined temperature. The outside of the container 1 is insulated by the heat insulating material 10.

【0008】窓ガラス2の近くには、前面に測定ガス
(たとえばCO2 )に相当する透過波長をもつフィル
タ5を有し検出素子7を保持する熱伝導が良好な金属ブ
ロック等よりなる保持体7が設けられこれら検出素子6
等で検出手段を構成し、容器1の内部からの放射エネル
ギーがフィルタ5を介し検出素子6に入射する。この検
出素子6または保持体7の温度T2は温度センサ8で検
出され検出素子6の出力V1とともに測定手段9に供給
され補正演算がなされガス濃度の測定が行われる。な
お、検出素子6が焦電素子等の場合は、フィルタ5と窓
2との間に光を断続するためのモータMで回転するチョ
ッパ13を設けるようにすればよい。
Near the window glass 2, there is provided on the front surface a filter 5 having a transmission wavelength corresponding to the measurement gas (for example, CO 2), and a holder 7 made of a metal block or the like having a good heat conduction for holding the detection element 7. Is provided with these detection elements 6
The radiant energy from the inside of the container 1 is incident on the detection element 6 through the filter 5 and the like. The temperature T2 of the detecting element 6 or the holder 7 is detected by the temperature sensor 8 and is supplied to the measuring means 9 together with the output V1 of the detecting element 6, and the correction calculation is performed to measure the gas concentration. When the detection element 6 is a pyroelectric element or the like, a chopper 13 rotated by the motor M for interrupting light may be provided between the filter 5 and the window 2.

【0009】また、必要に応じ、温度センサ3の出力T
1を直接または制御手段4を介し測定手段9に供給し、
用いるようにしてもよい。
If necessary, the output T of the temperature sensor 3
1 to the measuring means 9 directly or via the control means 4,
You may use it.

【0010】つまり、容器1からの放射エネルギーを受
光する検出素子6の出力V1は、容器1の内部からの放
射エネルギーLoと、検出素子6等の温度T2に関連す
る検出素子6等を含んで保持する保持体7から輻射され
る放射エネルギーL2との差に対応し、概略下式とな
る。
That is, the output V1 of the detection element 6 which receives the radiant energy from the container 1 includes the radiant energy Lo from the inside of the container 1 and the detection element 6 related to the temperature T2 of the detection element 6 and the like. Corresponding to the difference with the radiant energy L2 radiated from the holding body 7 to be held, the following formula is approximately obtained.

【0011】 V1=k・(Lo−L2) (1) ここでkは定数で、検出素子6の温度T2が変動すれ
ば、L2も変動するので補償する必要がある。
V1 = k · (Lo−L2) (1) Here, k is a constant, and if the temperature T2 of the detection element 6 changes, L2 also changes, and therefore it is necessary to compensate.

【0012】次に容器1の内部からの放射エネルギーL
oは測定ガスの濃度Cの関数である放射率を含む放射エ
ネルギーLg(c)と容器1内の壁からの温度T1に相
当する放射エネルギーL1との和に相当し、温度T1が
一定であればL1は一定で既知となり、次式が成り立
つ。
Next, the radiant energy L from the inside of the container 1
o corresponds to the sum of the radiant energy Lg (c) including the emissivity that is a function of the concentration C of the measurement gas and the radiant energy L1 corresponding to the temperature T1 from the wall inside the container 1, and the temperature T1 may be constant. For example, L1 is constant and known, and the following equation holds.

【0013】 Lo=Lg(c)+L1 (2) (2)式を(1)式へ代入すると次式が得られる。Lo = Lg (c) + L1 (2) Substituting the expression (2) into the expression (1), the following expression is obtained.

【0014】 V1=k・(Lg(c)+L1−L2) (3) ここで検出素子6等の温度T2を温度センサ8で測定し
て測定手段9で放射エネルギーL2に相当する信号V2
(k・L2に相当)に換算して加算することにより検出
素子6を保持する保持体7等の温度変動を除去した出力
Eoが次式より得られる。
V1 = k · (Lg (c) + L1-L2) (3) Here, the temperature T2 of the detection element 6 or the like is measured by the temperature sensor 8, and the signal V2 corresponding to the radiant energy L2 is measured by the measuring means 9.
(Equivalent to k · L2) is converted and added to obtain the output Eo from which the temperature fluctuation of the holding body 7 or the like holding the detection element 6 is removed.

【0015】 Eo=V1+V2 =k・(Lg(c)+L1−L2)+kL2 =k・(Lg(c)+L1) (4) この(4)式でL1は、温度T1が一定であれば所定値
であり、また、測定で求まるので、この出力Eoからガ
ス濃度Cが求まる。このようにして、検出素子6の出力
V1に対し、その温度T2で補正することにより、容器
1内のガス濃度が求まる。
Eo = V1 + V2 = k. (Lg (c) + L1-L2) + kL2 = k. (Lg (c) + L1) (4) In this equation (4), L1 is a predetermined value if the temperature T1 is constant. Further, since it can be obtained by measurement, the gas concentration C can be obtained from this output Eo. In this way, the gas concentration in the container 1 can be obtained by correcting the output V1 of the detection element 6 with the temperature T2 thereof.

【0016】また、容器1の上部または容器1全体は、
上方に行くに従って狭くなる傾斜状の構造とされている
ので、ガスが円滑に上方に抜けることができガス置換性
がよく、応答性が高まり、また、図において点線で光路
例を示すように、容器1内で十分な多重反射がくり返さ
れるので光路長が長くなり、小型であっても十分な感度
が得られる。
The upper part of the container 1 or the entire container 1 is
Since it has an inclined structure that narrows as it goes upward, the gas can smoothly escape upward, the gas replacement property is good, the response is enhanced, and as shown in the figure by the dotted line optical path, Since sufficient multiple reflection is repeated in the container 1, the optical path length becomes long, and sufficient sensitivity can be obtained even with a small size.

【0017】この(4)式の示すように、測定手段9で
検出素子6の容器1内からの放射エネルギーの検出出力
V1に対し、温度センサ30、8の出力T1、T2で補
正するようにすることで高精度にガス濃度を測定するこ
とができる。
As shown in the equation (4), the detection output V1 of the radiant energy from the inside of the container 1 of the detection element 6 by the measuring means 9 is corrected by the outputs T1 and T2 of the temperature sensors 30 and 8. By doing so, the gas concentration can be measured with high accuracy.

【0018】また、測定ガスがない状態での検出素子6
の出力は次式となり、 V1=k・L1 (5) この出力V1に対し温度センサ30の温度T1に対応す
る出力L1を減算すればV1=0となり、校正もでき
る。次いで測定ガスを導入して測定すればよい。なお、
検出素子6を保持する保持体7の部分の温度T2を一定
となるように制御する等して一定温度としておいても同
等の効果が得られる。
Further, the detection element 6 in the absence of measuring gas
V1 = k · L1 (5) If the output L1 corresponding to the temperature T1 of the temperature sensor 30 is subtracted from this output V1, then V1 = 0 and calibration is possible. Then, a measurement gas may be introduced and measurement may be performed. In addition,
Even if the temperature T2 of the portion of the holder 7 holding the detection element 6 is controlled to be constant and the temperature is kept constant, the same effect can be obtained.

【0019】[0019]

【発明の効果】以上述べたように、この発明は、検出素
子を保持する保持体自体の温度を温度センサで検出して
補正するようにしているので、周囲の温度が変動しても
安定的に測定することができる。また、容器の温度を測
定して補正演算をすることにより、加熱体の温度変動に
対応できる。また、容器の形状を上方で狭くすることに
より、ガス置換性が良好で、応答が速く、また、容器内
で十分な多重反射がくり返されるので光路長が長くな
り、小型で十分な性能が得られる。
As described above, according to the present invention, the temperature of the holder itself that holds the detecting element is detected and corrected by the temperature sensor, so that it is stable even if the ambient temperature changes. Can be measured. Further, by measuring the temperature of the container and performing the correction calculation, it is possible to cope with the temperature fluctuation of the heating element. Further, by narrowing the shape of the container upward, the gas replacement property is good, the response is fast, and the sufficient multiple reflection is repeated in the container, so that the optical path length is long, and the small size provides sufficient performance. can get.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す構成説明図である。FIG. 1 is a structural explanatory view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 容器 2 窓 3 加熱体 30、8 加熱体 4 制御装置 5 フィルタ 6 検出素子 7 保持体 9 測定手段 10 断熱材 11 導入口 12 排出口 13 チョッパ DESCRIPTION OF SYMBOLS 1 Container 2 Window 3 Heating body 30, 8 Heating body 4 Control device 5 Filter 6 Detecting element 7 Holding body 9 Measuring means 10 Insulating material 11 Inlet port 12 Discharge port 13 Chopper

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】測定ガスが供給され加熱体で所定温度に加
熱される容器と、この容器内からの放射エネルギーを検
出する検出手段と、この検出手段の温度を検出する温度
センサと、前記検出手段の出力を温度センサの出力で補
正してガス濃度を測定する測定手段とを備えたことを特
徴とするガス濃度測定装置。
1. A container to which a measuring gas is supplied and which is heated to a predetermined temperature by a heating body, a detecting means for detecting radiant energy from the inside of the container, a temperature sensor for detecting the temperature of the detecting means, and the detecting means. A gas concentration measuring device, comprising: a measuring unit that corrects an output of the unit with an output of a temperature sensor to measure a gas concentration.
【請求項2】測定ガスが供給され加熱体で所定温度に加
熱される容器と、この容器内からの放射エネルギーを検
出する検出手段と、この検出手段の出力からガス濃度を
測定する測定手段とを備え、前記容器は、容器全体また
は容器の上部が上方に行くに従って狭くなる傾斜状とさ
れたことを特徴とするガス濃度測定装置。
2. A container to which a measuring gas is supplied and heated to a predetermined temperature by a heating body, a detecting means for detecting radiant energy from the inside of the container, and a measuring means for measuring a gas concentration from an output of the detecting means. The gas concentration measuring device according to claim 1, wherein the container has an inclined shape in which an entire container or an upper portion of the container becomes narrower as it goes upward.
JP1929293A 1993-01-11 1993-01-11 Measuring apparatus for concentration of gas Pending JPH06207903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1929293A JPH06207903A (en) 1993-01-11 1993-01-11 Measuring apparatus for concentration of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1929293A JPH06207903A (en) 1993-01-11 1993-01-11 Measuring apparatus for concentration of gas

Publications (1)

Publication Number Publication Date
JPH06207903A true JPH06207903A (en) 1994-07-26

Family

ID=11995364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1929293A Pending JPH06207903A (en) 1993-01-11 1993-01-11 Measuring apparatus for concentration of gas

Country Status (1)

Country Link
JP (1) JPH06207903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507507A (en) * 2011-11-09 2012-06-20 北京航天益来电子科技有限公司 Device and method for detecting concentration of gas to be detected through temperature correction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507507A (en) * 2011-11-09 2012-06-20 北京航天益来电子科技有限公司 Device and method for detecting concentration of gas to be detected through temperature correction

Similar Documents

Publication Publication Date Title
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
KR100395460B1 (en) Ndir instrument
KR100655250B1 (en) Temperature measuring system
JPH08304282A (en) Gas analyzer
IE72191B1 (en) Method and device for calibrating an optical pyrometer and corresponding calibration wafers
JP2604754B2 (en) Spectrophotometer
EP0834732A2 (en) Gas analyzer
US6786634B2 (en) Temperature measuring method and apparatus
JP4641410B2 (en) Optical path length setting support device and concentration measurement system
JPH06207903A (en) Measuring apparatus for concentration of gas
JPH06222003A (en) Gas concentration measuring equipment
JPH0222687Y2 (en)
JPS63286729A (en) Thermopile detector
US4283934A (en) Pyrometric temperature measurements in flameless atomic absorption spectroscopy
JPH06129911A (en) Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace
JP2003177093A (en) Infrared analysis apparatus
Pohl et al. Absolute calibration of the spectral responsivity of thermal detectors in the near-infrared (NIR) and mid-infrared (MIR) regions by using blackbody radiation
JPS61175534A (en) Emissivity measuring apparatus
JPH02196933A (en) Infrared-ray detection device
JPS58135940A (en) Hydrocarbon gas concentration measuring apparatus
JPH04212003A (en) Infrared thickness gauge
JPS643067Y2 (en)
JPH06308028A (en) Light measuring apparatus and ozone water concentration meter
JPH05164620A (en) Optical measuring apparatus
JPH09171891A (en) Microwave oven