JPH0620681A - Metal-hydrogen alkaline battery - Google Patents

Metal-hydrogen alkaline battery

Info

Publication number
JPH0620681A
JPH0620681A JP4173307A JP17330792A JPH0620681A JP H0620681 A JPH0620681 A JP H0620681A JP 4173307 A JP4173307 A JP 4173307A JP 17330792 A JP17330792 A JP 17330792A JP H0620681 A JPH0620681 A JP H0620681A
Authority
JP
Japan
Prior art keywords
battery
electrode
negative electrode
internal pressure
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4173307A
Other languages
Japanese (ja)
Inventor
Masao Takee
正夫 武江
Fusago Mizutaki
房吾 水瀧
Mamoru Kimoto
衛 木本
Koji Nishio
晃治 西尾
Sanehiro Furukawa
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4173307A priority Critical patent/JPH0620681A/en
Publication of JPH0620681A publication Critical patent/JPH0620681A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress a rise of battery internal pressure after the lapse of a cycle by containing a gas consuming catalyst having water repellency in a negative electrode and/or a positive electrode. CONSTITUTION:A metal'-hydrogen alkaline battery having a positive electrode 1, a separator 3 impregnated with alkali electrolyte, and a negative electrode 3 mainly containing a hydrogen storage alloy, the negative electrode 2 and/or the positive electrode 1 have a powdery gas consuming catalyst having water repellency. The water repellency makes oxygen gas and hydrogen gas easy to be present on the electrode surface, and prevents the catalyst from being covered with the electrolyte or the formed water, and catalytic performance can be kept. Thus, the reactions on each electrode and the catalyst can be smoothly processed to improve the gas consuming ability, and a rise of battery internal pressure can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−水素電池に
関し、詳しくはその電極の改良に関する。
FIELD OF THE INVENTION This invention relates to nickel-hydrogen batteries and more particularly to improvements in their electrodes.

【0002】[0002]

【従来の技術】近年、水素を可逆的に吸蔵、放出するこ
とができる水素吸蔵合金の開発が盛んに行われており、
この水素吸蔵合金を用いたニッケル−水素蓄電池につい
ての研究も行われている。そして、このニッケル−水素
蓄電池は、従来から良く用いられる鉛電池、及びニッケ
ル−カドミウム電池に比べて、軽量化を図ることがで
き、しかも高容量化を達成することが可能となるといっ
た利点を奏するので有望である。
2. Description of the Related Art In recent years, a hydrogen storage alloy capable of reversibly storing and releasing hydrogen has been actively developed.
Studies on nickel-hydrogen storage batteries using this hydrogen storage alloy have also been conducted. Further, this nickel-hydrogen storage battery has an advantage that it can be made lighter in weight and higher in capacity than a lead battery and a nickel-cadmium battery that have been often used conventionally. So promising.

【0003】ところで、上記ニッケル−水素蓄電池で
は、過充電時に正極からは酸素ガスが、また負極からは
水素ガスが発生し、電池内部圧力が上昇する。このよう
な電池内部圧力の上昇は、電池外装缶の変形や破裂を引
き起こしたり、また電池内圧力が異常上昇したときに働
く安全弁が作動した場合に、電池内のガスと一緒に強ア
ルカリである電解液が放出され、電池を設置した周辺機
器を腐食させてしまうという等の問題を生じる。
By the way, in the above nickel-hydrogen storage battery, oxygen gas is generated from the positive electrode and hydrogen gas is generated from the negative electrode during overcharge, and the internal pressure of the battery rises. Such a rise in battery internal pressure causes deformation or rupture of the battery outer can, and when the safety valve that works when the battery internal pressure rises abnormally, it is a strong alkali along with the gas inside the battery. The electrolytic solution is discharged, which causes a problem such as corrosion of peripheral devices in which the battery is installed.

【0004】このような、電池内部圧力の上昇を抑える
ために、従来では、水素と酸素との反応に対した触媒能
を有する金属を電極表面、または電極内部に添加した
り、負極表面に撥水性高分子を設けたりすることによ
り、電極から発生したガス吸収を向上させる方法が用い
られている。
In order to suppress such an increase in the internal pressure of the battery, conventionally, a metal having a catalytic ability for the reaction of hydrogen and oxygen is added to the electrode surface or the inside of the electrode, or the surface of the negative electrode is repelled. A method of improving absorption of gas generated from the electrode by providing an aqueous polymer is used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記方
法では、以下のような問題が生じた。即ち、撥水性高分
子のみを設けた場合は、ガス消費はある程度上昇する
が、ガス消費能力が充分でないこと、及び、負極に設け
るということに起因して、ガス消費能力が低下するとい
う問題があった。
However, the above method has the following problems. That is, when only the water-repellent polymer is provided, the gas consumption increases to some extent, but there is a problem that the gas consumption capacity is insufficient due to the insufficient gas consumption capacity and the gas consumption capacity being provided in the negative electrode. there were.

【0006】一方、金属触媒のみを設けた場合は、充放
電を繰り返しているうち触媒の表面が電解液によって覆
われてしまい、触媒能が低下するということに起因し
て、サイクル経過後にガス消費能力が低下するという問
題があった。本発明は、上記問題点に鑑み、ガス消費能
力を飛躍的に向上させて、電池内部圧力の上昇を抑制し
うる金属−水素アルカリ電池を提供することを目的とす
る。
On the other hand, when only the metal catalyst is provided, the surface of the catalyst is covered with the electrolytic solution during repeated charging / discharging, and the catalytic ability is lowered. There was a problem of reduced ability. In view of the above problems, it is an object of the present invention to provide a metal-hydrogen alkaline battery capable of dramatically improving gas consumption capacity and suppressing an increase in battery internal pressure.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、正極と、アルカリ電解液を浸透させたセ
パレータと、水素吸蔵合金を主成分とする負極とを有す
る金属−水素アルカリ電池において、前記負極及び/又
は正極が、撥水性を有するガス消費触媒を有することを
特徴とする。
To achieve the above object, the present invention provides a metal-hydrogen alkali having a positive electrode, a separator impregnated with an alkaline electrolyte, and a negative electrode containing a hydrogen storage alloy as a main component. In the battery, the negative electrode and / or the positive electrode includes a gas consuming catalyst having water repellency.

【0008】[0008]

【作用】上記のように構成することにより、以下のよう
な作用が得られる。通常、電池内では、以下の反応式1
〜4に示すようなガス消費反応が起こっている。即ち、
反応式1の水素ガスと酸素ガスとの反応は負極及び/又
は正極に設けた触媒上で、反応式2の酸素ガスと水素吸
蔵合金に吸蔵されている水素との反応、及び反応式3の
反応は負極で、また反応式4の水素ガスの消費反応は正
極でそれぞれ起こっている。
With the above-mentioned structure, the following actions can be obtained. Normally, in the battery, the following reaction formula 1
A gas consumption reaction as shown in ~ 4 occurs. That is,
The reaction between the hydrogen gas and the oxygen gas in the reaction formula 1 is performed by the reaction between the oxygen gas in the reaction formula 2 and the hydrogen stored in the hydrogen storage alloy on the catalyst provided on the negative electrode and / or the positive electrode, and the reaction in the reaction formula 3 The reaction takes place at the negative electrode, and the hydrogen gas consumption reaction of reaction formula 4 takes place at the positive electrode.

【0009】 H2 + 1/2 O2 2 O ・・・(1 触媒上) 1/4 O2 + MH 1/4 H2 O + M ・・・(2 負) 1/2 O2 + H2 O + 2e- 2OH- ・・・(3 負) H2 + 2OH- 2H2 O + 2e- ・・・(4 正) ここで、負極に撥水性を有したガス消費触媒を設けた場
合、その撥水性により、酸素ガス及び水素ガスが電極表
面に存在しやすくなり、特に反応式2、3の反応が、ま
た、触媒能により、特に反応式1、3の反応が円滑に進
行する。
H 2 + 1/2 O 2 H 2 O ... (1 on catalyst) 1/4 O 2 + MH 1/4 H 2 O + M ... (2 negative) 1/2 O 2 + H 2 O + 2e - 2OH - ··· (3 negative) H 2 + 2OH - 2H 2 O + 2e - ··· (4 positive) here, the case of providing the gas consumption catalyst having water repellency to the anode Owing to the water repellency, oxygen gas and hydrogen gas are likely to exist on the electrode surface, and particularly the reactions of the reaction formulas 2 and 3 proceed smoothly, and the catalytic ability allows the reactions of the reaction formulas 1 and 3 to proceed smoothly.

【0010】このように、それぞれの反応が向上し、ガ
ス消費能力は向上することに加えて、このような撥水性
と触媒能が組み合わさることにより、触媒のみを設けた
場合と比べて、触媒が電解液やガス消費反応により生成
した水や電解液によって覆われることを防ぎ、触媒能を
持続することができる。一方、正極に設けた場合、撥水
性により特に反応式4の反応が、また、触媒能により、
特に反応式1、4の反応が円滑に進行し、上記した負極
の場合と同様に、触媒能の持続性が向上する。
Thus, in addition to the improvement of each reaction and the improvement of gas consumption capacity, the combination of such water repellency and catalytic ability makes it possible to provide a catalyst more than a catalyst provided alone. Can be prevented from being covered with the electrolytic solution or water generated by the gas consuming reaction or the electrolytic solution, and the catalytic ability can be maintained. On the other hand, when provided on the positive electrode, the reaction of the reaction formula 4 is particularly caused by water repellency,
In particular, the reactions of the reaction formulas 1 and 4 proceed smoothly, and the sustainability of the catalytic ability is improved as in the case of the above-mentioned negative electrode.

【0011】また、正負両極に設けることにより、両方
の効果が得られるためガス消費能力が向上する。
Further, by providing the positive and negative electrodes, both effects can be obtained, so that the gas consumption capacity is improved.

【0012】[0012]

【実施例】【Example】

〔実施例1〕図1は、本発明の一例に係る円筒密閉型ニ
ッケル−水素アルカリ蓄電池の断面図であり、焼結式ニ
ッケルからなる正極1と、水素吸蔵合金を有する負極2
と、これら正負両極1、2間に介挿されたセパレータ3
とからなる電極群4は、渦巻状に捲回されている。この
電極群4は負極端子兼用の外装缶6内に配置されてお
り、この外装缶6と上部開口には、パッキング7を介し
て封口体8が装着されており、この封口体8の内部に
は、コイルスプリング9が設けられている。このコイル
スプリング9は電池内部の圧力が異常上昇したときに矢
印A方向に押圧されて内部のガスが大気中に放出される
ように構成されている。また、上記封口体8と前記正極
1とは正極用導電タブ10にて接続されている。
[Example 1] Fig. 1 is a cross-sectional view of a cylindrical sealed nickel-hydrogen alkaline storage battery according to an example of the present invention. A positive electrode 1 made of sintered nickel and a negative electrode 2 having a hydrogen storage alloy are shown.
And a separator 3 interposed between the positive and negative electrodes 1 and 2.
The electrode group 4 consisting of and is wound in a spiral shape. The electrode group 4 is arranged in an outer can 6 which also serves as a negative electrode terminal, and a sealing body 8 is attached to the outer can 6 and an upper opening through a packing 7, and the inside of the sealing body 8 is provided. Is provided with a coil spring 9. This coil spring 9 is configured to be pressed in the direction of arrow A when the pressure inside the battery is abnormally increased, and the gas inside is released into the atmosphere. The sealing body 8 and the positive electrode 1 are connected by a positive electrode conductive tab 10.

【0013】ここで、上記構造の円筒形密閉型ニッケル
−水素アルカリ電池を、以下のようにして作製した。先
ず初めに、水素吸蔵合金の原料金属として、市販材料と
してのミッシュメタル(Mm 希土類金属の混合物)、
ニッケル、コバルト、アルミニウム、マンガンが元素比
で1:3.2:1:0.2:0.6になるように秤量し
た後、これらを混合し、更に炉内で溶解、鋳造する。こ
れにより、MmNi3.2 CoAl0.2Mn0.6 という組
成の水素吸蔵合金鋳塊が作製される。次にこの合金鋳塊
を平均粒径40μmに粉砕する。
A cylindrical sealed nickel-hydrogen alkaline battery having the above structure was manufactured as follows. First, as a raw material metal of the hydrogen storage alloy, a commercially available material such as misch metal (mixture of Mm rare earth metal),
After nickel, cobalt, aluminum, and manganese are weighed so that the element ratio is 1: 3.2: 1: 0.2: 0.6, these are mixed and further melted and cast in a furnace. As a result, a hydrogen storage alloy ingot having a composition of MmNi 3.2 CoAl 0.2 Mn 0.6 is produced. Next, this alloy ingot is crushed to an average particle size of 40 μm.

【0014】この後、上記水素吸蔵合金粉末に結着剤と
してPEO(ポリエチレンオキサイド)5重量%を添加
し、これらを均一に混合した後、分散媒としての水を加
えてスラリーを作製する。この後、このスラリーをニッ
ケルメッキを施したパンチングメタル集電体の両面に塗
着した後、乾燥及び加圧を行いベース電極を作製した。
After that, 5% by weight of PEO (polyethylene oxide) as a binder is added to the hydrogen storage alloy powder, and these are uniformly mixed, and then water as a dispersion medium is added to prepare a slurry. After that, this slurry was applied to both surfaces of a nickel-plated punching metal current collector, followed by drying and pressurizing to form a base electrode.

【0015】更に、このベース電極表面に、パラジウム
と撥水性高分子であるPTFEとの混合物をローラを用
いて塗着し負極2を作製した。このようにして作製した
負極2と公知の焼結式ニッケル正極1とを耐アルカリ性
を有するセパレータ3とともに捲回して渦巻状の電極群
4を作製した後、この電極群4を外装缶6内に挿入し
た。この後、外装缶6内に電解液を注入し、更に外装缶
6を封口耐8で封口して、公称容量1000mAhの円
筒密閉型ニッケル−水素電池を作製した。
Further, a mixture of palladium and PTFE, which is a water-repellent polymer, was applied onto the surface of the base electrode by using a roller to prepare a negative electrode 2. The negative electrode 2 thus produced and the known sintered nickel positive electrode 1 are wound together with the separator 3 having alkali resistance to produce a spiral electrode group 4, and then the electrode group 4 is placed in the outer can 6. Inserted. Thereafter, the electrolytic solution was injected into the outer can 6, and the outer can 6 was sealed with a sealing resistance of 8 to produce a cylindrical sealed nickel-hydrogen battery having a nominal capacity of 1000 mAh.

【0016】このように作製した電池を、以下(A1
電池と称する。 〔実施例2〕ベース電極表面ではなく、焼結式ニッケル
正極表面にパラジウムとPTFEとの混合物を塗着する
以外は上記実施例1と同様に電池を作製した。このよう
に作製した電池を、以下(A2 )電池と称する。 〔実施例3〕ベース電極表面、及び、焼結式ニッケル正
極表面にパラジウムとPTFEとの混合物を塗着する以
外は上記実施例1と同様に電池を作製した。
The battery produced in this manner is described below (A 1 )
It is called a battery. Example 2 A battery was manufactured in the same manner as in Example 1 except that the mixture of palladium and PTFE was applied to the surface of the sintered nickel positive electrode, not to the surface of the base electrode. The battery thus manufactured is hereinafter referred to as (A 2 ) battery. [Example 3] A battery was prepared in the same manner as in Example 1 except that a mixture of palladium and PTFE was applied to the surface of the base electrode and the surface of the sintered nickel positive electrode.

【0017】このように作製した電池を、以下(A3
電池と称する。 〔比較例1〕ベース電極を完成電極とする、即ちベース
電極表面に何も塗着しない以外は上記実施例1と同様に
電池を作製した。このように作製した電池を、以下(X
1 )電池と称する。 〔比較例2〕負極作製の際に、ベース電極表面に、PE
Oと混合した撥水性高分子であるPTFEを塗着した以
外は、上記実施例1と同様に電池を作製した。
The battery produced in this manner is described below (A 3 ).
It is called a battery. [Comparative Example 1] A battery was prepared in the same manner as in Example 1 except that the base electrode was used as a completed electrode, that is, nothing was coated on the surface of the base electrode. The battery produced in this manner is described below (X
1 ) Called battery. [Comparative Example 2] PE was formed on the surface of the base electrode during the production of the negative electrode.
A battery was made in the same manner as in Example 1 except that PTFE, which was a water-repellent polymer mixed with O, was applied.

【0018】このように作製した電池を、以下(X2
電池と称する。 〔比較例3〕負極作製の際に、ベース電極表面に、PE
Oと混合したパラジウムを塗着した以外は上記実施例1
と同様に電池を作製した。このように作製した電池を、
以下(X3 )電池と称する。 〔実験1〕本発明の(A1 )電池〜(A3 )電池、比較
例の(X1 )電池〜(X3 )電池を用いて、充放電サイ
クルの1サイクル後、および100サイクル後の充電時
における電池内部圧力を測定したのでその結果を図2、
3、及び、表1に示す。
The battery thus produced is represented by the following (X 2 )
It is called a battery. [Comparative Example 3] PE was formed on the surface of the base electrode when the negative electrode was produced.
Example 1 above, except that palladium mixed with O was applied.
A battery was prepared in the same manner as in. The battery produced in this way
Hereinafter referred to as (X 3 ) battery. [Experiment 1] Using the (A 1 ) battery to (A 3 ) battery of the present invention and the (X 1 ) battery to (X 3 ) battery of the comparative example, after 1 cycle of the charge / discharge cycle and after 100 cycles The internal pressure of the battery during charging was measured.
3 and Table 1.

【0019】測定の条件としては、1Cで電池容量の1
20%まで充電を行い、その後1Vまで放電を行うサイ
クルを1サイクル、または、100サイクル行い、その
後、1Cで電池容量の130%まで充電をおこなった際
の電池容量の130%に達するまでの電池内部圧力変化
を測定したものである。尚、表1には100サイクル後
の充電量が電池容量の120%時点での電池内圧の値を
示した。
The condition for measurement is 1 C of battery capacity 1
A battery that charges up to 20% and then discharges up to 1V for 1 cycle or 100 cycles, and then reaches 130% of the battery capacity when charged up to 130% of the battery capacity at 1C. It is a measurement of internal pressure change. In addition, Table 1 shows the value of the battery internal pressure when the charged amount after 100 cycles was 120% of the battery capacity.

【0020】[0020]

【表1】 [Table 1]

【0021】表1、および図2、3から明らかなよう
に、トータル的に見て本発明の(A1)電池〜(A3
電池が、比較例の(X1 )電池〜(X3 )電池より、電
池内部圧力の上昇に対する抑制効果が高いことが確認さ
れた。 (X1 )電池は、電極に対して、電池内部圧力を抑制す
る処理を行っていないため、電池内部圧力は他のものと
比較しても急激に上昇しており、100サイクル後の測
定でも変化はなかった。
As is clear from Table 1 and FIGS. 2 and 3, in total, the (A 1 ) battery of the present invention to (A 3 )
It was confirmed that the battery had a higher effect of suppressing an increase in the internal pressure of the battery than the (X 1 ) battery to the (X 3 ) battery of Comparative Example. Since the (X 1 ) battery does not perform the process of suppressing the battery internal pressure on the electrodes, the battery internal pressure rises sharply compared with other ones, and the measurement after 100 cycles is also performed. There was no change.

【0022】(X2 )電池は、PTFEが負極に塗着さ
れているので、電極表面の撥水性はあるが、酸素と水素
ガスの反応に対する触媒能はないので、電池内部圧力抑
制効果はあまりなかった。 (X3 )電池は、塗着されたパラジウムの触媒能によ
り、サイクル回数の低い時には電池内部圧力上昇に対す
る高い抑制効果を有しているが、サイクルが繰り返され
ていくうちに、パラジウム表面が電解液によって濡れて
しまい、100サイクル後の電池内部圧力上昇に対する
効果は大幅に低下する。
In the (X 2 ) battery, since PTFE is applied to the negative electrode, the electrode surface has water repellency, but since it does not have a catalytic ability for the reaction of oxygen and hydrogen gas, the effect of suppressing the internal pressure of the battery is not so great. There wasn't. The (X 3 ) battery has a high effect of suppressing an increase in the internal pressure of the battery when the number of cycles is low, due to the catalytic activity of the coated palladium. However, as the cycle is repeated, the palladium surface is electrolyzed. It gets wet with the liquid, and the effect of increasing the internal pressure of the battery after 100 cycles is significantly reduced.

【0023】(A1 )電池では、パラジウムを担持した
PTFEが負極表面に存在するため、電池内部圧力上昇
に対する抑制効果が高く、サイクル初期は勿論のこと、
100サイクル後の充電時電池内部圧力でも、充分な効
果を有していた。 (A2 )電池では、前述した正極で起こる反応式3の反
応は、負極で起こる反応式4の反応より反応が遅いの
で、サイクル初期では電池内部圧力上昇に対する抑制効
果が(A1 )電池や、比較例の(X3 )電池よりやや低
い結果となったが、効果の持続性は高く100サイクル
後の抑制効果には殆ど変化がない。
In the battery (A 1 ), since PTFE carrying palladium is present on the surface of the negative electrode, the effect of suppressing an increase in the internal pressure of the battery is high, not to mention the beginning of the cycle,
There was a sufficient effect even with the internal pressure of the battery during charging after 100 cycles. In (A 2) battery, the reaction of Scheme 3 occurring at the positive electrode described above, since the reaction from the reaction of the reaction equation 4 that occurs in the negative electrode is slow, inhibitory effect on cell internal pressure increase in the initial cycle is (A 1) Battery Ya Although the result was slightly lower than that of the (X 3 ) battery of the comparative example, the effect persistence was high and there was almost no change in the suppression effect after 100 cycles.

【0024】(A3 )電池では、正負両極にパラジウム
を担持したPTFEが塗着されていることから、
(A1 )電池、(A2 )電池よりも更に効果が大きい。
次に、パラジウム、及びPTFEの良好添加量を知るた
めに、以下のような実験を行った。 〔実験2〕パラジウム、及びPTFEの添加量をそれぞ
れ0.1wt%〜10wt%の間で変化させた以外は、
上記実施例1の(A1 )電池と同様に電池を作製し、そ
れぞれの電池内部圧力について測定を行ったので、その
結果を表2に示す。
In the (A 3 ) battery, since PTFE carrying palladium is coated on both positive and negative electrodes,
It is more effective than the (A 1 ) battery and the (A 2 ) battery.
Next, the following experiment was conducted in order to know the good addition amounts of palladium and PTFE. [Experiment 2] Except that the amounts of palladium and PTFE added were changed between 0.1 wt% and 10 wt%, respectively.
Batteries were prepared in the same manner as the (A 1 ) battery of Example 1 above, and the internal pressure of each battery was measured. The results are shown in Table 2.

【0025】尚、実験条件については、上記実験1の1
00サイクル後の電池内部圧力変化を測定した場合と同
様に行った。但し、表2に示した測定値は、電池容量の
120%充電時の電池内部圧力である。
The experimental conditions are described in 1 of Experiment 1 above.
It carried out similarly to the case where the internal pressure change of the battery after 00 cycles was measured. However, the measured value shown in Table 2 is the internal pressure of the battery at the time of charging 120% of the battery capacity.

【0026】[0026]

【表2】 [Table 2]

【0027】表2から明らかなように、負極に撥水性を
有したガス消費触媒を設ける場合は、パラジウム、PT
FE共に、1wt%〜10wt%の添加量が望ましい。 〔実験3〕パラジウム、及びPTFEの添加量を0.1
wt%〜10wt%の間で変化させた以外は、上記実施
例1の(A2 )電池と同様に電池を作製し、それぞれの
電池内部圧力について測定を行ったので、その結果を表
3に示す。
As is clear from Table 2, when a gas consuming catalyst having water repellency is provided on the negative electrode, palladium, PT
The amount of addition of 1 wt% to 10 wt% is desirable for both FE. [Experiment 3] Palladium and PTFE were added in an amount of 0.1
Batteries were prepared in the same manner as the (A 2 ) battery of Example 1 except that the content was changed in the range of 10 wt% to 10 wt%, and the internal pressure of each battery was measured. The results are shown in Table 3. Show.

【0028】尚、実験条件については、上記実験1の1
00サイクル後の電池内部圧力変化を測定した場合と同
様に行った。但し、表3に示した測定値は、電池容量の
120%充電時の電池内部圧力である。
The experimental conditions are as described in 1 of Experiment 1 above.
It carried out similarly to the case where the internal pressure change of the battery after 00 cycles was measured. However, the measured value shown in Table 3 is the internal pressure of the battery at the time of charging 120% of the battery capacity.

【0029】[0029]

【表3】 [Table 3]

【0030】表3から明らかなように、正極に設ける場
合も負極と同様、パラジウム、PTFEともに、1wt
%〜10wt%の添加量が望ましい。 〔その他の事項〕上記実施例では、負極表面にパラジウ
ムを担持したPTFEを塗着したが、負極作製の際に、
水素吸蔵合金とともにパラジウム、及びPTFEを混合
して負極を作製しても同様の効果を得ることができる。
As is clear from Table 3, when the positive electrode is provided, both palladium and PTFE are 1 wt% as in the case of the negative electrode.
% To 10 wt% is preferable. [Other Matters] In the above-mentioned examples, PTFE supporting palladium was applied to the surface of the negative electrode.
Similar effects can be obtained even if a negative electrode is manufactured by mixing palladium and PTFE together with the hydrogen storage alloy.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
撥水性と触媒能が加わり、電池内で発生した酸素ガス、
水素ガスがより円滑に消費され、電池内部圧力の上昇を
抑制することができるという効果を奏する。
As described above, according to the present invention,
Oxygen gas generated in the battery with the addition of water repellency and catalytic ability,
The hydrogen gas is consumed more smoothly, and an increase in the internal pressure of the battery can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例に係る円筒密閉型ニッケル−水素
蓄電池の断面図である。
FIG. 1 is a cross-sectional view of a cylindrical sealed nickel-hydrogen storage battery according to an example of the present invention.

【図2】1サイクル後の充電時電池内部圧力変化を示す
グラフである。
FIG. 2 is a graph showing a change in battery internal pressure during charging after one cycle.

【図3】100サイクル後の充電時電池内部圧力変化を
示すグラフである。
FIG. 3 is a graph showing a change in battery internal pressure during charging after 100 cycles.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 positive electrode 2 negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 古川 修弘 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Koji Nishio 2-18 Keihan Hondori, Moriguchi-shi Sanyo Electric Co., Ltd. (72) Inventor Nobuhiro Furukawa 2-18 Keiyo Hon-dori, Moriguchi Sanyo Electric Co., Ltd. Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極と、アルカリ電解液を浸透させたセ
パレータと、水素吸蔵合金を主成分とする負極とを有す
る金属−水素アルカリ電池において、 前記負極及び/又は正極が、撥水性を有するガス消費触
媒を有することを特徴とする金属−水素アルカリ電池。
1. A metal-hydrogen alkaline battery having a positive electrode, a separator impregnated with an alkaline electrolyte, and a negative electrode containing a hydrogen storage alloy as a main component, wherein the negative electrode and / or the positive electrode is a gas having water repellency. A metal-hydrogen alkaline battery having a consumption catalyst.
JP4173307A 1992-06-30 1992-06-30 Metal-hydrogen alkaline battery Pending JPH0620681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4173307A JPH0620681A (en) 1992-06-30 1992-06-30 Metal-hydrogen alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4173307A JPH0620681A (en) 1992-06-30 1992-06-30 Metal-hydrogen alkaline battery

Publications (1)

Publication Number Publication Date
JPH0620681A true JPH0620681A (en) 1994-01-28

Family

ID=15958028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4173307A Pending JPH0620681A (en) 1992-06-30 1992-06-30 Metal-hydrogen alkaline battery

Country Status (1)

Country Link
JP (1) JPH0620681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251439A (en) * 2004-03-02 2005-09-15 Yuasa Corp Nickel hydrogen battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251439A (en) * 2004-03-02 2005-09-15 Yuasa Corp Nickel hydrogen battery

Similar Documents

Publication Publication Date Title
EP0170519B1 (en) A method of producing a sealed metal oxide-hydrogen storage cell
JP2604282B2 (en) Alkaline storage battery
JPH0797504B2 (en) Sealed alkaline storage battery
JP2966627B2 (en) Metal hydride storage battery
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0620681A (en) Metal-hydrogen alkaline battery
JP3802703B2 (en) Nickel metal hydride battery
US5496665A (en) Hydrogen-occlusion-alloy electrode
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP3071026B2 (en) Metal hydride storage battery
JPH0568828B2 (en)
JP2692936B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH0763004B2 (en) Sealed alkaline storage battery
JP2011014258A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery
JPH0810596B2 (en) Metal oxide / hydrogen battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3229672B2 (en) Metal hydride storage battery
JPH0642374B2 (en) Metal-hydrogen alkaline storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH028419B2 (en)
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JPH05144432A (en) Electrode with hydrogen storage alloy
JPH05335015A (en) Hydrogen storage electrode
JPH05266887A (en) Metal-hydrogen alkaline storage battery
JPH0517659B2 (en)