JPH06204367A - Applied structure of frog-type heat sink - Google Patents

Applied structure of frog-type heat sink

Info

Publication number
JPH06204367A
JPH06204367A JP21445692A JP21445692A JPH06204367A JP H06204367 A JPH06204367 A JP H06204367A JP 21445692 A JP21445692 A JP 21445692A JP 21445692 A JP21445692 A JP 21445692A JP H06204367 A JPH06204367 A JP H06204367A
Authority
JP
Japan
Prior art keywords
convection
heat sink
heat
pin group
sword
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21445692A
Other languages
Japanese (ja)
Other versions
JPH07105466B2 (en
Inventor
Hisateru Akachi
久輝 赤地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP21445692A priority Critical patent/JPH07105466B2/en
Publication of JPH06204367A publication Critical patent/JPH06204367A/en
Publication of JPH07105466B2 publication Critical patent/JPH07105466B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To enable a highly dense frog-type heat sink to be lessened in pressure loss, reduce in noise increasing factors, and enhanced in heat dissipating properties by a method wherein a thin-walled cylindrical convection controlling tube is mounted on the frog-type heat sink covering the prescribed scope of the peripheral surface of a frog-type densely bundled pin group. CONSTITUTION:A heat dissipating pin group 12 is provided in a frog form onto the heat dissipating surface 2-2 of a heat receiving flat plate 2 equipped with a heat receiving face 2-1 and a heat dissipating face 2-2. A thin-walled cylindrical convection controlling tube 1 is mounted on the frog-type densely bundled pin group 12 vertical to the heat dissipating surface 2-2 along the outer peripheral surface of the pin group 12 extending from a prescribed level to a level set equal to or higher than the top of the pin group 12 and excluding a lower part of the pin group 12 of prescribed height from the heat dissipating surface 2-2. The inner wall of the convection control tube 1 is made to adhere or approach to the peripheral pins of the heat dissipating pin group 12. By this setup, cooling convective air flows 4-1 and 4-2 can be improved in flow change.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒートシンクによる発熱
体冷却の為のヒートシンクの適用構造に関するもので、
特に発熱体冷却の為の剣山形ヒートシンクの新規な適用
構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink applied structure for cooling a heating element by a heat sink.
In particular, it relates to a new application structure of a sword-shaped heat sink for cooling a heating element.

【0002】[0002]

【従来の技術】従来構造のプレートフイン群形ヒートシ
ンクはフィン群の整流作用により冷却対流の流れは一定
の方向のみに流れ、乱流の発生が少なく、冷却効率が低
かった。その改善のためルーバ形を初めとして各種のヒ
ートシンクが提案され実用化された。然し近来の半導体
技術の進歩によるIC、LSI等の小型化、高密度化、
に対応する小型ヒートシンクには決定的な改善構造が実
用化に至らず未だに図5の斜視図に示すごとき小型化さ
れたプレートフイン群形ヒートシンクが使用されている
例が多い。図において11はプレートフィン群、2は受
熱平板、2−1は受熱平板の受熱面、2−2は受熱平板
の放熱面であり、3は発熱素子、また4の矢印は冷却対
流を示し4−1は冷却の為の低温対流であり、4−2は
冷却完了後の高温対流である。
2. Description of the Related Art In a plate fin group type heat sink having a conventional structure, the cooling convection flows only in a fixed direction due to the rectifying action of the fin group, the turbulent flow is less likely to occur, and the cooling efficiency is low. In order to improve it, various heat sinks including louver type have been proposed and put into practical use. However, due to recent advances in semiconductor technology, ICs, LSIs, etc. are becoming smaller and higher in density.
For the small heat sink corresponding to the above, there are many examples in which a downsized plate fin group heat sink as shown in the perspective view of FIG. In the figure, 11 is a plate fin group, 2 is a heat-receiving flat plate, 2-1 is a heat-receiving surface of a heat-receiving flat plate, 2-2 is a heat-dissipating surface of a heat-receiving flat plate, 3 is a heating element, and 4 arrows indicate cooling convection. -1 is a low temperature convection for cooling, and 4-2 is a high temperature convection after completion of cooling.

【0003】現在のIC、LSI等の冷却用ヒートシン
クの改善は、受熱面と放熱面を有する受熱平板の放熱面
に放熱ピン群が剣山形状に形成されてなる剣山形ヒート
シンクの改善実用化が主流となりつつある。その改善
は、ピンの熱伝達係数を大きくするためのピンの細径化
及び高密度化、乱流発生を容易にする為のピンの断面形
状の改善、製造の困難さを克服する為の製造方法の改善
等が主な目標となっている。図6は高密度剣山形ヒート
シンクの一例の斜視図を示す。図に於て図5と異なる点
は12のみであって、12は高密度に形成された剣山形
状ピン群である。
The mainstream of the improvement of current heat sinks for cooling ICs, LSIs, etc. is the practical application of a sword-shaped heat sink in which radiating pins are formed in a ridge shape on the radiating surface of a heat receiving flat plate having a heat receiving surface and a heat radiating surface. Is becoming. The improvement is to reduce the diameter and density of the pin to increase the heat transfer coefficient of the pin, improve the cross-sectional shape of the pin to facilitate the generation of turbulence, and manufacture to overcome the difficulty of manufacturing. The main goal is to improve the method. FIG. 6 shows a perspective view of an example of a high-density sword-shaped heat sink. In the figure, only 12 is different from FIG. 5, and 12 is a pin-shaped pin group formed with high density.

【0004】[0004]

【発明が解決しようとする課題】発明が解決しようとす
る課題は以下に述べる3点の問題点であって本発明はそ
れらを解決するものである。剣山形ヒートシンクは改善
されつつあるにも拘わらず、改善の目標が熱輸送性能の
向上を第一としていた為、問題点は少しも改善されずむ
しろ悪化しつつあるのが実情である。即ちピンの細径化
及び高密度化により受熱平板に平行な強制対流の圧力損
失が増加し、風量、風速を保持する為には冷却ファンを
強力なものにする必要があり、それに伴って騒音が増加
する点が問題であった。この対策として剣山形ヒートシ
ンクの垂直上方から受熱平板に垂直な強制対流を吹きつ
ける手段も採られているが、受熱平板に衝突の後の対流
の流れ方向は結局受熱平板に平行な流れとなり、この場
合の圧力損失が大きいので冷却ファンを強力なものにす
る必要があり、騒音の問題は解消されなかった。これら
の点が解決すべき第一の問題点になっていた。
The problems to be solved by the invention are the following three problems, and the present invention solves them. Although the Kenyama-shaped heat sink is being improved, the goal is to improve the heat transport performance first, so the problem is not improved at all, but rather worsened. That is, the pressure loss of forced convection parallel to the heat-receiving flat plate increases due to the smaller diameter and higher density of the pin, and it is necessary to make the cooling fan powerful in order to maintain the air volume and speed, which causes noise. Was a problem. As a countermeasure against this, a means of blowing forced convection perpendicular to the heat-receiving flat plate from above the sword-shaped heat sink is also adopted, but the flow direction of convection after collision with the heat-receiving flat plate is eventually parallel to the heat-receiving flat plate. Since the pressure loss in this case was large, it was necessary to make the cooling fan powerful, and the noise problem was not solved. These points were the first problems to be solved.

【0005】又第二の問題点としてピンの細径化の推進
及び高密度化の推進はピン群の製作を加速度的に困難な
ものとし、製作費用を高謄せしめ実用を困難ならしめつ
つある。又ピンの細径化及び高密度化は加工技術の点か
らピンに必要な高さを与えることを困難ならしめ、必要
な放熱面積を維持することをも困難ならしめ、目標とす
る冷却性能を発揮することを困難ならしめる恐れをも発
生せしめていた。
As a second problem, the promotion of the diameter reduction and the density increase of the pins make the production of the pin group difficult at an accelerating rate, making the production cost high and making it practically difficult. . In addition, it is difficult to give the pin the required height from the viewpoint of processing technology by making the pin diameter smaller and the density higher, and it is also difficult to maintain the necessary heat dissipation area, and to achieve the target cooling performance. There was also a fear of making it difficult to exert.

【0006】更に第3の問題点は最も重要な問題点であ
って、剣山形ヒートシンクのみの問題点ではなく従来の
ヒートシンクのすべてに共通する問題点であり従来は全
く解決は不可能とされてきた困難な問題点である。それ
は発熱体が大きかったり、発熱素子の複数個が冷却流体
の対流の流れに沿って直列に配置されてある場合に発生
する。その状態を図7の(イ)及び(ロ)に示す。
Furthermore, the third problem is the most important one, not only the sword-shaped heat sink but a problem common to all the conventional heat sinks, and it has been impossible to solve it at all in the past. It is a difficult problem. It occurs when the heating element is large or when a plurality of heating elements are arranged in series along the convection flow of the cooling fluid. The state is shown in (a) and (b) of FIG.

【0007】(イ)は長大な発熱体3に従来型のプレー
トフィン形ヒートシンクを適用して放熱せしめる場合を
示してある。このの場合はプレートフィン群も長大とな
り、対流4は長いフィン間隙を通過する間に熱交換が進
行し、進行につれて大きく温度上昇せしめられる。図に
於て4−1はプレートフィン内に導入される低温対流を
示し、4−2はプレートフィンから排出される高温対流
を示す。温度上昇に伴って対流は次第に熱交換能力を失
い、従ってプレートフィンは下流側に至るに従い放熱効
率が低下しその存在意義を失うに至る。即ちプレートフ
ィン形ヒートシンクの長大化は放熱手段として有効な手
段とは言えないものであった。
(A) shows a case where a conventional plate fin type heat sink is applied to the long heating element 3 to radiate heat. In this case, the plate fin group also becomes large, and the convection 4 undergoes heat exchange while passing through the long fin gap, and the temperature is greatly increased as the convection progresses. In the figure, 4-1 indicates low temperature convection introduced into the plate fin, and 4-2 indicates high temperature convection discharged from the plate fin. The convection gradually loses its heat exchanging ability as the temperature rises. Therefore, the heat dissipation efficiency of the plate fin decreases as it reaches the downstream side, and its significance is lost. That is, increasing the length of the plate fin type heat sink cannot be said to be an effective means for heat dissipation.

【0008】(ロ)は3−1、3−2、3−3に示すが
如く発熱素子の複数個が冷却流体の対流の流れに沿って
直列に配置されてある場合を示し、従ってそれらの個々
に配設されるヒートシンクも流れに沿って直列に配置さ
れることになる。図に於ては剣山形ヒートシンクが直列
に配置された例を示してあり、低温対流4−1は上流側
剣山形状ピン群12−1に導入された後順次下流側剣山
形状ピン群12−2及び12−3に導入される。夫々の
ピン群を通過した対流は夫々に熱交換されて温度上昇し
て対流4−2、4−3となり、下流側ピン群内に導入さ
れ、最終的には高温対流4−4になって排出される。こ
の場合も対流4−2の温度上昇により剣山形状ピン群1
2−2の放熱効率は著しく低下し、その影響で対流4−
3の温度は対流4−2の温度より更に大幅に上昇するの
で剣山形状ピン群12−3の放熱効率は剣山形状ピン群
12−2の放熱効率より更に著しく悪化する。従って剣
山形ヒートシンク群全体としての放熱能力は大幅に減殺
されるに至る。即ち対流の同一流れ内に於けるヒートシ
ンク群の直列配置は放熱手段として好ましくない手段と
云える。
(B) shows a case where a plurality of heating elements are arranged in series along the convection flow of the cooling fluid, as shown in 3-1, 3-2, 3-3, and accordingly, those elements are arranged in series. The individually arranged heat sinks are also arranged in series along the flow. The figure shows an example in which Kenyama-shaped heat sinks are arranged in series, and the low temperature convection 4-1 is introduced into the upstream Kenyama-shaped pin group 12-1 and then sequentially to the downstream Kenyama-shaped pin group 12-2. And 12-3. The convections that have passed through the respective pin groups are heat-exchanged with each other and rise in temperature to become convections 4-2 and 4-3, which are introduced into the downstream side pin group and finally become high temperature convection 4-4. Is discharged. In this case as well, the temperature of convection 4-2 rises and the pin-shaped pin group 1
The heat radiation efficiency of 2-2 is remarkably reduced, and convection due to this effect 4-
Since the temperature of No. 3 is much higher than the temperature of the convection 4-2, the heat dissipation efficiency of the sword-shaped pin group 12-3 is much lower than that of the sword-shaped pin group 12-2. Therefore, the heat dissipation ability of the entire sword-shaped heat sink group is greatly reduced. That is, it can be said that the series arrangement of the heat sink groups in the same convection flow is an unfavorable means for heat dissipation.

【0009】[0009]

【課題を解決する為の手段】解決すべき問題点のなかの
第2の問題点は先に本発明者が提案し実用化している出
願中の特許、特願平3−264238号(ワイヤヒート
シンクとその製造方法)及び特願平4−135507号
(l字形状ピン群を有する剣山型ヒートシンク)、を適
用すれば解決することができる。特に特願平4−135
507号の適用はピン群の高さを十分に高くすることが
出来る。後述する課題を解決する為の手段はピン群の高
さを高くすることによりその効果が大きくなる。
The second problem among the problems to be solved is a patent pending in Japanese Patent Application No. 3-264238 (wire heat sink) which has been previously proposed and put into practical use by the present inventor. And its manufacturing method) and Japanese Patent Application No. 4-135507 (Kakeyama type heat sink having a group of l-shaped pins) can solve the problem. Especially Japanese Patent Application No. 4-135
Application of No. 507 can sufficiently increase the height of the pin group. The effect of the means for solving the problems to be described later is increased by increasing the height of the pin group.

【0010】図1は問題点を解決する為の手段の基本的
な構造を示す斜視図である。2は受熱平板、3は発熱素
子で受熱平板2の受熱面2−1と接着されてある。12
は剣山形状ピン群で受熱平板2の放熱面2−2に直立し
て且つ高密度ににろう接または溶接により接着されて一
体化され、剣山形状に形成されてある。1は対流制御管
であって、剣山形状ピン群12の外周面に沿って、放熱
面2−2から所定の高さに至る迄の部分を除き、この所
定の高さから剣山形状ピン群12の高さに至る迄か、ま
たは剣山形状ピン群12の高さを越える所定の高さに至
る迄、薄肉筒状体として挿着されてあり、この対流制御
管1の内壁面は剣山形状ピン群12の外周のピン群に接
着されるか若しくは近接して配置されてある。
FIG. 1 is a perspective view showing the basic structure of means for solving the problems. Reference numeral 2 is a heat receiving flat plate, and 3 is a heating element, which is adhered to the heat receiving surface 2-1 of the heat receiving flat plate 2. 12
Is a sword mountain-shaped pin group which is upright on the heat radiating surface 2-2 of the heat receiving flat plate 2 and is densely adhered by brazing or welding to be integrated with each other to form a sword mountain shape. Reference numeral 1 denotes a convection control tube, which is arranged along the outer peripheral surface of the sword mountain-shaped pin group 12 except for a portion from the heat radiating surface 2-2 to a predetermined height. Up to the predetermined height, or up to a predetermined height exceeding the height of the sword-shaped pin group 12, the inner wall surface of the convection control pipe 1 is a sword-shaped pin. It is adhered to the pin group on the outer periphery of the group 12 or arranged in the vicinity thereof.

【0011】[0011]

【作用】図1に例示の如き剣山形ヒートシンクの適用構
造には基本的な作用として剣山形状ピン群12の内部を
通過する冷却対流4の流れの一部または総てをピン群に
直交する流れからピン群に平行する流れに変える作用が
あり、この流れの変化はヒートシンク応用の放熱方式に
各種の変革と改善をもたらす。 各種の流れの変化とそ
の応用の各種放熱方式及びそれらの効果については以下
の各種実施例により詳述する。
The basic structure of the applied structure of the sword-shaped heat sink as shown in FIG. 1 is that the cooling convection 4 passing through the inside of the sword-shaped pin group 12 partially or wholly flows orthogonal to the pin group. There is an action to change from the to parallel flow to the pin group, and this change of flow brings various changes and improvements to the heat dissipation method of heat sink application. Various changes in the flow, various heat radiation methods of application thereof, and their effects will be described in detail by the following various embodiments.

【0012】[0012]

【実施例】第1実施例 第1実施例に於ける剣山型ヒートシンクは図1に例示の
適用構造のものがそのまま発熱素子3が搭載されてある
基板表面に平行な対流の中に於て発熱素子3の上に配設
される。このような適用構造の場合には、剣山形状ピン
群12の内部を通過する冷却対流の流れは基板表面に平
行な流れ即ちピン群に直交する流れと基板表面に垂直な
流れ即ちピン群に平行な流れとに分流される。この作用
は対流制御管1の上縁を通過する低温対流4−1の作用
により対流制御管1の上縁部分の気圧が降下し、吸引力
を発生し、これによりピン群内部に上昇対流を発生せし
めることにより発揮される。この作用はピン群12の内
部における冷却対流の圧力損失を低下せしめヒートシン
クの放熱能力を向上せしめる効果がある。従って性能向
上の為のファン強力化の必要性を緩和せしめることが出
来る。
[First Embodiment] The Kenzan-type heat sink in the first embodiment has the same application structure as that illustrated in FIG. 1 and generates heat in convection parallel to the substrate surface on which the heating element 3 is mounted. It is arranged on the element 3. In the case of such an application structure, the flow of cooling convection passing through the inside of the pin-shaped pin group 12 is parallel to the substrate surface, that is, orthogonal to the pin group, and perpendicular to the substrate surface, that is, parallel to the pin group. It is divided into two streams. This action is due to the action of the low temperature convection flow 4-1 passing through the upper edge of the convection control tube 1 to reduce the atmospheric pressure at the upper edge portion of the convection control tube 1 and generate a suction force, which causes upward convection inside the pin group. It is exerted by generating it. This action has the effect of reducing the pressure loss of cooling convection inside the pin group 12 and improving the heat dissipation capability of the heat sink. Therefore, it is possible to alleviate the need to strengthen the fan to improve performance.

【0013】この作用は特に特願平4−135507号
(l字形状ピン群を有する剣山型ヒートシンク)に於て
特に大きな効果が発揮される。これはl字形状ピン群に
於てはピンに直交する対流よりピンに平行する対流の方
が熱交換効率が高く圧力損失も小さい特性を有すること
による。又この効果はピン群の高さが高いほど良好な効
果を発揮する。これはピンに平行する流れの部分が長く
なることによる。
This effect is particularly great in Japanese Patent Application No. 4-135507 (Kakeyama type heat sink having a group of l-shaped pins). This is because in the l-shaped pin group, the convection parallel to the pin has a higher heat exchange efficiency and a smaller pressure loss than the convection perpendicular to the pin. Further, this effect is more excellent as the height of the pin group is higher. This is due to the length of the flow section parallel to the pin.

【0014】第2実施例 図2は第2実施例を示す説明図であって、一部を断面と
した側面図である。本実施例に於ては発熱素子3が冷却
対流4の流れに沿って直列に配置されてある場合の剣山
形ヒートシンクの適用構造例である。図において冷却対
流の流路は受熱平板に平行なセパレータ平板6により上
下2層に分離されてあり、下側層は熱交換未了の低温対
流の流路9になっており、上側層は熱交換完了後の高温
対流の流路8になっており、剣山形ヒートシンクの受熱
平板側は下側層の低温対流の流路9の中に配置されてあ
り、対流制御管1−1、1−2、1−3、及び1−4の
上側端末はセパレータ平板6を貫通して上側層の高温対
流の流路8の中に開口せしめられてある。
Second Embodiment FIG. 2 is an explanatory view showing a second embodiment, and is a side view with a part in section. The present embodiment is an example of an applied structure of a sword-shaped heat sink when the heating elements 3 are arranged in series along the flow of the cooling convection 4. In the figure, the cooling convection flow path is separated into upper and lower two layers by a separator flat plate 6 parallel to the heat receiving flat plate, the lower layer is a low temperature convection flow path 9 for which heat exchange has not been completed, and the upper layer is heat The flow path 8 for high temperature convection after the replacement is completed, the heat-receiving flat plate side of the sword-shaped heat sink is arranged in the flow path 9 for low temperature convection in the lower layer, and the convection control tubes 1-1, 1- The upper ends of 2, 1-3, and 1-4 penetrate through the separator plate 6 and are opened into the high-temperature convection channels 8 of the upper layer.

【0015】このように構成された剣山形ヒートシンク
の適用構造に於ては、総てのヒートシンクの剣山形状ピ
ン群12−1、12−2、12−3、及び12−4に導
入される対流は総て熱交換未了の低温対流4−1とな
り、熱交換完了後の高温対流4−2は総て高温対流流路
8の中を流れて排出され、下流側のヒートシンク内に流
入することは全くない。従って従来のヒートシンク群の
配設構造に於ける大きな問題点となっていた、上流側の
ヒートシンクから排出された高温対流が下流側のヒート
シンク群の中に流入することにより、下流側のヒートシ
ンク群の放熱性能が大幅に低下する点は完全に解決され
ることになる。このようであるから図2に例示の本発明
の第2実施例は従来に比べて放熱性能が大幅に向上す
る。又本実施例の場合ヒートシンク群内を流れる冷却対
流は総てピンに平行な流れになるから圧力損失が小さく
なる効果がある。更にl字形状ピン群を有する剣山形ヒ
ートシンクを適用することにより放熱性能は更に向上さ
せることが出来る。またl字形状ピン群は高さを高くす
ることが自由であるからそれ以上に放熱性能を改善せし
めることも可能である。これらは放熱性能を改善せしめ
る為にファンを強力化する必要性を減少せしめ、騒音を
緩和せしめる効果もある。
In the application structure of the sword mountain type heat sink configured as described above, the convection introduced into the sword mountain shaped pin groups 12-1, 12-2, 12-3 and 12-4 of all the heat sinks. Is all low-temperature convection 4-1 that has not completed heat exchange, and all high-temperature convection 4-2 after completion of heat exchange flows through the high-temperature convection channel 8 and is discharged, and then flows into the heat sink on the downstream side. There is no. Therefore, the high temperature convection discharged from the upstream heat sink flows into the downstream heat sink group, which is a big problem in the conventional heat sink group disposition structure. The point that the heat dissipation performance is significantly reduced will be completely solved. Because of this, the heat radiation performance of the second embodiment of the present invention illustrated in FIG. 2 is significantly improved as compared with the prior art. Further, in the case of this embodiment, all the cooling convection flowing in the heat sink group is parallel to the pins, so that there is an effect that the pressure loss becomes small. Furthermore, the heat dissipation performance can be further improved by applying the sword mountain type heat sink having the l-shaped pin group. Further, since the height of the l-shaped pin group can be freely increased, it is possible to further improve the heat radiation performance. These also reduce the need to strengthen the fan to improve heat dissipation performance and also have the effect of reducing noise.

【0016】第3実施例 図3(イ)(ロ)は本発明の第3実施例を示す一部断面
の側面図である。図は何れも自然対流方式の剣山形ヒー
トシンクであるから、剣山形状ピン群12の高さは充分
に高く形成されてあり、(イ)は剣山形状ピン群12が
垂直に保持されてある適用例であり、(ロ)は剣山形状
ピン群12が水平に保持されてある適用例である。何れ
の例とも対流制御管1は煙突効果が充分に発揮される高
さまで延長されてあり、何れも対流制御管1の延長部分
は垂直に保持されてある。対流制御管1は剣山形状ピン
群12の高さの少なくも先端の1/2を覆っており、こ
の部分が上昇気流の発生を助ける。(イ)においては発
熱素子3が搭載される基板5と機器の筐体壁7との間は
大きな距離が隔てられてあり、対流制御管1はその間に
おいて延長されて、その上端は筐体壁7を貫通して機器
外に開口せしめられてある。(ロ)に於ては基板5と機
器の筐体壁7との間の距離は剣山形状ピン群12の高さ
程度になっており、対流制御管1は筐体壁7を貫通した
後垂直上方に屈曲せしめられ、充分な煙突効果が発揮さ
れる高さまで延長されてある。このように構成された剣
山形ヒートシンクの適用構造に於ては、剣山形状ピン群
12の底部付近から吸入され、ピン群に平行に流れる低
温対流4−1は対流制御管1の煙突効果と剣山形状ピン
群12自身の煙突効果により増速されて剣山形状ピン群
12及び対流制御管1の延長部分の中を通過し、対流制
御管1の延長部分の端末から高温対流4−2として排出
される。実験によればこの冷却対流の増速により剣山形
ヒートシンクの自然対流による放熱性能は20%〜30
%改善される。
Third Embodiment FIGS. 3 (a) and 3 (b) are side views of partial cross sections showing a third embodiment of the present invention. Since all of the figures are natural convection sword-shaped heat sinks, the height of the sword-shaped pin group 12 is formed sufficiently high, and (a) is an application example in which the sword-shaped pin group 12 is held vertically. (B) is an application example in which the sword mountain pin group 12 is held horizontally. In each of the examples, the convection control tube 1 is extended to a height at which the chimney effect is sufficiently exerted, and in both cases, the extended portion of the convection control tube 1 is held vertically. The convection control pipe 1 covers at least half of the height of the sword-shaped pin group 12 at the tip thereof, and this portion assists the generation of an ascending airflow. In (a), a large distance is provided between the substrate 5 on which the heating element 3 is mounted and the housing wall 7 of the device, the convection control tube 1 is extended between them, and the upper end thereof is the housing wall. It penetrates 7 and is opened to the outside of the device. In (b), the distance between the board 5 and the housing wall 7 of the device is about the height of the sword-shaped pin group 12, and the convection control tube 1 is vertical after penetrating the housing wall 7. It is bent upwards and extended to a height where a sufficient chimney effect is exhibited. In the application structure of the Kenzan-shaped heat sink configured as described above, the low temperature convection 4-1 that is sucked in from the vicinity of the bottom of the Kenyama-shaped pin group 12 and flows in parallel to the pin group is the stack effect of the convection control tube 1 and Kenzan. It is accelerated by the chimney effect of the shape pin group 12 itself, passes through the extension of the conical shape pin group 12 and the convection control tube 1, and is discharged as high temperature convection 4-2 from the end of the extension part of the convection control tube 1. It According to the experiment, due to the acceleration of the cooling convection, the heat dissipation performance by natural convection of the Kenyama type heat sink is 20% to 30%.
% Improved.

【0017】第4実施例 図4は第4実施例を示す説明図であって一部断面の側面
図である。本実施例に適用される剣山形ヒートシンクは
自然対流方式ヒートシンクであるか、または剣山形ピン
群内の対流がピン群の底部から吹き込まれる方式の強制
対流方式ヒートシンクであるかの何れかであって、図4
においては複数個の剣山形ヒートシンクが配設されてあ
る。2−1、2−2、2−3は夫々それらのヒートシン
クの受熱平板、12−1、12−2、12−3は夫々剣
山形状ピン群であり、夫々のピン群には夫々対流制御管
1−1、1−2、1−3が挿着されてある。各対流制御
管1の先端部は剣山形ヒートシンクが配設されてある機
器の筺体壁7を貫通して機器の外部に開口せしめられて
ある。これらの対流制御管1は煙突効果を発揮せしめる
ための高さの延長のごとき手段は特に施されていない。
Fourth Embodiment FIG. 4 is an explanatory view showing a fourth embodiment and is a side view of a partial cross section. The sword mountain type heat sink applied to this embodiment is either a natural convection type heat sink or a forced convection type heat sink in which convection in the sword mountain type pin group is blown from the bottom of the pin group. , Fig. 4
In, a plurality of sword-shaped heat sinks are arranged. Reference numerals 2-1, 2-2, 2-3 are heat receiving flat plates of the heat sinks, 12-1, 12-2, 12-3 are sword-shaped pin groups, and each pin group has a convection control tube. 1-1, 1-2, and 1-3 are inserted. The tip of each convection control tube 1 penetrates through the housing wall 7 of the device in which the sword-shaped heat sink is arranged, and is opened to the outside of the device. These convection control tubes 1 are not particularly provided with means such as height extension for exerting a chimney effect.

【0018】このように構成された剣山形ヒートシンク
の適用構造の場合、自然対流方式であっても機器筐体内
に高温対流の流路を設ける必要がないから機器筺体を小
型化出来る利点がある。更に大きな利点は、配設される
剣山形ヒートシンクの数が如何に多数であっても、熱交
換完了後の高温対流によるヒートシンク間相互の熱的干
渉がなく、総てのヒートシンクにそれらの機能を100
%発揮させることが出来る点である。従来の自然体流方
式のごとく、ピン群を水平に保持して配設する場合は、
多数のヒートシンクの中には上下関係に配設されること
が避けられず、上側のヒートシンクは下側のヒートシン
クから排出される高温対流の影響により性能が大幅に低
下するものであった。
In the case of the application structure of the sword mountain type heat sink configured as described above, there is no need to provide a high temperature convection flow path in the equipment casing even if it is a natural convection method, and therefore there is an advantage that the equipment housing can be downsized. An even greater advantage is that no matter how many sword-shaped heat sinks are installed, there is no mutual thermal interference between heat sinks due to high temperature convection after heat exchange is completed, and all heat sinks have their functions. 100
It is a point that can be exhibited. As in the conventional natural body flow method, when arranging the pin group horizontally,
It is unavoidable that the heat sinks are arranged in a vertical relationship among a large number of heat sinks, and the performance of the upper heat sink is significantly reduced due to the influence of high temperature convection discharged from the lower heat sink.

【0019】このような剣山形ヒートシンクの適用構造
は必ずしも自然対流方式に限定されるものでなく、強制
対流方式の場合にも同様な効果を発揮する。本実施例の
適用構造において最も有効な強制対流方式の実施手段と
しては、筐体の任意の部分に対流吸い込み手段又は対流
吹き込み手段を設け、筐体の内圧を上昇せしめることが
最も適切である。その場合には図4に例示の如く、低温
対流4−1が発生し、内圧の上昇の程度に応じた流速で
剣山形状ピン群12の中を、ピン群に平行に流れ、ピン
群の熱量を吸収しながら高温対流4−2となって筐体外
に排出される。この実施例は剣山形ヒートシンクの放熱
能力が筐体の内圧の上昇の程度を加減することにより容
易に制御することが出来ることも大きな特徴である。ま
たこの実施例における剣山形状ピン群12の中の対流は
ピン群に平行である上に、低温対流4−1の流入部の面
積は円筒外周面積であり、充分に面積が広いのでピン群
内に対流が流入する際の圧力損失が少なく、筺体の内圧
を上昇せしめる為の手段は特に強力にする必要がなく、
従って騒音が発生する問題もない。
The application structure of such a sword mountain type heat sink is not necessarily limited to the natural convection method, and the same effect is exerted even in the case of the forced convection method. As the most effective forced convection method implementing means in the applied structure of the present embodiment, it is most appropriate to provide a convection suction means or a convection blowing means at an arbitrary portion of the housing to increase the internal pressure of the housing. In that case, as illustrated in FIG. 4, low-temperature convection 4-1 is generated, and flows in the pin-shaped pin group 12 parallel to the pin group at a flow velocity corresponding to the degree of increase in internal pressure, and the heat amount of the pin group is generated. While being absorbed, high-temperature convection 4-2 is generated and is discharged to the outside of the housing. The feature of this embodiment is that the heat dissipation capacity of the sword-shaped heat sink can be easily controlled by adjusting the degree of increase in the internal pressure of the housing. In addition, convection in the pin-shaped pin group 12 in this embodiment is parallel to the pin group, and the area of the inflow portion of the low temperature convection flow 4-1 is the outer peripheral area of the cylinder. There is little pressure loss when convection flows into, and it is not necessary to make the means for increasing the internal pressure of the housing particularly strong,
Therefore, there is no problem that noise is generated.

【0020】[0020]

【発明の効果】本発明の効果については夫々の実施例に
於て詳述した如く、極めて単純な構造の付加部品である
対流制御管を装着したのみにに過ぎないにも拘らず、剣
山形ヒートシンク内の対流の流れはピン群に平行な流れ
に変換され、圧力損失は大幅に低下し、ヒートシンクの
放熱特性を向上せしめるのみならず、騒音を小さくす
る、機器の小型化を可能にする、複数のヒートシンク間
の相互の熱的干渉を防いでそれらの総合的な放熱特性を
向上せしめる、自然対流放熱器の新規な構造を提供す
る、等多くの効果を発揮する。
As described in detail in each of the embodiments of the present invention, the effect of the present invention is that the convection control tube, which is an additional component having an extremely simple structure, is only attached, but the sword mountain shape is used. The convective flow in the heat sink is converted into a flow parallel to the pin group, the pressure loss is significantly reduced, not only improves the heat dissipation characteristics of the heat sink, but also reduces noise and enables miniaturization of equipment. It has many effects such as preventing mutual thermal interference between a plurality of heat sinks and improving their comprehensive heat dissipation characteristics, providing a new structure of a natural convection radiator, and so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構造及び第一実施例を示す斜視図
である。
FIG. 1 is a perspective view showing a basic structure and a first embodiment of the present invention.

【図2】本発明の第2実施例を示す一部断面の側面図で
ある。
FIG. 2 is a side view of a partial cross section showing a second embodiment of the present invention.

【図3】本発明の第3実施例を示す一部断面の側面図で
ある。
FIG. 3 is a side view of a partial cross section showing a third embodiment of the present invention.

【図4】本発明の第4実施例を示す一部断面の側面図で
ある。
FIG. 4 is a side view of a partial cross section showing a fourth embodiment of the present invention.

【図5】プレートフィン群形ヒートシンクの斜視図であ
る。
FIG. 5 is a perspective view of a plate fin group heat sink.

【図6】剣山形ヒートシンクの斜視図である。FIG. 6 is a perspective view of a sword-shaped heat sink.

【図7】従来形の放熱状態説明図である。FIG. 7 is a view for explaining a conventional heat radiation state.

【符号の説明】[Explanation of symbols]

1 対流制御管 2 受熱平板 3 発熱素子 4 対流 5 素子搭載基板 6 セパレータ平板 7 筺体壁 8 高温対流流路 9 低温対流流路 11 プレートフィン群 12 剣山形状ピン群 1 Convection control tube 2 Heat receiving flat plate 3 Heat generating element 4 Convection 5 Element mounting substrate 6 Separator flat plate 7 Housing wall 8 High temperature convection channel 9 Low temperature convection channel 11 Plate fin group 12 Kenzan shaped pin group

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月9日[Submission date] July 9, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 剣山形ヒートシンクの適用構造[Title of Invention] Application structure of sword-shaped heat sink

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒートシンクによる発熱
体冷却の為のヒートシンクの適用構造に関するもので、
特に発熱体冷却の為の剣山形ヒートシンクの新規な適用
構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink applied structure for cooling a heating element by a heat sink.
In particular, it relates to a new application structure of a sword-shaped heat sink for cooling a heating element.

【0002】[0002]

【従来の技術】従来構造のプレートフイン群形ヒートシ
ンクはフィン群の整流作用により冷却対流の流れは一定
の方向のみに流れ、乱流の発生が少なく、冷却効率が低
かった。その改善のためルーバ形を初めとして各種のヒ
ートシンクが提案され実用化された。然し近来の半導体
技術の進歩によるIC、LSI等の小型化、高密度化、
に対応する小型ヒートシンクには決定的な改善構造が実
用化に至らず未だに図5の斜視図に示すごとき小型化さ
れたプレートフイン群形ヒートシンクが使用されている
例が多い。図において11はプレートフィン群、2は受
熱平板、2−1は受熱平板の受熱面、2−2は受熱平板
の放熱面であり、3は発熱素子、また4の矢印は冷却対
流を示し4−1は冷却の為の低温対流であり、4−2は
冷却完了後の高温対流である。
2. Description of the Related Art In a plate fin group type heat sink having a conventional structure, the cooling convection flows only in a fixed direction due to the rectifying action of the fin group, the turbulent flow is less likely to occur, and the cooling efficiency is low. In order to improve it, various heat sinks including louver type have been proposed and put into practical use. However, due to recent advances in semiconductor technology, ICs, LSIs, etc. are becoming smaller and higher in density.
For the small heat sink corresponding to the above, there are many examples in which a downsized plate fin group heat sink as shown in the perspective view of FIG. In the figure, 11 is a plate fin group, 2 is a heat-receiving flat plate, 2-1 is a heat-receiving surface of a heat-receiving flat plate, 2-2 is a heat-dissipating surface of a heat-receiving flat plate, 3 is a heating element, and 4 arrows indicate cooling convection. -1 is a low temperature convection for cooling, and 4-2 is a high temperature convection after completion of cooling.

【0003】現在のIC、LSI等の冷却用ヒートシン
クの改善は、受熱面と放熱面を有する受熱平板の放熱面
に放熱ピン群が剣山形状に形成されてなる剣山形ヒート
シンクの改善実用化が主流となりつつある。その改善
は、ピンの熱伝達係数を大きくするためのピンの細径化
及び高密度化、乱流発生を容易にする為のピンの断面形
状の改善、製造の困難さを克服する為の製造方法の改善
等が主な目標となっている。図6は高密度剣山形ヒート
シンクの一例の斜視図を示す。図に於て図5と異なる点
は12のみであって、12は高密度に形成された剣山形
状ピン群である。
The mainstream of the improvement of current heat sinks for cooling ICs, LSIs, etc. is the practical application of a sword-shaped heat sink in which radiating pins are formed in a ridge shape on the radiating surface of a heat receiving flat plate having a heat receiving surface and a heat radiating surface. Is becoming. The improvement is to reduce the diameter and density of the pin to increase the heat transfer coefficient of the pin, improve the cross-sectional shape of the pin to facilitate the generation of turbulence, and manufacture to overcome the difficulty of manufacturing. The main goal is to improve the method. FIG. 6 shows a perspective view of an example of a high-density sword-shaped heat sink. In the figure, only 12 is different from FIG. 5, and 12 is a pin-shaped pin group formed with high density.

【0004】[0004]

【発明が解決しようとする課題】発明が解決しようとす
る課題は以下に述べる3点の問題点であって本発明はそ
れらを解決するものである。剣山形ヒートシンクは改善
されつつあるにも拘わらず、改善の目標が熱輸送性能の
向上を第一としていた為、問題点は少しも改善されずむ
しろ悪化しつつあるのが実情である。即ちピンの細径化
及び高密度化により受熱平板に平行な強制対流の圧力損
失が増加し、風量、風速を保持する為には冷却ファンを
強力なものにする必要があり、それに伴って騒音が増加
する点が問題であった。この対策として剣山形ヒートシ
ンクの垂直上方から受熱平板に垂直な強制対流を吹きつ
ける手段も採られているが、受熱平板に衝突の後の対流
の流れ方向は結局受熱平板に平行な流れとなり、この場
合の圧力損失が大きいので冷却ファンを強力なものにす
る必要があり、騒音の問題は解消されなかった。これら
の点が解決すべき第一の問題点になっていた。
The problems to be solved by the invention are the following three problems, and the present invention solves them. Although the Kenyama-shaped heat sink is being improved, the goal is to improve the heat transport performance first, so the problem is not improved at all, but rather worsened. That is, the pressure loss of forced convection parallel to the heat-receiving flat plate increases due to the smaller diameter and higher density of the pin, and it is necessary to make the cooling fan powerful in order to maintain the air volume and speed, which causes noise. Was a problem. As a countermeasure against this, a means of blowing forced convection perpendicular to the heat-receiving flat plate from above the sword-shaped heat sink is also adopted, but the flow direction of convection after collision with the heat-receiving flat plate is eventually parallel to the heat-receiving flat plate. Since the pressure loss in this case was large, it was necessary to make the cooling fan powerful, and the noise problem was not solved. These points were the first problems to be solved.

【0005】又第二の問題点としてピンの細径化の推進
及び高密度化の推進はピン群の製作を加速度的に困難な
ものとし、製作費用を高騰せしめ実用を困難ならしめつ
つある。又ピンの細径化及び高密度化は加工技術の点か
らピンに必要な高さを与えることを困難ならしめ、必要
な放熱面積を維持することをも困難ならしめ、目標とす
る冷却性能を発揮することを困難ならしめる恐れをも発
生せしめていた。
As a second problem, the promotion of the diameter reduction and the density increase of the pins make the production of the pin group difficult at an accelerating rate, which raises the production cost and makes it practically difficult. In addition, it is difficult to give the pin the required height from the viewpoint of processing technology by making the pin diameter smaller and the density higher, and it is also difficult to maintain the necessary heat dissipation area, and to achieve the target cooling performance. There was also a fear of making it difficult to exert.

【0006】更に第3の問題点は最も重要な問題点であ
って、剣山形ヒートシンクのみの問題点ではなく従来の
ヒートシンクのすべてに共通する問題点であり従来は全
く解決は不可能とされてきた困難な問題点である。それ
は発熱体が大きかったり、発熱素子の複数個が冷却流体
の対流の流れに沿って直列に配置されてある場合に発生
する。その状態を図7の(イ)及び(ロ)に示す。
Furthermore, the third problem is the most important one, not only the sword-shaped heat sink but a problem common to all the conventional heat sinks, and it has been impossible to solve it at all in the past. It is a difficult problem. It occurs when the heating element is large or when a plurality of heating elements are arranged in series along the convection flow of the cooling fluid. The state is shown in (a) and (b) of FIG.

【0007】(イ)は長大な発熱体3に従来型のプレー
トフィン形ヒートシンクを適用して放熱せしめる場合を
示してある。この場合はプレートフィン群も長大とな
り、対流4は長いフィン間隙を通過する間に熱交換が進
行し、進行につれて大きく温度上昇せしめられる。図に
於て4−1はプレートフィン内に導入される低温対流を
示し、4−2はプレートフィンから排出される高温対流
を示す。温度上昇に伴って対流は次第に熱交換能力を失
い、従ってプレートフィンは下流側に至るに従い放熱効
率が低下しその存在意義を失うに至る。即ちプレートフ
ィン形ヒートシンクの長大化は放熱手段として有効な手
段とは言えないものであった。
(A) shows a case where a conventional plate fin type heat sink is applied to the long heating element 3 to radiate heat. In this case, the plate fin group also becomes large, and the convection 4 undergoes heat exchange while passing through the long fin gap, and the temperature is greatly increased as it progresses. In the figure, 4-1 indicates low temperature convection introduced into the plate fin, and 4-2 indicates high temperature convection discharged from the plate fin. The convection gradually loses its heat exchanging ability as the temperature rises. Therefore, the heat dissipation efficiency of the plate fin decreases as it reaches the downstream side, and its significance is lost. That is, increasing the length of the plate fin type heat sink cannot be said to be an effective means for heat dissipation.

【0008】(ロ)は3−1、3−2、3−3に示すが
如く発熱素子の複数個が冷却流体の対流の流れに沿って
直列に配置されてある場合を示し、従ってそれらの個々
に配設されるヒートシンクも流れに沿って直列に配置さ
れることになる。図に於ては剣山形ヒートシンクが直列
に配置された例を示してあり、低温対流4−1は上流側
剣山形状ピン群12−1に導入された後順次下流側剣山
形状ピン群12−2及び12−3に導入される。夫々の
ピン群を通過した対流は夫々に熱交換されて温度上昇し
て対流4−2、4−3となり、下流側ピン群内に導入さ
れ、最終的には高温対流4−4になって排出される。こ
の場合も対流4−2の温度上昇により剣山形状ピン群1
2−2の放熱効率は著しく低下し、その影響で対流4−
3の温度は対流4−2の温度より更に大幅に上昇するの
で剣山形状ピン群12−3の放熱効率は剣山形状ピン群
12−2の放熱効率より更に著しく悪化する。従って剣
山形ヒートシンク群全体としての放熱能力は大幅に減殺
されるに至る。即ち対流の同一流れ内に於けるヒートシ
ンク群の直列配置は放熱手段として好ましくない手段と
云える。
(B) shows a case where a plurality of heating elements are arranged in series along the convection flow of the cooling fluid, as shown in 3-1, 3-2, 3-3, and accordingly, those elements are arranged in series. The individually arranged heat sinks are also arranged in series along the flow. The figure shows an example in which Kenyama-shaped heat sinks are arranged in series, and the low temperature convection 4-1 is introduced into the upstream Kenyama-shaped pin group 12-1 and then sequentially to the downstream Kenyama-shaped pin group 12-2. And 12-3. The convections that have passed through the respective pin groups are heat-exchanged with each other and rise in temperature to become convections 4-2 and 4-3, which are introduced into the downstream side pin group and finally become high temperature convection 4-4. Is discharged. In this case as well, the temperature of convection 4-2 rises and the pin-shaped pin group 1
The heat radiation efficiency of 2-2 is remarkably reduced, and convection due to this effect 4-
Since the temperature of No. 3 is much higher than the temperature of the convection 4-2, the heat dissipation efficiency of the sword-shaped pin group 12-3 is much lower than that of the sword-shaped pin group 12-2. Therefore, the heat dissipation ability of the entire sword-shaped heat sink group is greatly reduced. That is, it can be said that the series arrangement of the heat sink groups in the same convection flow is an unfavorable means for heat dissipation.

【0009】[0009]

【課題を解決する為の手段】解決すべき問題点のなかの
第2の問題点は先に本発明者が提案し実用化している出
願中の特許、特願平3−264238号(ワイヤヒート
シンクとその製造方法)及び特願平4−135507号
(l字形状ピン群を有する剣山型ヒートシンク)、を適
用すれば解決することができる。特に特願平4−135
507号の適用はピン群の高さを十分に高くすることが
出来る。後述する課題を解決する為の手段はピン群の高
さを高くすることによりその効果が大きくなる。
The second problem among the problems to be solved is a patent pending in Japanese Patent Application No. 3-264238 (wire heat sink) which has been previously proposed and put into practical use by the present inventor. And its manufacturing method) and Japanese Patent Application No. 4-135507 (Kakeyama type heat sink having a group of l-shaped pins) can solve the problem. Especially Japanese Patent Application No. 4-135
Application of No. 507 can sufficiently increase the height of the pin group. The effect of the means for solving the problems to be described later is increased by increasing the height of the pin group.

【0010】図1は問題点を解決する為の手段の基本的
な構造を示す斜視図である。2は受熱平板、3は発熱素
子で受熱平板2の受熱面2−1と接着されてある。12
は剣山形状ピン群で受熱平板2の放熱面2−2に直立し
て且つ高密度ににろう接または溶接により接着されて一
体化され、剣山形状に形成されてある。1は対流制御管
であって、剣山形状ピン群12の外周面に沿って、放熱
面2−2から所定の高さに至る迄の部分を除き、この所
定の高さから剣山形状ピン群12の高さに至る迄か、ま
たは剣山形状ピン群12の高さを越える所定の高さに至
る迄、薄肉筒状体として挿着されてあり、この対流制御
管1の内壁面は剣山形状ピン群12の外周のピン群に接
着されるか若しくは近接して配置されてある。
FIG. 1 is a perspective view showing the basic structure of means for solving the problems. Reference numeral 2 is a heat receiving flat plate, and 3 is a heating element, which is adhered to the heat receiving surface 2-1 of the heat receiving flat plate 2. 12
Is a sword mountain-shaped pin group which is upright on the heat radiating surface 2-2 of the heat receiving flat plate 2 and is densely adhered by brazing or welding to be integrated with each other to form a sword mountain shape. Reference numeral 1 denotes a convection control tube, which is arranged along the outer peripheral surface of the sword mountain-shaped pin group 12 except for a portion from the heat radiating surface 2-2 to a predetermined height. Up to the predetermined height, or up to a predetermined height exceeding the height of the sword-shaped pin group 12, the inner wall surface of the convection control pipe 1 is a sword-shaped pin. It is adhered to the pin group on the outer periphery of the group 12 or arranged in the vicinity thereof.

【0011】[0011]

【作用】図1に例示の如き剣山形ヒートシンクの適用構
造には基本的な作用として剣山形状ピン群12の内部を
通過する冷却対流4の流れの一部または総てをピン群に
直交する流れからピン群に平行する流れに変える作用が
あり、この流れの変化はヒートシンク応用の放熱方式に
各種の変革と改善をもたらす。 各種の流れの変化とそ
の応用の各種放熱方式及びそれらの効果については以下
の各種実施例により詳述する。
The basic structure of the applied structure of the sword-shaped heat sink as shown in FIG. 1 is that the cooling convection 4 passing through the inside of the sword-shaped pin group 12 partially or wholly flows orthogonal to the pin group. There is an action to change from the to parallel flow to the pin group, and this change of flow brings various changes and improvements to the heat dissipation method of heat sink application. Various changes in the flow, various heat radiation methods of application thereof, and their effects will be described in detail by the following various embodiments.

【0012】[0012]

【実施例】第1実施例 第1実施例に於ける剣山型ヒートシンクは図1に例示の
適用構造のものがそのまま発熱素子3が搭載されてある
基板表面に平行な対流の中に於て発熱素子3の上に配設
される。このような適用構造の場合には、剣山形状ピン
群12の内部を通過する冷却対流の流れは基板表面に平
行な流れ即ちピン群に直交する流れと基板表面に垂直な
流れ即ちピン群に平行な流れとに分流される。この作用
は対流制御管1の上縁を通過する低温対流4−1の作用
により対流制御管1の上縁部分の気圧が降下し、吸引力
を発生し、これによりピン群内部に上昇対流を発生せし
めることにより発揮される。この作用はピン群12の内
部における冷却対流の圧力損失を低下せしめヒートシン
クの放熱能力を向上せしめる効果がある。従って性能向
上の為のファン強力化の必要性を緩和せしめることが出
来る。
[First Embodiment] The Kenzan-type heat sink in the first embodiment has the same application structure as that illustrated in FIG. 1 and generates heat in convection parallel to the substrate surface on which the heating element 3 is mounted. It is arranged on the element 3. In the case of such an application structure, the flow of cooling convection passing through the inside of the pin-shaped pin group 12 is parallel to the substrate surface, that is, orthogonal to the pin group, and perpendicular to the substrate surface, that is, parallel to the pin group. It is divided into two streams. This action is due to the action of the low temperature convection flow 4-1 passing through the upper edge of the convection control tube 1 to reduce the atmospheric pressure at the upper edge portion of the convection control tube 1 and generate a suction force, which causes upward convection inside the pin group. It is exerted by generating it. This action has the effect of reducing the pressure loss of cooling convection inside the pin group 12 and improving the heat dissipation capability of the heat sink. Therefore, it is possible to alleviate the need to strengthen the fan to improve performance.

【0013】この作用は特に特願平4−135507号
(l字形状ピン群を有する剣山型ヒートシンク)に於て
特に大きな効果が発揮される。これはl字形状ピン群に
於てはピンに直交する対流よりピンに平行する対流の方
が熱交換効率が高く圧力損失も小さい特性を有すること
による。又この効果はピン群の高さが高いほど良好な効
果を発揮する。これはピンに平行する流れの部分が長く
なることによる。
This effect is particularly great in Japanese Patent Application No. 4-135507 (Kakeyama type heat sink having a group of l-shaped pins). This is because in the l-shaped pin group, the convection parallel to the pin has a higher heat exchange efficiency and a smaller pressure loss than the convection perpendicular to the pin. Further, this effect is more excellent as the height of the pin group is higher. This is due to the length of the flow section parallel to the pin.

【0014】受熱平板2の面積40mm×40mm、剣
山形状ピン群12の高さ40mm、対流制御管1の高さ
15mmでその10mmが剣山形状ピン群12の先端に
挿着されて構成されたl字形状ピン群を有する剣山型ヒ
ートシンクを、風速3m/sの受熱平板2に平行な対流
のなかに配設して実施した所、熱入力40wの場合の熱
抵抗値は0.67℃/wであった。また対流制御管1を
挿着しない場合同様にして測定した測定値は0.75℃
/wであった。即ち本実施例の適用によって熱抵抗値は
0.08℃/w 改善されたことになる。
The area of the heat receiving flat plate 2 is 40 mm × 40 mm, the height of the sword-shaped pin group 12 is 40 mm, and the height of the convection control tube 1 is 15 mm, 10 mm of which is inserted and attached to the tip of the sword-shaped pin group 12. A sword mountain type heat sink having a letter-shaped pin group was placed in convection parallel to the heat receiving flat plate 2 at a wind speed of 3 m / s, and the thermal resistance value at a heat input of 40 w was 0.67 ° C / w. Met. When the convection control tube 1 is not attached, the measured value is 0.75 ° C.
Was / w. That is, the thermal resistance value was improved by 0.08 ° C./w by applying this embodiment.

【0015】第2実施例 図2は第2実施例を示す説明図であって、一部を断面と
した側面図である。本実施例に於ては発熱素子3が冷却
対流4の流れに沿って直列に配置されてある場合の剣山
形ヒートシンクの適用構造例である。図において冷却対
流の流路は受熱平板に平行なセパレータ平板6により上
下2層に分離されてあり、下側層は熱交換未了の低温対
流の流路9になっており、上側層は熱交換完了後の高温
対流の流路8になっており、剣山形ヒートシンクの受熱
平板側は下側層の低温対流の流路9の中に配置されてあ
り、対流制御管1−1、1−2、1−3、及び1−4の
上側端末はセパレータ平板6を貫通して上側層の高温対
流の流路8の中に開口せしめられてある。
Second Embodiment FIG. 2 is an explanatory view showing a second embodiment, and is a side view with a part in section. The present embodiment is an example of an applied structure of a sword-shaped heat sink when the heating elements 3 are arranged in series along the flow of the cooling convection 4. In the figure, the cooling convection flow path is separated into upper and lower two layers by a separator flat plate 6 parallel to the heat receiving flat plate, the lower layer is a low temperature convection flow path 9 for which heat exchange has not been completed, and the upper layer is heat The flow path 8 for high temperature convection after the replacement is completed, the heat-receiving flat plate side of the sword-shaped heat sink is arranged in the flow path 9 for low temperature convection in the lower layer, and the convection control tubes 1-1, 1- The upper ends of 2, 1-3, and 1-4 penetrate through the separator plate 6 and are opened into the high-temperature convection channels 8 of the upper layer.

【0016】このように構成された剣山形ヒートシンク
の適用構造に於ては、総てのヒートシンクの剣山形状ピ
ン群12−1、12−2、12−3、及び12−4に導
入される対流は総て熱交換未了の低温対流4−1とな
り、熱交換完了後の高温対流4−2は総て高温対流流路
8の中を流れて排出され、下流側のヒートシンク内に流
入することは全くない。従って従来のヒートシンク群の
配設構造に於ける大きな問題点となっていた、上流側の
ヒートシンクから排出された高温対流が下流側のヒート
シンク群の中に流入することにより、下流側のヒートシ
ンク群の放熱性能が大幅に低下する点は完全に解決され
ることになる。このようであるから図2に例示の本発明
の第2実施例は従来に比べて放熱性能が大幅に向上す
る。
In the application structure of the sword mountain type heat sink configured as described above, the convection introduced into the sword mountain shaped pin groups 12-1, 12-2, 12-3 and 12-4 of all the heat sinks. Is all low-temperature convection 4-1 that has not completed heat exchange, and all high-temperature convection 4-2 after completion of heat exchange flows through the high-temperature convection channel 8 and is discharged, and then flows into the heat sink on the downstream side. There is no. Therefore, the high temperature convection discharged from the upstream heat sink flows into the downstream heat sink group, which is a big problem in the conventional heat sink group disposition structure. The point that the heat dissipation performance is significantly reduced will be completely solved. Because of this, the heat radiation performance of the second embodiment of the present invention illustrated in FIG. 2 is significantly improved as compared with the prior art.

【0017】又本実施例の場合各ヒートシンク内を流れ
る冷却対流は総てピンに平行な流れになるから剣山形状
ピン群12内に於ける圧力損失が小さくなる効果があ
る。このことは同一の冷却ファンを使用した場合、静圧
の低下により冷却対流の流速、流量が増加し、各ヒート
シンクの放熱性能が向上する。またファンを小型化せし
め、これにより騒音を緩和せしめる効果もある。
In the case of this embodiment, all the cooling convection flowing in each heat sink is parallel to the pins, so that the pressure loss in the pin-shaped pin group 12 is reduced. This means that when the same cooling fan is used, the static convection decreases, the flow velocity and flow rate of cooling convection increase, and the heat dissipation performance of each heat sink improves. It also has the effect of reducing the size of the fan, which reduces noise.

【0018】更に本実施例にl字形状ピン群を有する剣
山形ヒートシンクを適用すれば、ピン群に平行な対流に
於て特に性能が良好なその特性により、放熱性能は更に
向上させることが出来る。
Further, if the sword-shaped heat sink having the l-shaped pin group is applied to this embodiment, the heat radiation performance can be further improved due to the characteristic that the performance is particularly good in the convection parallel to the pin group. .

【0019】更にまたl字形状ピン群は高さを高くする
ことが自由であるからそれにより放熱性能を極めて大幅
に改善せしめることも可能である。その場合の性能の改
善の割合は、対流制御管1の高さの選択によって自在に
制御することができる。対流制御管1の高さが低い場合
はピン群12に於ける低温対流4−1の流入部分の表面
積が十分に大きくなる。この表面積が仮にこの剣山形ヒ
ートシンクの高温対流4−2の排出口即ち対流制御管1
の上端の開口面積の3倍であったとすれば、流入部分で
の風速が2m/sの低温対流4−1は風速6m/sの高
温対流4−2として、増速されて排出される。このよう
な冷却対流の増速は剣山形ヒートシンクの放熱性能を凡
そ2倍前後に能力増加せしめる。この様で有るから本実
施例に於ては各剣山形ヒートシンクの放熱能力は、対流
制御管1の高さの選択によって自在に制御することがで
きる。
Furthermore, since the height of the l-shaped pin group can be freely increased, it is possible to significantly improve the heat radiation performance. The rate of performance improvement in that case can be freely controlled by selecting the height of the convection control tube 1. When the height of the convection control tube 1 is low, the surface area of the inflow part of the low temperature convection 4-1 in the pin group 12 becomes sufficiently large. This surface area is assumed to be the outlet for the high temperature convection 4-2 of the sword-shaped heat sink, that is, the convection control tube 1.
If it is three times as large as the opening area at the upper end of the, the low temperature convection 4-1 having a wind speed of 2 m / s at the inflow portion is accelerated and discharged as a high temperature convection 4-2 having a wind speed of 6 m / s. Such an increase in cooling convection increases the heat dissipation performance of the sword-shaped heat sink to approximately double. Because of this, in the present embodiment, the heat dissipation capability of each sword-shaped heat sink can be freely controlled by selecting the height of the convection control tube 1.

【0020】第3実施例 図3(イ)(ロ)は本発明の第3実施例を示す一部断面
の側面図である。図は何れも自然対流方式の剣山形ヒー
トシンクであるから、剣山形状ピン群12の高さは充分
に高く形成されてあり、(イ)は剣山形状ピン群12が
垂直に保持されてある適用例であり、(ロ)は剣山形状
ピン群12が水平に保持されてある適用例である。何れ
の例とも対流制御管1は煙突効果が充分に発揮される高
さまで延長されてあり、何れも対流制御管1の延長部分
は垂直に保持されてある。対流制御管1は剣山形状ピン
群12の高さの少なくも先端の1/2を覆っており、こ
の部分が上昇気流の発生を助ける。(イ)においては発
熱素子3が搭載される基板5と機器の筐体壁7との間は
大きな距離が隔てられてあり、対流制御管1はその間に
おいて延長されて、その上端は筐体壁7を貫通して機器
外に開口せしめられてある。(ロ)に於ては基板5と機
器の筐体壁7との間の距離は剣山形状ピン群12の高さ
程度になっており、対流制御管1は筺体壁7を貫通した
後垂直上方に屈曲せしめられ、充分な煙突効果が発揮さ
れる高さまで延長されてある。このように構成された剣
山形ヒートシンクの適用構造に於ては、剣山形状ピン群
12の底部付近から吸入され、ピン群に平行に流れる低
温対流4−1は対流制御管1の煙突効果と剣山形状ピン
群12自身の煙突効果により増速されて剣山形状ピン群
12及び対流制御管1の延長部分の中を通過し、対流制
御管1の延長部分の端末から高温対流4−2として排出
される。実験によればこの冷却対流の増速により剣山形
ヒートシンクの自然対流による放熱性能は20%〜30
%改善される。
Third Embodiment FIGS. 3A and 3B are side views of a partial cross section showing a third embodiment of the present invention. Since all of the figures are natural convection sword-shaped heat sinks, the height of the sword-shaped pin group 12 is formed sufficiently high, and (a) is an application example in which the sword-shaped pin group 12 is held vertically. (B) is an application example in which the sword mountain pin group 12 is held horizontally. In each of the examples, the convection control tube 1 is extended to a height at which the chimney effect is sufficiently exerted, and in both cases, the extended portion of the convection control tube 1 is held vertically. The convection control pipe 1 covers at least half of the height of the sword-shaped pin group 12 at the tip thereof, and this portion assists the generation of an ascending airflow. In (a), a large distance is provided between the substrate 5 on which the heating element 3 is mounted and the housing wall 7 of the device, the convection control tube 1 is extended between them, and the upper end thereof is the housing wall. It penetrates 7 and is opened to the outside of the device. In (b), the distance between the substrate 5 and the housing wall 7 of the device is about the height of the sword-shaped pin group 12, and the convection control tube 1 passes through the housing wall 7 and then vertically upwards. It is bent to a height and is extended to a height where a sufficient chimney effect is exhibited. In the application structure of the Kenzan-shaped heat sink configured as described above, the low temperature convection 4-1 that is sucked in from the vicinity of the bottom of the Kenyama-shaped pin group 12 and flows in parallel to the pin group is the stack effect of the convection control tube 1 and Kenzan. It is accelerated by the chimney effect of the shape pin group 12 itself, passes through the extension of the conical shape pin group 12 and the convection control tube 1, and is discharged as high temperature convection 4-2 from the end of the extension part of the convection control tube 1. It According to the experiment, due to the acceleration of the cooling convection, the heat dissipation performance by natural convection of the Kenyama type heat sink is 20% to 30%.
% Improved.

【0021】第4実施例 図4は第4実施例を示す説明図であって一部断面の側面
図である。本実施例に適用される剣山形ヒートシンクは
自然対流方式ヒートシンクであるか、または剣山形ピン
群内の対流がピン群の底部から吹き込まれる方式の強制
対流方式ヒートシンクであるかの何れかであって、図4
においては複数個の剣山形ヒートシンクが配設されてあ
る。2−1、2−2、2−3は夫々それらのヒートシン
クの受熱平板、12−1、12−2、12−3は夫々剣
山形状ピン群であり、夫々のピン群には夫々対流制御管
1−1、1−2、1−3が挿着されてある。各対流制御
管1の先端部は剣山形ヒートシンクが配設されてある機
器の筺体壁7を貫通して機器の外部に開口せしめられて
ある。これらの対流制御管1は煙突効果を発揮せしめる
ための高さの延長のごとき手段は特に施されていない。
Fourth Embodiment FIG. 4 is an explanatory view showing a fourth embodiment and is a side view with a partial cross section. The sword mountain type heat sink applied to this embodiment is either a natural convection type heat sink or a forced convection type heat sink in which convection in the sword mountain type pin group is blown from the bottom of the pin group. , Fig. 4
In, a plurality of sword-shaped heat sinks are arranged. Reference numerals 2-1, 2-2, 2-3 are heat receiving flat plates of the heat sinks, 12-1, 12-2, 12-3 are sword-shaped pin groups, and each pin group has a convection control tube. 1-1, 1-2, and 1-3 are inserted. The tip of each convection control tube 1 penetrates through the housing wall 7 of the device in which the sword-shaped heat sink is arranged, and is opened to the outside of the device. These convection control tubes 1 are not particularly provided with means such as height extension for exerting a chimney effect.

【0022】このように構成された剣山形ヒートシンク
の適用構造の場合、自然対流方式であっても機器筺体内
に高温対流の流路を設ける必要がないから機器筐体を小
型化出来る利点がある。更に大きな利点は、配設される
剣山形ヒートシンクの数が如何に多数であっても、熱交
換完了後の高温対流によるヒートシンク間相互の熱的干
渉がなく、総てのヒートシンクにそれらの機能を100
%発揮させることが出来る点である。従来の自然体流方
式のごとく、ピン群を水平に保持して配設する場合は、
多数のヒートシンクの中には上下関係に配設されること
が避けられず、上側のヒートシンクは下側のヒートシン
クから排出される高温対流の影響により性能が大幅に低
下するものであった。
In the application structure of the sword-shaped heat sink configured as described above, there is no need to provide a high temperature convection flow path in the housing of the device even if it is a natural convection method. . An even greater advantage is that no matter how many sword-shaped heat sinks are installed, there is no mutual thermal interference between heat sinks due to high temperature convection after heat exchange is completed, and all heat sinks have their functions. 100
It is a point that can be exhibited. As in the conventional natural body flow method, when arranging the pin group horizontally,
It is unavoidable that the heat sinks are arranged in a vertical relationship among a large number of heat sinks, and the performance of the upper heat sink is significantly reduced due to the influence of high temperature convection discharged from the lower heat sink.

【0023】このような剣山形ヒートシンクの適用構造
は必ずしも自然対流方式に限定されるものでなく、強制
対流方式の場合にも同様な効果を発揮する。本実施例の
適用構造において最も有効な強制対流方式の実施手段と
しては、筐体の任意の部分に対流吸い込み手段又は対流
吹き込み手段を設け、筐体の内圧を上昇せしめることが
最も適切である。その場合には図4に例示の如く、低温
対流4−1が発生し、内圧の上昇の程度に応じた流速で
剣山形状ピン群12の中を、ピン群に平行に流れ、ピン
群の熱量を吸収しながら高温対流4−2となって筺体外
に排出される。
The application structure of such a sword-shaped heat sink is not necessarily limited to the natural convection method, and the same effect is exerted even in the case of the forced convection method. As the most effective forced convection method implementing means in the applied structure of the present embodiment, it is most appropriate to provide a convection suction means or a convection blowing means at an arbitrary portion of the housing to increase the internal pressure of the housing. In that case, as illustrated in FIG. 4, low-temperature convection 4-1 is generated, and flows in the pin-shaped pin group 12 parallel to the pin group at a flow velocity corresponding to the degree of increase in internal pressure, and the heat amount of the pin group is generated. While being absorbed, it becomes high temperature convection 4-2 and is discharged to the outside of the housing.

【0024】この実施例に於ける強制対流方式の場合に
は剣山形ヒートシンクの放熱能力が筐体の内圧の上昇の
程度を加減することにより容易に制御することが出来る
ことは優れた特徴である。またこの実施例における剣山
形状ピン群12の中の対流はピン群に平行である上に、
低温対流4−1の流入部の面積は円筒外周面積であり、
充分に面積が広いので、ピン群内に低温対流4−1を流
入せしめる場合の圧力損失が少なく、僅かな静圧で流入
せしめることが可能で有る。このことは各剣山形ヒート
シンクの放熱性能を向上せしめる利点が有るだけでな
く、また放熱性能を大幅に上昇せしめる場合の、筺体の
内圧を上昇せしめる為の手段は特に強力にする必要がな
く、従って騒音の増加も少なくて済む利点が有る。
In the case of the forced convection method in this embodiment, it is an excellent feature that the heat dissipation capacity of the sword-shaped heat sink can be easily controlled by adjusting the degree of increase of the internal pressure of the housing. . The convection in the sword-shaped pin group 12 in this embodiment is parallel to the pin group, and
The area of the inflow part of the low temperature convection 4-1 is the cylinder outer peripheral area,
Since the area is sufficiently wide, there is little pressure loss when the low temperature convection flow 4-1 is made to flow into the pin group, and it is possible to flow it at a slight static pressure. This not only has the advantage of improving the heat dissipation performance of each sword-shaped heat sink, but when significantly increasing the heat dissipation performance, the means for increasing the internal pressure of the housing does not need to be particularly strong. There is an advantage that the increase of noise is small.

【0025】この実施例に於ても第2実施例の場合とま
ったく同様に、剣山形ヒートシンクとしてl字形状ピン
群を有する剣山形ヒートシンクを適用すれば、ピン群1
2の高さを十分に高くすることが容易になる。ピン群1
2の高さが十分高い場合は、対流制御管1の高さのおよ
び挿着位置の選択によってピン群12に於ける低温対流
4−1の流入部分の表面積を調節することが出来る。こ
の表面積と、対流制御管1の上端の開口面積との比率を
選択することにより、ピン群12に流入する低温対流4
−1が増速されて対流制御管1の上端の開口端から、高
温対流4−2として排出される流速の増速率を任意に選
択することが可能で有る。これは各剣山形ヒートシンク
の大幅な性能改善を意味する。
In this embodiment, as in the case of the second embodiment, if the sword mountain heat sink having the l-shaped pin group is applied as the sword mountain heat sink, the pin group 1
It becomes easy to make the height of 2 sufficiently high. Pin group 1
If the height of 2 is sufficiently high, the surface area of the inflow portion of the low temperature convection 4-1 in the pin group 12 can be adjusted by selecting the height of the convection control tube 1 and the insertion position. By selecting the ratio of this surface area to the opening area of the upper end of the convection control tube 1, the low-temperature convection 4 flowing into the pin group 12 is selected.
It is possible to arbitrarily select the rate of increase in the flow velocity of the high-temperature convection flow 4-2, which is accelerated by -1 and is discharged from the upper open end of the convection control pipe 1. This means a significant performance improvement for each sword-shaped heat sink.

【0026】第5実施例及び第6実施例 図2及び図4はそのままで夫々第5実施例及び第6実施
例の剣山形ヒートシンクの適用構造を示す説明図となっ
ている。図2に例示の第2実施例及び図4に例示の第4
実施例に於いては対流制御管1は剣山形ヒートシンクの
剣山形状ピン群12の所定の位置の外周に接着又は近接
して挿着されてある。これに対し第5実施例及び第6実
施例に於ては、対流制御管1は夫々図2に於けるセパレ
ータ平板6の貫通孔、及び図4に於ける筺体壁7の貫通
孔に挿着されて所定の手段にて固定されてあり、剣山形
ヒートシンクはその先端から所定の深さに至るまでこの
対流制御管1の中に挿入配設されて適用される。
Fifth Embodiment and Sixth Embodiment FIG. 2 and FIG. 4 are the same as the above, but are explanatory views showing an applied structure of the sword-shaped heat sink of the fifth embodiment and the sixth embodiment, respectively. The second embodiment illustrated in FIG. 2 and the fourth embodiment illustrated in FIG.
In the embodiment, the convection control tube 1 is adhered or closely attached to the outer periphery of the pin-shaped pin group 12 of the pin-shaped heat sink at a predetermined position. On the other hand, in the fifth and sixth embodiments, the convection control tube 1 is inserted into the through holes of the separator flat plate 6 in FIG. 2 and the through holes of the housing wall 7 in FIG. 4, respectively. The sword-shaped heat sink is inserted and disposed in the convection control tube 1 from its tip to a predetermined depth.

【0027】このように適用される第5実施例及び第6
実施例に於ける剣山形ヒートシンクは夫々第2実施例及
び第4実施例に於ける剣山形ヒートシンクと全く同等に
作用する。即ち剣山形状ピン群の中を通過する低温対流
4−1の大部分はピン群に平行な流れになり、圧力損失
が大幅に低下し熱交換効率は大幅に向上する。特に剣山
形ヒートシンクがl字形状ピン群からなる剣山形ヒート
シンクである場合は、ピン群に平行な対流により特に高
性能を発揮するその特性により、第2、第4、及び第
5、第6の各実施例による性能の向上は極めて著しい。
The fifth and sixth embodiments applied in this way
The sword mountain type heat sink in the embodiment works exactly the same as the sword mountain type heat sink in the second embodiment and the fourth embodiment, respectively. That is, most of the low temperature convection flow 4-1 passing through the Kenzan-shaped pin group becomes a flow parallel to the pin group, the pressure loss is significantly reduced, and the heat exchange efficiency is significantly improved. In particular, when the sword mountain-shaped heat sink is a sword mountain-shaped heat sink composed of l-shaped pin groups, the characteristics that particularly high performance is exhibited by the convection parallel to the pin groups, and thus the second, fourth, fifth, and sixth The performance improvement by each example is extremely remarkable.

【0028】第7実施例及び第8実施例 第7実施例及び第8実施例に於ては夫々図2に例示の第
2実施例、及び図4に例示の第4実施例、から何れも対
流制御管1が削除省略されて適用される。これらの場合
は夫々図2に於けるセパレータ平板6に形成された貫通
孔の内壁面、及び図4に置ける筐体壁に形成された貫通
孔の内壁面、が省略された対流制御管1の代替として適
用されほぼ同等に作用する。この場合はセパレータ平板
6及び筐体壁7が十分に厚肉である場合は、内壁面は管
体の内壁面と同等に作用する。それらが薄肉である場合
は図5の(イ)(ロ)に例示の如きバーリング13が形
成されてあることが望ましい。この場合はバーリング1
3は対流制御管1に近い作用を発揮することが出来る。
Seventh Embodiment and Eighth Embodiment In each of the seventh embodiment and the eighth embodiment, the second embodiment illustrated in FIG. 2 and the fourth embodiment illustrated in FIG. 4 are used. The convection control tube 1 is omitted and applied. In each of these cases, the inner wall surface of the through hole formed in the separator flat plate 6 in FIG. 2 and the inner wall surface of the through hole formed in the housing wall in FIG. 4 are omitted. It is applied as an alternative and works almost equally. In this case, when the separator flat plate 6 and the housing wall 7 are sufficiently thick, the inner wall surface acts similarly to the inner wall surface of the tubular body. When they are thin, it is desirable that the burring 13 as illustrated in FIGS. 5A and 5B be formed. Burring 1 in this case
3 can exert an action close to that of the convection control tube 1.

【0029】セパレータ平板6及び筐体壁7が薄肉のま
までバーリングが形成されていない場合は対流制御管1
の如き整流機能が無いので、対流のピン群に平行な流れ
が減少するので作用効果の一部が失われ剣山形ヒートシ
ンクの性能向上が不完全になる。
When the separator flat plate 6 and the housing wall 7 are thin and no burring is formed, the convection control tube 1
Since there is no such rectification function as described above, the flow parallel to the convection pin group is reduced, so that some of the effects are lost and the performance improvement of the sword-shaped heat sink becomes incomplete.

【0030】[0030]

【発明の効果】本発明の効果については夫々の実施例に
於て詳述した如く、極めて単純な構造の付加部品である
対流制御管を装着したのみにに過ぎないにも拘らず、剣
山形ヒートシンク内の対流の流れはピン群に平行な流れ
に変換され、圧力損失は大幅に低下し、ヒートシンクの
放熱特性を向上せしめるのみならず、騒音を小さくす
る、機器の小型化を可能にする、複数のヒートシンク間
の相互の熱的干渉を防いでそれらの総合的な放熱特性を
向上せしめる、自然対流放熱器の新規な構造を提供す
る、等多くの効果を発揮する。また対流制御管はその高
さおよび剣山形状ピン群に対する挿着位置の選択によっ
て剣山形ヒートシンクの性能をほぼ任意に調節すること
が出来る。これも大きな効果のひとつである。
As described in detail in each of the embodiments of the present invention, the effect of the present invention is that the convection control tube, which is an additional component having an extremely simple structure, is only attached, but the sword mountain shape is used. The convective flow in the heat sink is converted into a flow parallel to the pin group, the pressure loss is significantly reduced, not only improves the heat dissipation characteristics of the heat sink, but also reduces noise and enables miniaturization of equipment. It has many effects such as preventing mutual thermal interference between a plurality of heat sinks and improving their comprehensive heat dissipation characteristics, providing a new structure of a natural convection radiator, and so on. Further, the convection control tube can adjust the performance of the sword-shaped heat sink almost arbitrarily by selecting its height and the insertion position for the sword-shaped pin group. This is also one of the great effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構造及び第一実施例を示す斜視図
である。
FIG. 1 is a perspective view showing a basic structure and a first embodiment of the present invention.

【図2】本発明の第2実施例を示す一部断面の側面図で
ある。
FIG. 2 is a side view of a partial cross section showing a second embodiment of the present invention.

【図3】本発明の第3実施例を示す一部断面の側面図で
ある。
FIG. 3 is a side view of a partial cross section showing a third embodiment of the present invention.

【図4】本発明の第4実施例を示す一部断面の側面図で
ある。
FIG. 4 is a side view of a partial cross section showing a fourth embodiment of the present invention.

【図5】本発明の第7実施例及び第8実施例に共通の説
明図であって一部断面の側面図である。
FIG. 5 is an explanatory view common to the seventh and eighth embodiments of the present invention and is a side view of a partial cross section.

【図6】プレートフィン群形ヒートシンクの斜視図であ
る。
FIG. 6 is a perspective view of a plate fin group heat sink.

【図7】剣山形ヒートシンクの斜視図である。FIG. 7 is a perspective view of a sword-shaped heat sink.

【図8】従来形の放熱状態説明図である。FIG. 8 is a diagram for explaining a conventional heat dissipation state.

【符号の説明】 1 対流制御管 2 受熱平板 3 発熱素子 4 対流 5 素子搭載基板 6 セパレータ平板 7 筺体壁 8 高温対流流路 9 低温対流流路 11 プレートフィン群 12 剣山形状ピン群 13バーリング[Explanation of symbols] 1 convection control tube 2 heat receiving flat plate 3 heat generating element 4 convection 5 element mounting substrate 6 separator flat plate 7 housing wall 8 high temperature convection flow channel 9 low temperature convection flow channel 11 plate fin group 12 Kenyama pin group 13 burring

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図3】 [Figure 3]

【図2】 [Fig. 2]

【図4】 [Figure 4]

【図6】 [Figure 6]

【図5】 [Figure 5]

【図7】 [Figure 7]

【図8】 [Figure 8]

【手続補正書】[Procedure amendment]

【提出日】平成4年8月31日[Submission date] August 31, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 ─────────────────────────────────────────────────────
[Fig. 2] ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月11日[Submission date] December 11, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 剣山形ヒートシンクの適用構造[Title of Invention] Application structure of sword-shaped heat sink

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒートシンクによる発熱
体冷却の為のヒートシンクの適用構造に関するもので、
特に発熱体冷却の為の剣山形ヒートシンクの新規な適用
構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink applied structure for cooling a heating element by a heat sink.
In particular, it relates to a new application structure of a sword-shaped heat sink for cooling a heating element.

【0002】[0002]

【従来の技術】従来構造のプレートフイン群形ヒートシ
ンクはフィン群の整流作用により冷却対流の流れは一定
の方向のみに流れ、乱流の発生が少なく、冷却効率が低
かった。その改善のためルーバ形を初めとして各種のヒ
ートシンクが提案され実用化された。然し近来の半導体
技術の進歩によるIC、LSI等の小型化、高密度化、
に対応する小型ヒートシンクには決定的な改善構造が実
用化に至らず未だに図8の斜視図に示すごとき小型化さ
れたプレートフイン群形ヒートシンクが使用されている
例が多い。図において11はプレートフィン群、2は受
熱平板、2−1は受熱平板の受熱面、2−2は受熱平板
の放熱面であり、3は発熱素子、また4の矢印は冷却対
流を示し4−1は冷却の為の低温対流であり、4−2は
冷却完了後の高温対流である。
2. Description of the Related Art In a plate fin group type heat sink having a conventional structure, the cooling convection flows only in a fixed direction due to the rectifying action of the fin group, the turbulent flow is less likely to occur, and the cooling efficiency is low. In order to improve it, various heat sinks including louver type have been proposed and put into practical use. However, due to recent advances in semiconductor technology, ICs, LSIs, etc. are becoming smaller and higher in density.
In many cases, a downsized plate fin group heat sink as shown in the perspective view of FIG. 8 is still used for the small heat sink corresponding to the above because a decisive improvement structure has not been put to practical use. In the figure, 11 is a plate fin group, 2 is a heat-receiving flat plate, 2-1 is a heat-receiving surface of a heat-receiving flat plate, 2-2 is a heat-dissipating surface of a heat-receiving flat plate, 3 is a heating element, and 4 arrows indicate cooling convection. -1 is a low temperature convection for cooling, and 4-2 is a high temperature convection after completion of cooling.

【0003】現在のIC、LSI等の冷却用ヒートシン
クの改善は、受熱面と放熱面を有する受熱平板の放熱面
に放熱ピン群が剣山形状に形成されてなる剣山形ヒート
シンクの改善実用化が主流となりつつある。その改善
は、ピンの熱伝達係数を大きくするためのピンの細径化
及び高密度化、乱流発生を容易にする為のピンの断面形
状の改善、製造の困難さを克服する為の製造方法の改善
等が主な目標となっている。図9は高密度剣山形ヒート
シンクの一例の斜視図を示す。図に於て図8と異なる点
は12のみであって、12は高密度に形成された剣山形
状ピン群である。
The mainstream of the improvement of current heat sinks for cooling ICs, LSIs, etc. is the practical application of a sword-shaped heat sink in which radiating pins are formed in a ridge shape on the radiating surface of a heat receiving flat plate having a heat receiving surface and a heat radiating surface. Is becoming. The improvement is to reduce the diameter and density of the pin to increase the heat transfer coefficient of the pin, improve the cross-sectional shape of the pin to facilitate the generation of turbulence, and manufacture to overcome the difficulty of manufacturing. The main goal is to improve the method. FIG. 9 shows a perspective view of an example of a high-density sword-shaped heat sink. In the figure, only 12 is different from FIG. 8, and 12 is a pin-shaped pin group formed with high density.

【0004】[0004]

【発明が解決しようとする課題】発明が解決しようとす
る課題は以下に述べる3点の問題点であって本発明はそ
れらを解決するものである。剣山形ヒートシンクは改善
されつつあるにも拘わらず、改善の目標が熱輸送性能の
向上を第一としていた為、問題点は少しも改善されずむ
しろ悪化しつつあるのが実情である。即ちピンの細径化
及び高密度化により受熱平板に平行な強制対流の圧力損
失が増加し、風量、風速を保持する為には冷却ファンを
強力なものにする必要があり、それに伴って騒音が増加
する点が問題であった。この対策として剣山形ヒートシ
ンクの垂直上方から受熱平板に垂直な強制対流を吹きつ
ける手段も採られているが、受熱平板に衝突の後の対流
の流れ方向は結局受熱平板に平行な流れとなり、この場
合の圧力損失が大きいので冷却ファンを強力なものにす
る必要があり、騒音の問題は解消されなかった。これら
の点が解決すべき第一の問題点になっていた。
The problems to be solved by the invention are the following three problems, and the present invention solves them. Although the Kenyama-shaped heat sink is being improved, the goal is to improve the heat transport performance first, so the problem is not improved at all, but rather worsened. That is, the pressure loss of forced convection parallel to the heat-receiving flat plate increases due to the smaller diameter and higher density of the pin, and it is necessary to make the cooling fan powerful in order to maintain the air volume and speed, which causes noise. Was a problem. As a countermeasure against this, a means of blowing forced convection perpendicular to the heat-receiving flat plate from above the sword-shaped heat sink is also adopted, but the flow direction of convection after collision with the heat-receiving flat plate is eventually parallel to the heat-receiving flat plate. Since the pressure loss in this case was large, it was necessary to make the cooling fan powerful, and the noise problem was not solved. These points were the first problems to be solved.

【0005】又第二の問題点としてピンの細径化の推進
及び高密度化の推進はピン群の製作を加速度的に困難な
ものとし、製作費用を高騰せしめ実用を困難ならしめつ
つある。又ピンの細径化及び高密度化は加工技術の点か
らピンに必要な高さを与えることを困難ならしめ、必要
な放熱面積を維持することをも困難ならしめ、目標とす
る冷却性能を発揮することを困難ならしめる恐れをも発
生せしめていた。
As a second problem, the promotion of the diameter reduction and the density increase of the pins make the production of the pin group difficult at an accelerating rate, which raises the production cost and makes it practically difficult. In addition, it is difficult to give the pin the required height from the viewpoint of processing technology by making the pin diameter smaller and the density higher, and it is also difficult to maintain the necessary heat dissipation area, and to achieve the target cooling performance. There was also a fear of making it difficult to exert.

【0006】更に第3の問題点は最も重要な問題点であ
って、剣山形ヒートシンクのみの問題点ではなく従来の
ヒートシンクのすべてに共通する問題点であり従来は全
く解決は不可能とされてきた困難な問題点である。それ
は発熱体が大きかったり、発熱素子の複数個が冷却流体
の対流の流れに沿って直列に配置されてある場合に発生
する。その状態を図10及び図11に示す。
Furthermore, the third problem is the most important one, not only the sword-shaped heat sink but a problem common to all the conventional heat sinks, and it has been impossible to solve it at all in the past. It is a difficult problem. It occurs when the heating element is large or when a plurality of heating elements are arranged in series along the convection flow of the cooling fluid. The state is shown in FIGS. 10 and 11.

【0007】図10は長大な発熱体3に従来型のプレー
トフィン形ヒートシンクを適用して放熱せしめる場合を
示してある。この場合はプレートフィン群も長大とな
り、対流4は長いフィン間隙を通過する間に熱交換が進
行し、進行につれて大きく温度上昇せしめられる。図に
於て4−1はプレートフィン内に導入される低温対流を
示し、4−2はプレートフィンから排出される高温対流
を示す。温度上昇に伴って対流は次第に熱交換能力を失
い、従ってプレートフィンは下流側に至るに従い放熱効
率が低下しその存在意義を失うに至る。即ちプレートフ
ィン形ヒートシンクの長大化は放熱手段として有効な手
段とは言えないものであった。
FIG. 10 shows a case where a conventional plate fin type heat sink is applied to the long heating element 3 to radiate heat. In this case, the plate fin group also becomes large, and the convection 4 undergoes heat exchange while passing through the long fin gap, and the temperature is greatly increased as it progresses. In the figure, 4-1 indicates low temperature convection introduced into the plate fin, and 4-2 indicates high temperature convection discharged from the plate fin. The convection gradually loses its heat exchanging ability as the temperature rises. Therefore, the heat dissipation efficiency of the plate fin decreases as it reaches the downstream side, and its significance is lost. That is, increasing the length of the plate fin type heat sink cannot be said to be an effective means for heat dissipation.

【0008】図11は3−1、3−2、3−3に示すが
如く発熱素子の複数個が冷却流体の対流の流れに沿って
直列に配置されてある場合を示し、従ってそれらの個々
に配設されるヒートシンクも流れに沿って直列に配置さ
れることになる。図に於ては剣山形ヒートシンクが直列
に配置された例を示してあり、低温対流4−1は上流側
剣山形状ピン群12−1に導入された後順次下流側剣山
形状ピン群12−2及び12−3に導入される。夫々の
ピン群を通過した対流は夫々に熱交換されて温度上昇し
て対流4−2、4−3となり、下流側ピン群内に導入さ
れ、最終的には高温対流4−4になって排出される。こ
の場合も対流4−2の温度上昇により剣山形状ピン群1
2−2の放熱効率は著しく低下し、その影響で対流4−
3の温度は対流4−2の温度より更に大幅に上昇するの
で剣山形状ピン群12−3の放熱効率は剣山形状ピン群
12−2の放熱効率より更に著しく悪化する。従って剣
山形ヒートシンク群全体としての放熱能力は大幅に減殺
されるに至る。即ち対流の同一流れ内に於けるヒートシ
ンク群の直列配置は放熱手段として好ましくない手段と
云える。
FIG. 11 shows a case where a plurality of heating elements are arranged in series along the convection flow of the cooling fluid as shown in 3-1, 3-2, and 3-3, and therefore each of them is individually arranged. The heat sinks arranged at are also arranged in series along the flow. The figure shows an example in which Kenyama-shaped heat sinks are arranged in series, and the low temperature convection 4-1 is introduced into the upstream Kenyama-shaped pin group 12-1 and then sequentially to the downstream Kenyama-shaped pin group 12-2. And 12-3. The convections that have passed through the respective pin groups are heat-exchanged with each other and rise in temperature to become convections 4-2 and 4-3, which are introduced into the downstream side pin group and finally become high temperature convection 4-4. Is discharged. In this case as well, the temperature of convection 4-2 rises and the pin-shaped pin group 1
The heat radiation efficiency of 2-2 is remarkably reduced, and convection due to this effect 4-
Since the temperature of No. 3 is much higher than the temperature of the convection 4-2, the heat dissipation efficiency of the sword-shaped pin group 12-3 is much lower than that of the sword-shaped pin group 12-2. Therefore, the heat dissipation ability of the entire sword-shaped heat sink group is greatly reduced. That is, it can be said that the series arrangement of the heat sink groups in the same convection flow is an unfavorable means for heat dissipation.

【0009】[0009]

【課題を解決する為の手段】解決すべき問題点のなかの
第2の問題点は先に本発明者が提案し実用化している出
願中の特許、特願平3−264238号(ワイヤヒート
シンクとその製造方法)及び特願平4−135507号
(l字形状ピン群を有する剣山型ヒートシンク)、を適
用すれば解決することができる。特に特願平4−135
507号の適用はピン群の高さを十分に高くすることが
出来る。後述する課題を解決する為の手段はピン群の高
さを高くすることによりその効果が大きくなる。
The second problem among the problems to be solved is a patent pending in Japanese Patent Application No. 3-264238 (wire heat sink) which has been previously proposed and put into practical use by the present inventor. And its manufacturing method) and Japanese Patent Application No. 4-135507 (Kakeyama type heat sink having a group of l-shaped pins) can solve the problem. Especially Japanese Patent Application No. 4-135
Application of No. 507 can sufficiently increase the height of the pin group. The effect of the means for solving the problems to be described later is increased by increasing the height of the pin group.

【0010】図1は問題点を解決する為の手段の基本的
な構造を示す斜視図である。2は受熱平板、3は発熱素
子で受熱平板2の受熱面2−1と接着されてある。12
は剣山形状ピン群で受熱平板2の放熱面2−2に直立し
て且つ高密度ににろう接または溶接により接着されて一
体化され、剣山形状に形成されてある。1は対流制御管
であって、剣山形状ピン群12の外周面に沿って、放熱
面2−2から所定の高さに至る迄の部分を除き、この所
定の高さから剣山形状ピン群12の高さに至る迄か、ま
たは剣山形状ピン群12の高さを越える所定の高さに至
る迄、薄肉筒状体として挿着されてあり、この対流制御
管1の内壁面は剣山形状ピン群12の外周のピン群に接
着されるか若しくは近接して配置されてある。
FIG. 1 is a perspective view showing the basic structure of means for solving the problems. Reference numeral 2 is a heat receiving flat plate, and 3 is a heating element, which is adhered to the heat receiving surface 2-1 of the heat receiving flat plate 2. 12
Is a sword mountain-shaped pin group which is upright on the heat radiating surface 2-2 of the heat receiving flat plate 2 and is densely adhered by brazing or welding to be integrated with each other to form a sword mountain shape. Reference numeral 1 denotes a convection control tube, which is arranged along the outer peripheral surface of the sword mountain-shaped pin group 12 except for a portion from the heat radiating surface 2-2 to a predetermined height. Up to the predetermined height, or up to a predetermined height exceeding the height of the sword-shaped pin group 12, the inner wall surface of the convection control pipe 1 is a sword-shaped pin. It is adhered to the pin group on the outer periphery of the group 12 or arranged in the vicinity thereof.

【0011】[0011]

【作用】図1に例示の如き剣山形ヒートシンクの適用構
造には基本的な作用として剣山形状ピン群12の内部を
通過する冷却対流4の流れの一部または総てをピン群に
直交する流れからピン群に平行する流れに変える作用が
あり、この流れの変化はヒートシンク応用の放熱方式に
各種の変革と改善をもたらす。 各種の流れの変化とそ
の応用の各種放熱方式及びそれらの効果については以下
の各種実施例により詳述する。
The basic structure of the applied structure of the sword-shaped heat sink as shown in FIG. 1 is that the cooling convection 4 passing through the inside of the sword-shaped pin group 12 partially or wholly flows orthogonal to the pin group. There is an action to change from the to parallel flow to the pin group, and this change of flow brings various changes and improvements to the heat dissipation method of heat sink application. Various changes in the flow, various heat radiation methods of application thereof, and their effects will be described in detail by the following various embodiments.

【0012】[0012]

【実施例】第1実施例 第1実施例に於ける剣山型ヒートシンクは図1に例示の
適用構造のものがそのまま発熱素子3が搭載されてある
基板表面に平行な対流の中に於て発熱素子3の上に配設
される。このような適用構造の場合には、剣山形状ピン
群12の内部を通過する冷却対流の流れは基板表面に平
行な流れ即ちピン群に直交する流れと基板表面に垂直な
流れ即ちピン群に平行な流れとに分流される。この作用
は対流制御管1の上縁を通過する低温対流4−1の作用
により対流制御管1の上縁部分の気圧が降下し、吸引力
を発生し、これによりピン群内部に上昇対流を発生せし
めることにより発揮される。この作用はピン群12の内
部における冷却対流の圧力損失を低下せしめヒートシン
クの放熱能力を向上せしめる効果がある。従って性能向
上の為のファン強力化の必要性を緩和せしめることが出
来る。
[First Embodiment] The Kenzan-type heat sink in the first embodiment has the same application structure as that illustrated in FIG. 1 and generates heat in convection parallel to the substrate surface on which the heating element 3 is mounted. It is arranged on the element 3. In the case of such an application structure, the flow of cooling convection passing through the inside of the pin-shaped pin group 12 is parallel to the substrate surface, that is, orthogonal to the pin group, and perpendicular to the substrate surface, that is, parallel to the pin group. It is divided into two streams. This action is due to the action of the low temperature convection flow 4-1 passing through the upper edge of the convection control tube 1 to reduce the atmospheric pressure at the upper edge portion of the convection control tube 1 and generate a suction force, which causes upward convection inside the pin group. It is exerted by generating it. This action has the effect of reducing the pressure loss of cooling convection inside the pin group 12 and improving the heat dissipation capability of the heat sink. Therefore, it is possible to alleviate the need to strengthen the fan to improve performance.

【0013】この作用は特に特願平4−135507号
(l字形状ピン群を有する剣山型ヒートシンク)に於て
特に大きな効果が発揮される。これはl字形状ピン群に
於てはピンに直交する対流よりピンに平行する対流の方
が熱交換効率が高く圧力損失も小さい特性を有すること
による。又この効果はピン群の高さが高いほど良好な効
果を発揮する。これはピンに平行する流れの部分が長く
なることによる。
This effect is particularly great in Japanese Patent Application No. 4-135507 (Kakeyama type heat sink having a group of l-shaped pins). This is because in the l-shaped pin group, the convection parallel to the pin has a higher heat exchange efficiency and a smaller pressure loss than the convection perpendicular to the pin. Further, this effect is more excellent as the height of the pin group is higher. This is due to the length of the flow section parallel to the pin.

【0014】受熱平板2の面積40mm×40mm、剣
山形状ピン群12の高さ40mm、対流制御管1の高さ
15mmでその10mmが剣山形状ピン群12の先端に
挿着されて構成されたl字形状ピン群を有する剣山型ヒ
ートシンクを、風速3m/sの受熱平板2に平行な対流
のなかに配設して実施した所、熱入力40wの場合の熱
抵抗値は0.67℃/wであった。また対流制御管1を
挿着しない場合同様にして測定した測定値は0.75℃
/wであった。即ち本実施例の適用によって熱抵抗値は
0.08℃/w 改善されたことになる。
The area of the heat receiving flat plate 2 is 40 mm × 40 mm, the height of the sword-shaped pin group 12 is 40 mm, and the height of the convection control tube 1 is 15 mm, 10 mm of which is inserted and attached to the tip of the sword-shaped pin group 12. A sword mountain type heat sink having a letter-shaped pin group was placed in convection parallel to the heat receiving flat plate 2 at a wind speed of 3 m / s, and the thermal resistance value at a heat input of 40 w was 0.67 ° C / w. Met. When the convection control tube 1 is not attached, the measured value is 0.75 ° C.
Was / w. That is, the thermal resistance value was improved by 0.08 ° C./w by applying this embodiment.

【0015】第2実施例 図2は第2実施例を示す説明図であって、一部を断面と
した側面図である。本実施例に於ては発熱素子3が冷却
対流4の流れに沿って直列に配置されてある場合の剣山
形ヒートシンクの適用構造例である。図において冷却対
流の流路は受熱平板に平行なセパレータ平板6により上
下2層に分離されてあり、下側層は熱交換未了の低温対
流の流路9になっており、上側層は熱交換完了後の高温
対流の流路8になっており、剣山形ヒートシンクの受熱
平板側は下側層の低温対流の流路9の中に配置されてあ
り、対流制御管1−1、1−2、1−3、及び1−4の
上側端末はセパレータ平板6を貫通して上側層の高温対
流の流路8の中に開口せしめられてある。図に於ける低
温対流4−1及び高温対流4−2は冷却ファンなどの対
流発生手段により低温対流流路9の内圧を高温対流流路
8の内圧より高圧に保持することにより発生する。
Second Embodiment FIG. 2 is an explanatory view showing a second embodiment, and is a side view with a part in section. The present embodiment is an example of an applied structure of a sword-shaped heat sink when the heating elements 3 are arranged in series along the flow of the cooling convection 4. In the figure, the cooling convection flow path is separated into upper and lower two layers by a separator flat plate 6 parallel to the heat receiving flat plate, the lower layer is a low temperature convection flow path 9 for which heat exchange has not been completed, and the upper layer is heat The flow path 8 for high temperature convection after the replacement is completed, the heat-receiving flat plate side of the sword-shaped heat sink is arranged in the flow path 9 for low temperature convection in the lower layer, and the convection control tubes 1-1, 1- The upper ends of 2, 1-3, and 1-4 penetrate through the separator plate 6 and are opened into the high-temperature convection channels 8 of the upper layer. The low temperature convection 4-1 and the high temperature convection 4-2 in the figure are generated by keeping the internal pressure of the low temperature convection flow passage 9 higher than the internal pressure of the high temperature convection flow passage 8 by a convection generating means such as a cooling fan.

【0016】このように構成された剣山形ヒートシンク
の適用構造に於ては、総てのヒートシンクの剣山形状ピ
ン群12−1、12−2、12−3、及び12−4に導
入される対流は総て熱交換未了の低温対流4−1とな
り、熱交換完了後の高温対流4−2は総て高温対流流路
8の中を流れて排出され、下流側のヒートシンク内に流
入することは全くない。従って従来のヒートシンク群の
配設構造に於ける大きな問題点となっていた、上流側の
ヒートシンクから排出された高温対流が下流側のヒート
シンク群の中に流入することにより、下流側のヒートシ
ンク群の放熱性能が大幅に低下する点は完全に解決され
ることになる。このようであるから図2に例示の本発明
の第2実施例は従来に比べて放熱性能が大幅に向上す
る。
In the application structure of the sword mountain type heat sink configured as described above, the convection introduced into the sword mountain shaped pin groups 12-1, 12-2, 12-3 and 12-4 of all the heat sinks. Is all low-temperature convection 4-1 that has not completed heat exchange, and all high-temperature convection 4-2 after completion of heat exchange flows through the high-temperature convection channel 8 and is discharged, and then flows into the heat sink on the downstream side. There is no. Therefore, the high temperature convection discharged from the upstream heat sink flows into the downstream heat sink group, which is a big problem in the conventional heat sink group disposition structure. The point that the heat dissipation performance is significantly reduced will be completely solved. Because of this, the heat radiation performance of the second embodiment of the present invention illustrated in FIG. 2 is significantly improved as compared with the prior art.

【0017】又本実施例の場合各ヒートシンク内を流れ
る冷却対流は総てピンに平行な流れになるから剣山形状
ピン群12内に於ける圧力損失が小さくなる効果があ
る。このことは同一の冷却ファンを使用した場合、静圧
の低下により冷却対流の流速、流量が増加し、各ヒート
シンクの放熱性能が向上する。またファンを小型化せし
め、これにより騒音を緩和せしめる効果もある。
In the case of this embodiment, all the cooling convection flowing in each heat sink is parallel to the pins, so that the pressure loss in the pin-shaped pin group 12 is reduced. This means that when the same cooling fan is used, the static convection decreases, the flow velocity and flow rate of cooling convection increase, and the heat dissipation performance of each heat sink improves. It also has the effect of reducing the size of the fan, which reduces noise.

【0018】更に本実施例にl字形状ピン群を有する剣
山形ヒートシンクを適用すれば、ピン群に平行な対流に
於て特に性能が良好なその特性により、放熱性能は更に
向上させることが出来る。
Further, if the sword-shaped heat sink having the l-shaped pin group is applied to this embodiment, the heat radiation performance can be further improved due to the characteristic that the performance is particularly good in the convection parallel to the pin group. .

【0019】更にまたl字形状ピン群は高さを高くする
ことが自由であるからそれにより放熱性能を極めて大幅
に改善せしめることも可能である。その場合の性能の改
善の割合は、対流制御管1の高さの選択によって自在に
制御することができる。対流制御管1の高さが低い場合
はピン群12に於ける低温対流4−1の流入部分の表面
積が十分に大きくなる。この表面積が仮にこの剣山形ヒ
ートシンクの高温対流4−2の排出口即ち対流制御管1
の上端の開口面積の3倍であったとすれば、流入部分で
の風速が2m/sの低温対流4−1は風速6m/sの高
温対流4−2として、増速されて排出される。このよう
な冷却対流の増速は剣山形ヒートシンクの放熱性能を凡
そ2倍前後に能力増加せしめる。この様で有るから本実
施例に於ては各剣山形ヒートシンクの放熱能力は、対流
制御管1の高さの選択によって自在に制御することがで
きる。
Furthermore, since the height of the l-shaped pin group can be freely increased, it is possible to significantly improve the heat radiation performance. The rate of performance improvement in that case can be freely controlled by selecting the height of the convection control tube 1. When the height of the convection control tube 1 is low, the surface area of the inflow part of the low temperature convection 4-1 in the pin group 12 becomes sufficiently large. This surface area is assumed to be the outlet for the high temperature convection 4-2 of the sword-shaped heat sink, that is, the convection control tube 1.
If it is three times as large as the opening area at the upper end of the, the low temperature convection 4-1 having a wind speed of 2 m / s at the inflow portion is accelerated and discharged as a high temperature convection 4-2 having a wind speed of 6 m / s. Such an increase in cooling convection increases the heat dissipation performance of the sword-shaped heat sink to approximately double. Because of this, in the present embodiment, the heat dissipation capability of each sword-shaped heat sink can be freely controlled by selecting the height of the convection control tube 1.

【0020】第3実施例 図3、図4は本発明の第3実施例を示す一部断面の側面
図である。図は何れも自然対流方式の剣山形ヒートシン
クであるから、剣山形状ピン群12の高さは充分に高く
形成されてあり、図3は剣山形状ピン群12が垂直に保
持されてある適用例であり、図4は剣山形状ピン群12
が水平に保持されてある適用例である。何れの例とも対
流制御管1は煙突効果が充分に発揮される高さまで延長
されてあり、何れも対流制御管1の延長部分は垂直に保
持されてある。対流制御管1は剣山形状ピン群12の高
さの少なくも先端の1/2を覆っており、この部分が上
昇気流の発生を助ける。図3においては発熱素子3が搭
載される基板5と機器の筐体壁7との間は大きな距離が
隔てられてあり、対流制御管1はその間において延長さ
れて、その上端は筐体壁7を貫通して機器外に開口せし
められてある。図4に於ては基板5と機器の筐体壁7と
の間の距離は剣山形状ピン群12の高さ程度になってお
り、対流制御管1は筐体壁7を貫通した後垂直上方に屈
曲せしめられ、充分な煙突効果が発揮される高さまで延
長されてある。このように構成された剣山形ヒートシン
クの適用構造に於ては、剣山形状ピン群12の底部付近
から吸入され、ピン群に平行に流れる低温対流4−1は
対流制御管1の煙突効果と剣山形状ピン群12自身の煙
突効果により増速されて剣山形状ピン群12及び対流制
御管1の延長部分の中を通過し、対流制御管1の延長部
分の端末から高温対流4−2として排出される。実験に
よればこの冷却対流の増速により剣山形ヒートシンクの
自然対流による放熱性能は20%〜30%改善される。
Third Embodiment FIGS. 3 and 4 are side views of partial cross sections showing a third embodiment of the present invention. Since all of the figures are natural convection type sword mountain type heat sinks, the height of the sword mountain shaped pin group 12 is formed sufficiently high, and FIG. 3 is an application example in which the sword mountain shaped pin group 12 is held vertically. Yes, Fig. 4 shows a pin group 12
Is an application example in which is held horizontally. In each of the examples, the convection control tube 1 is extended to a height at which the chimney effect is sufficiently exerted, and in both cases, the extended portion of the convection control tube 1 is held vertically. The convection control pipe 1 covers at least half of the height of the sword-shaped pin group 12 at the tip thereof, and this portion assists the generation of an ascending airflow. In FIG. 3, a large distance is provided between the substrate 5 on which the heating element 3 is mounted and the housing wall 7 of the device, the convection control tube 1 is extended between them, and the upper end thereof is the housing wall 7 It penetrates through and is opened to the outside of the equipment. In FIG. 4, the distance between the substrate 5 and the housing wall 7 of the device is about the height of the sword-shaped pin group 12, and the convection control tube 1 passes through the housing wall 7 and then vertically upwards. It is bent to a height and is extended to a height where a sufficient chimney effect is exhibited. In the application structure of the Kenzan-shaped heat sink configured as described above, the low temperature convection 4-1 that is sucked in from the vicinity of the bottom of the Kenyama-shaped pin group 12 and flows in parallel to the pin group is the stack effect of the convection control tube 1 and Kenzan. It is accelerated by the chimney effect of the shape pin group 12 itself, passes through the extension of the conical shape pin group 12 and the convection control tube 1, and is discharged as high temperature convection 4-2 from the end of the extension part of the convection control tube 1. It According to the experiment, the heat dissipation performance by natural convection of the sword-shaped heat sink is improved by 20% to 30% by the acceleration of the cooling convection.

【0021】第4実施例 図5は第4実施例を示す説明図であって一部断面の側面
図である。本実施例に適用される剣山形ヒートシンクは
自然対流方式ヒートシンクであるか、または剣山形ピン
群内の対流がピン群の底部から吹き込まれる方式の強制
対流方式ヒートシンクであるかの何れかであって、図5
においては複数個の剣山形ヒートシンクが配設されてあ
る。2−1、2−2、2−3は夫々それらのヒートシン
クの受熱平板、12−1、12−2、12−3は夫々剣
山形状ピン群であり、夫々のピン群には夫々対流制御管
1−1、1−2、1−3が挿着されてある。各対流制御
管1の先端部は剣山形ヒートシンクが配設されてある機
器の筐体壁7を貫通して機器の外部に開口せしめられて
ある。これらの対流制御管1は煙突効果を発揮せしめる
ための高さの延長のごとき手段は特に施されていない。
Fourth Embodiment FIG. 5 is an explanatory view showing a fourth embodiment and is a side view with a partial cross section. The sword mountain type heat sink applied to this embodiment is either a natural convection type heat sink or a forced convection type heat sink in which convection in the sword mountain type pin group is blown from the bottom of the pin group. , Fig. 5
In, a plurality of sword-shaped heat sinks are arranged. Reference numerals 2-1, 2-2, 2-3 are heat receiving flat plates of the heat sinks, 12-1, 12-2, 12-3 are sword-shaped pin groups, and each pin group has a convection control tube. 1-1, 1-2, and 1-3 are inserted. The tip portion of each convection control tube 1 penetrates through the housing wall 7 of the device in which the sword-shaped heat sink is arranged and is opened to the outside of the device. These convection control tubes 1 are not particularly provided with means such as height extension for exerting a chimney effect.

【0022】このように構成された剣山形ヒートシンク
の適用構造の場合、自然対流方式であっても機器筐体内
に高温対流の流路を設ける必要がないから機器筐体を小
型化出来る利点がある。更に大きな利点は、配設される
剣山形ヒートシンクの数が如何に多数であっても、熱交
換完了後の高温対流によるヒートシンク間相互の熱的干
渉がなく、総てのヒートシンクにそれらの機能を100
%発揮させることが出来る点である。従来の自然対流方
式のごとく、ピン群を水平に保持して配設する場合は、
多数のヒートシンクの中には上下関係に配設されること
が避けられず、上側のヒートシンクは下側のヒートシン
クから排出される高温対流の影響により性能が大幅に低
下するものであった。
In the case of the application structure of the sword mountain type heat sink configured as described above, there is no need to provide a high temperature convection flow path in the equipment housing even if it is a natural convection method, so that there is an advantage that the equipment housing can be downsized. . An even greater advantage is that no matter how many sword-shaped heat sinks are installed, there is no mutual thermal interference between heat sinks due to high temperature convection after heat exchange is completed, and all heat sinks have their functions. 100
It is a point that can be exhibited. As in the conventional natural convection method, when arranging and holding the pin group horizontally,
It is unavoidable that the heat sinks are arranged in a vertical relationship among a large number of heat sinks, and the performance of the upper heat sink is significantly reduced due to the influence of high temperature convection discharged from the lower heat sink.

【0023】このような剣山形ヒートシンクの適用構造
は必ずしも自然対流方式に限定されるものでなく、強制
対流方式の場合にも同様な効果を発揮する。本実施例の
適用構造において最も有効な強制対流方式の実施手段と
しては、筐体の任意の部分に対流吸い込み手段又は対流
吹き込み手段を設け、筐体の内圧を上昇せしめることが
最も適切である。その場合には図5に例示の如く、低温
対流4−1が発生し、内圧の上昇の程度に応じた流速で
剣山形状ピン群12の中を、ピン群に平行に流れ、ピン
群の熱量を吸収しながら高温対流4−2となって筐体外
に排出される。
The application structure of such a sword-shaped heat sink is not necessarily limited to the natural convection method, and the same effect is exerted even in the case of the forced convection method. As the most effective forced convection method implementing means in the applied structure of the present embodiment, it is most appropriate to provide a convection suction means or a convection blowing means at an arbitrary portion of the housing to increase the internal pressure of the housing. In that case, as illustrated in FIG. 5, low-temperature convection 4-1 is generated, and flows in the pin-shaped pin group 12 parallel to the pin group at a flow velocity corresponding to the degree of increase in internal pressure, and the heat amount of the pin group is generated. While being absorbed, high-temperature convection 4-2 is generated and is discharged to the outside of the housing.

【0024】この実施例に於ける強制対流方式の場合に
は剣山形ヒートシンクの放熱能力が筐体の内圧の上昇の
程度を加減することにより容易に制御することが出来る
ことは優れた特徴である。またこの実施例における剣山
形状ピン群12の中の対流はピン群に平行である上に、
低温対流4−1の流入部の面積は円筒外周面積であり、
充分に面積が広いので、ピン群内に低温対流4−1を流
入せしめる場合の圧力損失が少なく、僅かな静圧で流入
せしめることが可能で有る。このことは各剣山形ヒート
シンクの放熱性能を向上せしめる利点が有るだけでな
く、また放熱性能を大幅に上昇せしめる場合の、筐体の
内圧を上昇せしめる為の手段は特に強力にする必要がな
く、従って騒音の増加も少なくて済む利点が有る。
In the case of the forced convection method in this embodiment, it is an excellent feature that the heat dissipation capacity of the sword-shaped heat sink can be easily controlled by adjusting the degree of increase of the internal pressure of the housing. . The convection in the sword-shaped pin group 12 in this embodiment is parallel to the pin group, and
The area of the inflow part of the low temperature convection 4-1 is the cylinder outer peripheral area,
Since the area is sufficiently wide, there is little pressure loss when the low temperature convection flow 4-1 is made to flow into the pin group, and it is possible to flow it at a slight static pressure. This not only has the advantage of improving the heat dissipation performance of each sword mountain type heat sink, but when significantly increasing the heat dissipation performance, the means for increasing the internal pressure of the housing does not need to be particularly strong, Therefore, there is an advantage that the increase of noise is small.

【0025】この実施例に於ても第2実施例の場合とま
ったく同様に、剣山形ヒートシンクとしてl字形状ピン
群を有する剣山形ヒートシンクを適用すれば、ピン群1
2の高さを十分に高くすることが容易になる。ピン群1
2の高さが十分高い場合は、対流制御管1の高さのおよ
び挿着位置の選択によってピン群12に於ける低温対流
4−1の流入部分の表面積を調節することが出来る。こ
の表面積と、対流制御管1の上端の開口面積との比率を
選択することにより、ピン群12に流入する低温対流4
−1が増速されて対流制御管1の上端の開口端から、高
温対流4−2として排出される流速の増速率を任意に選
択することが可能で有る。これは各剣山形ヒートシンク
の大幅な性能改善を意味する。
In this embodiment, as in the case of the second embodiment, if the sword mountain heat sink having the l-shaped pin group is applied as the sword mountain heat sink, the pin group 1
It becomes easy to make the height of 2 sufficiently high. Pin group 1
If the height of 2 is sufficiently high, the surface area of the inflow portion of the low temperature convection 4-1 in the pin group 12 can be adjusted by selecting the height of the convection control tube 1 and the insertion position. By selecting the ratio of this surface area to the opening area of the upper end of the convection control tube 1, the low-temperature convection 4 flowing into the pin group 12 is selected.
It is possible to arbitrarily select the rate of increase in the flow velocity of the high-temperature convection flow 4-2, which is accelerated by -1 and is discharged from the upper open end of the convection control pipe 1. This means a significant performance improvement for each sword-shaped heat sink.

【0026】第5実施例及び第6実施例 図2及び図5はそのままで夫々第5実施例及び第6実施
例の剣山形ヒートシンクの適用構造を示す説明図となっ
ている。図2に例示の第2実施例及び図5に例示の第4
実施例に於いては対流制御管1は剣山形ヒートシンクの
剣山形状ピン群12の所定の位置の外周に接着又は近接
して挿着されてある。これに対し第5実施例及び第6実
施例に於ては、対流制御管1は夫々図2に於けるセパレ
ータ平板6の貫通孔、及び図5に於ける筐体壁7の貫通
孔に挿着されて所定の手段にて固定されてあり、剣山形
ヒートシンクはその先端から所定の深さに至るまでこの
対流制御管1の中に挿入配設されて適用される。
Fifth Embodiment and Sixth Embodiment FIG. 2 and FIG. 5 are the same as the above, respectively, and are explanatory views showing an applied structure of the bayonet-shaped heat sink of the fifth embodiment and the sixth embodiment, respectively. The second embodiment illustrated in FIG. 2 and the fourth embodiment illustrated in FIG.
In the embodiment, the convection control tube 1 is adhered or closely attached to the outer periphery of the pin-shaped pin group 12 of the pin-shaped heat sink at a predetermined position. On the other hand, in the fifth and sixth embodiments, the convection control tube 1 is inserted into the through hole of the separator flat plate 6 in FIG. 2 and the through hole of the housing wall 7 in FIG. 5, respectively. It is attached and fixed by a predetermined means, and the sword-shaped heat sink is applied by being inserted and arranged in the convection control tube 1 from its tip to a predetermined depth.

【0027】このように適用される第5実施例及び第6
実施例に於ける剣山形ヒートシンクは夫々第2実施例及
び第4実施例に於ける剣山形ヒートシンクと全く同等に
作用する。即ち剣山形状ピン群の中を通過する低温対流
4−1の大部分はピン群に平行な流れになり、圧力損失
が大幅に低下し熱交換効率は大幅に向上する。特に剣山
形ヒートシンクがl字形状ピン群からなる剣山形ヒート
シンクである場合は、ピン群に平行な対流により特に高
性能を発揮するその特性により、第2、第4、及び第
5、第6の各実施例による性能の向上は極めて著しい。
The fifth and sixth embodiments applied in this way
The sword mountain type heat sink in the embodiment works exactly the same as the sword mountain type heat sink in the second embodiment and the fourth embodiment, respectively. That is, most of the low temperature convection flow 4-1 passing through the Kenzan-shaped pin group becomes a flow parallel to the pin group, the pressure loss is significantly reduced, and the heat exchange efficiency is significantly improved. In particular, when the sword mountain-shaped heat sink is a sword mountain-shaped heat sink composed of l-shaped pin groups, the characteristics that particularly high performance is exhibited by the convection parallel to the pin groups, and thus the second, fourth, fifth, and sixth The performance improvement by each example is extremely remarkable.

【0028】第7実施例及び第8実施例 第7実施例及び第8実施例に於ては夫々図2に例示の第
2実施例、及び図5に例示の第4実施例、から何れも対
流制御管1が削除省略されて適用される。これらの場合
は夫々図2に於けるセパレータ平板6に形成された貫通
孔の内壁面、及び図5に置ける筐体壁に形成された貫通
孔の内壁面、が省略された対流制御管1の代替として適
用されほぼ同等に作用する。この場合はセパレータ平板
6及び筐体壁7が十分に厚肉である場合は、内壁面は管
体の内壁面と同等に作用する。それらが薄肉である場合
は図6、図7に例示の如きバーリング13が形成されて
あることが望ましい。この場合はバーリング13は対流
制御管1に近い作用を発揮することが出来る。
Seventh Embodiment and Eighth Embodiment In each of the seventh embodiment and the eighth embodiment, the second embodiment illustrated in FIG. 2 and the fourth embodiment illustrated in FIG. 5 are both used. The convection control tube 1 is omitted and applied. In these cases, the inner wall surface of the through hole formed in the separator flat plate 6 in FIG. 2 and the inner wall surface of the through hole formed in the housing wall in FIG. It is applied as an alternative and works almost equally. In this case, when the separator flat plate 6 and the housing wall 7 are sufficiently thick, the inner wall surface acts similarly to the inner wall surface of the tubular body. When they are thin, it is desirable that the burring 13 as illustrated in FIGS. 6 and 7 is formed. In this case, the burring 13 can exert an action close to that of the convection control tube 1.

【0029】セパレータ平板6及び筐体壁7が薄肉のま
までバーリングが形成されていない場合は対流制御管1
の如き整流機能が無いので、対流のピン群に平行な流れ
が減少するので作用効果の一部が失われ剣山形ヒートシ
ンクの性能向上が不完全になる。
When the separator flat plate 6 and the housing wall 7 are thin and no burring is formed, the convection control tube 1
Since there is no such rectification function as described above, the flow parallel to the convection pin group is reduced, so that some of the effects are lost and the performance improvement of the sword-shaped heat sink becomes incomplete.

【0030】第9実施例 図12は本発明の剣山形ヒートシンクの適用構造の第9
実施例であって、小型の冷却ファン14が剣山形ヒート
シンクのフィン群12の上部先端に取りつけられてあ
る。対流制御管1は冷却ファン14内の対流流路の円筒
状内壁及び剣山形ヒートシンクのフィン群12の上部外
周に跨がって共通して取りつけられてある。冷却ファン
14の対流流路14−1の円筒形状内壁を対流制御管と
して併用する場合は対流制御管1は省略される。15は
冷却ファン支持手段であって、多数の通風口が設けられ
た円筒であっても良く、複数本の支柱であっても良い。
このように小型冷却ファンと剣山形ヒートシンクが一体
になりユニット化された適用構造は、冷却ファン14の
対流排出口14−2を、筐体壁にそれを貫通して設けら
れた高温対流排出口(図面は省略する)に取りつけて配
設することにより、第2実施例の構造を、高温対流流路
が省略された簡易な構造にすることが出来るので機器筺
体を簡易小型なものとすることが出来る。また図12の
適用構造はそのまま小型放熱器として使用して、発熱素
子個々の簡易放熱器として使用することも出来る。
Ninth Embodiment FIG. 12 shows a ninth embodiment of the application structure of the sword mountain heat sink of the present invention.
In the embodiment, a small cooling fan 14 is attached to the top end of the fin group 12 of the blade-shaped heat sink. The convection control tube 1 is commonly mounted across the cylindrical inner wall of the convection flow path in the cooling fan 14 and the upper outer periphery of the fin group 12 of the sword-shaped heat sink. When the cylindrical inner wall of the convection flow passage 14-1 of the cooling fan 14 is also used as the convection control pipe, the convection control pipe 1 is omitted. Reference numeral 15 denotes a cooling fan supporting means, which may be a cylinder provided with a large number of ventilation holes or a plurality of columns.
As described above, the applied structure in which the small cooling fan and the sword-shaped heat sink are integrated into a unit is a high-temperature convection outlet that is formed by penetrating the convection outlet 14-2 of the cooling fan 14 in the housing wall. Since the structure of the second embodiment can be made into a simple structure in which the high temperature convection flow path is omitted by mounting the device housing (not shown in the drawing), the device housing can be made simple and small. Can be done. Further, the applied structure of FIG. 12 can be used as it is as a small radiator, and can also be used as a simple radiator for each heating element.

【0031】前述の第2実施例及び第4〜第9実施例に
於ける強制対流方式適用の場合、対流発生手段のファン
を逆方向に作用せしめて適用しても本発明を実施するこ
とは可能である。この場合は図2及び図5、図12の対
流の流れ方向はすべて逆方向となり、高温対流は低温対
流となり、低温対流は高温対流になる。このような適用
構造を第10実施例とする。第10実施例の作用効果は
夫々第2実施例及び第4〜第9実施例の夫々とほぼ同等
に近い。然し第10実施例は何れもフィン群12から熱
吸収を完了した高温対流が発熱素子側に吹きつけられる
ことになるので、第2実施例及び第4〜第9実施例の夫
々より冷却効果が低下することは免れない。また機器内
の各種部品実装部分に近接して高温対流が流れることに
なるからその影響についても配慮する必要がある。それ
にも拘らず機器設計上やむを得ない場合には第10実施
例の如く適用しても良く、その場合も従来の問題点はほ
ぼ解決することが出来る。
In the case of applying the forced convection method in the above-described second embodiment and fourth to ninth embodiments, the present invention can be implemented even if the fan of the convection generating means is applied in the reverse direction. It is possible. In this case, the flow directions of the convection in FIGS. 2, 5, and 12 are all opposite directions, the high temperature convection becomes the low temperature convection, and the low temperature convection becomes the high temperature convection. Such an applied structure is referred to as a tenth embodiment. The operational effects of the tenth embodiment are almost the same as those of the second embodiment and the fourth to ninth embodiments, respectively. However, in the tenth embodiment, since the high temperature convection that has completed the heat absorption from the fin group 12 is blown to the heating element side, the cooling effect is better than that of each of the second embodiment and the fourth to ninth embodiments. It cannot avoid being lowered. In addition, high temperature convection flows near the parts mounting parts in the equipment, so it is necessary to consider the influence. Nevertheless, if it is unavoidable in terms of equipment design, it may be applied as in the tenth embodiment, and in that case, the conventional problems can be almost solved.

【0032】[0032]

【発明の効果】本発明の効果については夫々の実施例に
於て詳述した如く、極めて単純な構造の付加部品である
対流制御管を装着したのみに過ぎないにも拘らず、剣山
形ヒートシンク内の対流の流れはピン群に平行な流れに
変換され、圧力損失は大幅に低下し、ヒートシンクの放
熱特性を向上せしめる。またセパレータ平板との組み合
わせによりその放熱特性は更に向上するのみならず、騒
音を小さくする、機器の小型化を可能にする、複数のヒ
ートシンク間の相互の熱的干渉を防いでそれらの総合的
な放熱特性を向上せしめる、自然対流放熱器の新規な構
造を提供する、等多くの効果を発揮する。 また対流制
御管はその高さおよび剣山形状ピン群に対する挿着位置
の選択によって剣山形ヒートシンクの性能をほぼ任意に
調節することが出来る。これも大きな効果のひとつであ
る。
As described in detail in each of the embodiments of the present invention, the sword-shaped heat sink is used even though only the convection control tube, which is an additional component having an extremely simple structure, is mounted. The convective flow inside is converted into a flow parallel to the pin group, the pressure loss is greatly reduced, and the heat dissipation characteristic of the heat sink is improved. The combination of the separator and the flat plate not only further improves its heat dissipation characteristics, but also reduces noise, enables device miniaturization, prevents mutual thermal interference between multiple heat sinks, and improves their comprehensive characteristics. It has many effects such as improving the heat dissipation characteristics and providing a new structure of natural convection radiator. Further, the convection control tube can adjust the performance of the sword-shaped heat sink almost arbitrarily by selecting its height and the insertion position for the sword-shaped pin group. This is also one of the great effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構造及び第一実施例を示す斜視図
である。
FIG. 1 is a perspective view showing a basic structure and a first embodiment of the present invention.

【図2】本発明の第2実施例を示す一部断面の側面図で
ある。
FIG. 2 is a side view of a partial cross section showing a second embodiment of the present invention.

【図3】[Figure 3]

【図4】本発明の第3実施例を示す一部断面の側面図で
ある。
FIG. 4 is a side view of a partial cross section showing a third embodiment of the present invention.

【図5】本発明の第4実施例を示す一部断面の側面図で
ある。
FIG. 5 is a side view of a partial cross section showing a fourth embodiment of the present invention.

【図6】[Figure 6]

【図7】本発明の第7実施例及び第8実施例に共通の説
明図であって一部断面の側面図である。
FIG. 7 is an explanatory view common to the seventh and eighth embodiments of the present invention and is a side view of a partial cross section.

【図8】従来のプレートフィン群形ヒートシンクの斜視
図である。
FIG. 8 is a perspective view of a conventional plate fin group heat sink.

【図9】従来の剣山形ヒートシンクの斜視図である。FIG. 9 is a perspective view of a conventional sword-shaped heat sink.

【図10】[Figure 10]

【図11】従来形ヒ〜トシンクの放熱状態説明図であ
る。
FIG. 11 is a diagram for explaining a heat radiation state of a conventional heat sink.

【図12】本発明の第9実施例を示す説明図で一部断面
の側面図である。
FIG. 12 is a side view, partly in section, of an explanatory view showing a ninth embodiment of the present invention.

【符号の説明】 1 対流制御管 2 受熱平板 3 発熱素子 4 対流 5 素子搭載基板 6 セパレータ平板 7 筺体壁 8 高温対流流路 9 低温対流流路 11 プレートフィン群 12 剣山形状ピン群 13 パーリング 14 冷却ファン 15 ファン支持手段[Explanation of symbols] 1 convection control tube 2 heat receiving flat plate 3 heat generating element 4 convection 5 element mounting substrate 6 separator flat plate 7 housing wall 8 high temperature convection flow path 9 low temperature convection flow path 11 plate fin group 12 Kenyama shaped pin group 13 paring 14 Cooling fan 15 Fan support means

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図7】 [Figure 7]

【図8】 [Figure 8]

【図9】 [Figure 9]

【図10】 [Figure 10]

【図11】 FIG. 11

【図12】 [Fig. 12]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 受熱面と放熱面を有する受熱平板の放熱
面に放熱ピン群が剣山形状に形成されてなる剣山形ヒー
トシンクの適用構造であって、放熱面に垂直な剣山形状
ピン群の外周面に沿って、放熱面から所定の高さに至る
迄の部分を除き、この所定の高さから剣山形状ピン群の
高さに至る迄か、または剣山形状ピン群の高さを越える
所定の高さに至る迄、薄肉筒状の対流制御管が挿着され
てあり、この対流制御管の内壁面は剣山形状ピン群の外
周ピン群に接着されるか若しくは近接せしめられてある
ことを特徴とする剣山形ヒートシンクの適用構造。
1. An applied structure of a sword mountain-shaped heat sink in which a radiating pin group is formed in a sword shape on a radiating surface of a heat receiving flat plate having a heat receiving surface and a heat radiating surface, and an outer periphery of the sword mountain shaped pin group perpendicular to the heat radiating surface. Along the surface, except for the part from the heat dissipation surface to the predetermined height, from this predetermined height to the height of the sword mountain shaped pin group, or to exceed the height of the sword mountain shaped pin group. A thin-walled tubular convection control tube is inserted up to the height, and the inner wall surface of this convection control tube is adhered to or close to the outer peripheral pin group of the sword-shaped pin group. Applicable structure of sword mountain shape heat sink.
【請求項2】 冷却対流の流路は受熱平板に平行なセパ
レータ平板により上下2層に分離されてあり、下側層は
熱交換未了の低温対流の流路になっており、上側層は熱
交換完了の高温対流の流路になっており、剣山形ヒート
シンクの受熱平板側は下側層の低温対流の流路内に配置
されてあり、対流制御管の上側端末はセパレータ平板を
貫通して上側層の高温対流の流路内に開口せしめられて
あることを特徴とする請求項1に記載の剣山形ヒートシ
ンクの適用構造。
2. The cooling convection channel is divided into upper and lower two layers by a separator plate parallel to the heat receiving plate, the lower layer is a low temperature convection channel for which heat exchange has not been completed, and the upper layer is It is a high temperature convection flow path for heat exchange completion, the heat-receiving flat plate side of the sword-shaped heat sink is located in the low temperature convection flow path of the lower layer, and the upper end of the convection control tube penetrates the separator flat plate. 2. The applied structure of a sword-shaped heat sink according to claim 1, wherein the upper layer is opened in a high temperature convection flow path.
【請求項3】 剣山形ヒートシンクは自然対流方式ヒー
トシンクであって、対流制御管の高さは、煙突効果が発
生するに充分な高さであることを特徴とする請求項1に
記載の剣山形ヒートシンクの適用構造。
3. The sword mountain type heat sink according to claim 1, wherein the sword mountain type heat sink is a natural convection type heat sink, and a height of the convection control tube is high enough to generate a chimney effect. Applied structure of heat sink.
【請求項4】 剣山形ヒートシンクは自然対流方式ヒー
トシンクであるか、または剣山形ピン群内に対流がピン
群底部から吹き込まれる方式の強制対流方式ヒートシン
クであるかの何れかであって、対流制御管の先端部は剣
山形ヒートシンクが配設されてある機器の筺体壁を貫通
して機器の外部に開口せしめられてあることを特徴とす
る請求項1に記載の剣山形ヒートシンクの適用構造。
4. The convection control heat sink is either a natural convection type heat sink or a forced convection type heat sink in which convection is blown into the pin type pin group from the bottom of the pin group. 2. The applied structure for a sword mountain-shaped heat sink according to claim 1, wherein the tip of the pipe is opened to the outside of the device by penetrating a housing wall of the device in which the sword-shaped heat sink is disposed.
JP21445692A 1992-07-03 1992-07-03 Application structure of Ken Yamagata heat sink Expired - Lifetime JPH07105466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21445692A JPH07105466B2 (en) 1992-07-03 1992-07-03 Application structure of Ken Yamagata heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21445692A JPH07105466B2 (en) 1992-07-03 1992-07-03 Application structure of Ken Yamagata heat sink

Publications (2)

Publication Number Publication Date
JPH06204367A true JPH06204367A (en) 1994-07-22
JPH07105466B2 JPH07105466B2 (en) 1995-11-13

Family

ID=16656053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21445692A Expired - Lifetime JPH07105466B2 (en) 1992-07-03 1992-07-03 Application structure of Ken Yamagata heat sink

Country Status (1)

Country Link
JP (1) JPH07105466B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849991A (en) * 1994-08-02 1996-02-20 Akutoronikusu Kk Closed system temperature controller
JPH08232869A (en) * 1994-12-06 1996-09-10 Siemens Ag Compressor devcie
JP2024055719A (en) * 2022-10-06 2024-04-18 国立大学法人東京農工大学 Heat transport device and furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849991A (en) * 1994-08-02 1996-02-20 Akutoronikusu Kk Closed system temperature controller
JPH08232869A (en) * 1994-12-06 1996-09-10 Siemens Ag Compressor devcie
JP2024055719A (en) * 2022-10-06 2024-04-18 国立大学法人東京農工大学 Heat transport device and furnace

Also Published As

Publication number Publication date
JPH07105466B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US5781411A (en) Heat sink utilizing the chimney effect
US5293930A (en) Surface-to-air heat exchanger for electronic devices
US7304847B2 (en) Heat sink
TWI289648B (en) Heat sink structure
US20060139880A1 (en) Integrated circuit cooling system including heat pipes and external heat sink
US8381800B2 (en) Heat dissipation device with triangular guiding member
US20100025013A1 (en) Heat dissipation device
JPH02168697A (en) Cooling device for electronic equipment and radiating fin therefor
US20030024687A1 (en) Radiation fin set for heat sink
US20220346276A1 (en) Thermal module
JPH06204367A (en) Applied structure of frog-type heat sink
US20120138284A1 (en) Heat dissipating device
TWI334529B (en) Heat dissipation device
JPS58193092A (en) Heat exchanger
JP3030526B2 (en) Semiconductor cooling structure
JPWO2012114955A1 (en) Heat sink and method of using heat sink
JP2006162183A (en) Heat exchanger with fin
JPH11307705A (en) Heat sink for forced air cooling and its cooling method
TW201124691A (en) Heat dissipation device
JP2006097953A (en) Heat exchanger with fin
JPS633185A (en) Finned heat exchanger
US20060102325A1 (en) Guiding fin heat sink
CN214338395U (en) Narrow tube flow-collecting radiator
JP3168331U (en) Radiation fin structure and its radiation module
JP2001244683A (en) Heat dissipation mechanism for closed housing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20081113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20081113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20111113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 16

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20121113

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 17