JPH06198409A - Method for continuously casting cast slab having good surface - Google Patents

Method for continuously casting cast slab having good surface

Info

Publication number
JPH06198409A
JPH06198409A JP35793A JP35793A JPH06198409A JP H06198409 A JPH06198409 A JP H06198409A JP 35793 A JP35793 A JP 35793A JP 35793 A JP35793 A JP 35793A JP H06198409 A JPH06198409 A JP H06198409A
Authority
JP
Japan
Prior art keywords
mold
casting
slab
cast slab
good surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35793A
Other languages
Japanese (ja)
Inventor
Seiji Itoyama
誓司 糸山
Kenichi Tanmachi
健一 反町
Tetsuya Fujii
徹也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP35793A priority Critical patent/JPH06198409A/en
Publication of JPH06198409A publication Critical patent/JPH06198409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To reduce the risk of breakout and to continuously cast a cast slab having good surface characteristic by oscillating the mutually faced surfaces in mold walls in the direction crossing at the right angle to the drawing direction in the mold in the specific condition. CONSTITUTION:By using the mold for continuous casting forming the rectangular casting space with four pieces of the mold wall surfaces and mold powder having >=3 poise viscosity at 1300 deg.C, the continuous casting is executed. Then, one pair of the mutually faced surfaces in either pair of the mold walls are oscillated at 10-90cpm frequency and 0.1-1.0mm amplitude in the direction crossing at the right angle to the drawing direction of the cast slab. Further, the oscillation is executed so that the ratio V0/VS of a retreating ratio V0 and an advancing ratio VS of the mold walls becomes <=0.8. By this method, oscillation mark is eliminated and the cast slab having good surface condition, such as shallow degree of flow mark, can stably be cast.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属の連続鋳造、特に
縦型鋳造においてオシレーションマーク深さの低減によ
る偏析、割れ、ノロカミ、ブロー等の欠陥が少ない良好
な表面を有する鋳片を得ることができる連続鋳造方法に
関するものである。
INDUSTRIAL APPLICABILITY The present invention provides a slab having a good surface with few defects such as segregation, cracking, scouring, blow, etc. due to the reduction of oscillation mark depth in continuous casting of metal, especially vertical casting. The present invention relates to a continuous casting method that can be performed.

【0002】[0002]

【従来の技術】従来、連続鋳造は鋳造の安定化のため
に、鋳型を縦方向に振動させつつ鋳片を連続引き抜きす
ることが必須と考えられていた。しかし、この縦方向の
鋳型振動は、鋳片表面に1回の鋳型振動毎にオシレーシ
ョンマークを形成するため、このマークに起因した表面
あるいは表皮下に欠陥、例えばマーク谷部偏析やマーク
に沿った横割れ、マーク爪部へモールドパウダー噛込
み、溶鋼中非金属介在物の表面偏析、ガス気泡の集積が
発生しやすい。よって、このままでは鋳片を圧延でき
ず、鋳片表面の欠陥部を手入れ・除去する必要があり、
歩止まり低下や生産性減少につながっていた。
2. Description of the Related Art Conventionally, in continuous casting, it has been considered essential to continuously draw out a slab while vibrating the mold in the longitudinal direction in order to stabilize the casting. However, this vertical mold vibration forms an oscillation mark on the surface of the slab for each one-time mold vibration. Therefore, defects such as segregation of the valleys of the marks and marks along the surface or under the epidermis caused by the marks are formed. Moreover, lateral cracks, biting of mold powder into the mark claws, surface segregation of non-metallic inclusions in molten steel, and accumulation of gas bubbles are likely to occur. Therefore, the slab cannot be rolled as it is, and it is necessary to care for and remove the defective portion on the slab surface,
This led to lower yields and lower productivity.

【0003】これらの問題はオシレーションマークの深
さを軽減することによって軽減できる。その方法とし
て、従来鋳型を鋳片引き抜き方向と直交する方向(水平
方向)に 100〜1800cpm の振動数で振動させつつ、鋳造
する方法が特開昭49−123931号公報、特開昭52−136835
号公報や特許第137146号に開示されている。
These problems can be alleviated by reducing the depth of the oscillation mark. As a conventional method, there is a method of casting while vibrating the mold at a frequency of 100 to 1800 cpm in the direction (horizontal direction) orthogonal to the slab withdrawal direction, as disclosed in JP-A-49-123931 and JP-A-52-136835.
It is disclosed in Japanese Patent Publication No. 137146 and Japanese Patent No. 137146.

【0004】[0004]

【発明が解決しようとする課題】鋳型を水平方向にのみ
振動させつつ鋳造する場合、鋳片表面にオシレーション
マークの形成が行われないので、美麗な鋳片が得られる
が、水平方向の振動数fが従来のように 100〜1800cpm
の場合、鋳造の安定性に不可欠な鋳型/鋳片間への潤滑
剤(モールドパウダーやレプシードオイル)の供給をス
ムーズに行うことが非常に困難である。
When casting while vibrating the mold only in the horizontal direction, no oscillation mark is formed on the surface of the slab, so a beautiful slab can be obtained. Number f is 100 to 1800cpm as before
In this case, it is very difficult to smoothly supply the lubricant (mold powder or repseed oil) between the mold and the slab, which is essential for the stability of casting.

【0005】よって、長時間の鋳造の場合、連鋳で最大
の事故であるブレークアウトの危険性が高まり、安定鋳
造の点で問題があった。本発明の目的は、ブレークアウ
トの危険性が小さく、かつ表面性状の良好な鋳片の連続
鋳造方法を提案することである。
Therefore, in the case of casting for a long time, the risk of breakout, which is the largest accident in continuous casting, increases, and there is a problem in terms of stable casting. An object of the present invention is to propose a continuous casting method of a slab with a low risk of breakout and good surface properties.

【0006】[0006]

【課題を解決するための手段】本発明は、4枚の鋳型壁
面で矩形の鋳造空間を形成してなる縦形の連続鋳造用鋳
型を用いて連続鋳造するに際して、鋳型壁のいずれか一
方の一対の相対する面をそれぞれ鋳片引き抜き方向と直
交する方向に振動数10〜90 cpm、振巾 0.1mm以上 1.0mm
未満で、かつ鋳型壁の後退速度VO と前進速度VS との
比VO /VS が0.8以下で振動させつつ鋳造することを
特徴とする良好な表面を有する鋳片の連続鋳造方法であ
る。
According to the present invention, when performing continuous casting using a vertical continuous casting mold in which a rectangular casting space is formed by four mold wall surfaces, one pair of mold walls is used. 10 to 90 cpm with a width of 0.1 mm or more and 1.0 mm
And a ratio V O / V S of the backward velocity V O of the mold wall to the forward velocity V S of the mold wall is 0.8 or less, and the casting is performed while vibrating. is there.

【0007】[0007]

【作用】鋳型壁を水平方向に振動することによって、鋳
型/鋳片間への潤滑剤の流入挙動は図1(C)のように
鋳型壁の変位Xによって周期的に変動する。潤滑剤の挙
動は、図1(C)のように鋳型壁が鋳片から遠ざかる
(Xの増加)時は、鋳片と鋳型壁で構成されるスリット
内の圧力が負圧になり、これによって図1(b)に示す
矢印Aの方向に潤滑剤が流入し、また鋳型壁が鋳片側に
近づく時はスリット内の圧力が増加し、矢印Bの方向に
スリット内の潤滑剤が逆に流出する。その量は壁の移動
速度に比例すると考えてよい。
By vibrating the mold wall in the horizontal direction, the inflow behavior of the lubricant between the mold and the slab periodically fluctuates according to the displacement X of the mold wall as shown in FIG. 1 (C). The behavior of the lubricant is such that when the mold wall moves away from the slab (increase in X) as shown in FIG. 1 (C), the pressure in the slit formed by the slab and the mold wall becomes a negative pressure. The lubricant inflows in the direction of arrow A shown in FIG. 1B, and the pressure in the slit increases when the mold wall approaches the slab, and the lubricant in the slit flows out in the direction of arrow B. To do. It can be considered that the amount is proportional to the moving speed of the wall.

【0008】一方、鋳片は下方にある一定速度VC で引
抜かれているので、潤滑剤の一部は下方に流れることに
なる。潤滑剤の流量Qは、モールドパウダーの粘度η、
スリットの間隔X、鋳型壁の移動速度V、鋳片引抜き速
度VC 、および水平振動サイクルfに影響される。潤滑
剤の消費量Qsum (cm3 /cycle )という見方をする
と、(1)式で表現できる。ここでWは鋳型の周長、V
d 、Vu は、鋳型壁を移動した時の潤滑剤の流入速度
(正)、流出速度(負)、tO 、tS は鋳型壁がXS
O 、XO →X S に移動する時間を示す。
On the other hand, the slab has a constant velocity V below.CPull
Since it has been removed, some of the lubricant will flow downwards.
Become. The flow rate Q of the lubricant is the viscosity η of the mold powder,
Slit space X, mold wall moving speed V, cast strip drawing speed
Degree VC, And the horizontal vibration cycle f. Lubrication
Agent consumption Qsum(cm3/ Cycle)
And can be expressed by equation (1). Where W is the perimeter of the mold, V
d, VuIs the inflow velocity of the lubricant when moving the mold wall
(Positive), Outflow rate (Negative), tO, TSIs the mold wall XS
XO, XO→ X SIndicates the time to move to.

【0009】[0009]

【数1】 [Equation 1]

【0010】通常、fが大きく、VS =VO (tO =t
S /2)の場合、Vd =Vu (厳密には、VC の影響で
d >Vu であるが、わずかに大きい程度)であり、Q
sumはほぼ0となる。ここで、VS <VO (tO <tS
/2)の場合、Vd >Vu となるので、Qsu m >0とな
る。しかし、モールドパウダーの1300℃粘度ηが3poise
以上になると、VS >VO (tO >tS /2)とする方
がVd >Vu となり、よってQsum >0となることが実
験の結果明らかになった。この場合でも、fが大きいと
O 、tS が小さくなり、Qsum はfが小さい場合に比
べて非常に少なくなるので、fは小さい方がよい。
Usually, f is large and V S = V O (t O = t
In the case of S / 2), V d = V u (strictly, V d > V u due to the influence of V C , but slightly larger), and Q
sum is almost 0. Here, V S <V O (t O <t S
In the case of / 2), V d > V u, and thus Q su m > 0. However, the 1300 ℃ viscosity η of the mold powder is 3 poise.
As a result of the experiment, it has been clarified as a result of the experiment that V d > V u and V sum > 0 when V S > V O (t O > t S / 2). Even in this case, when f is large, t O and t S are small, and Q sum is much smaller than when f is small. Therefore, it is preferable that f is small.

【0011】つまり、本発明者らは種々の実験の結果、
η≧3poiseでは振動数fが10〜90cpm 、振巾(XO −X
S )が 0.1mm以上、 1.0mm未満、かつ鋳型壁の後退速度
Oと前進速度VS との比VO /VS が 0.8以下で良好
な表面を有する鋳片を安定して連続鋳造できることを見
出した。それ以外の条件では、Qsum が少なく、拘束性
ブレークアウトにつながる。振巾 1.0mm以上でもQsum
は十分であるが、安定鋳造ができない理由は、組鋳型で
は、鋳型の合わせ面に湯差しが発生するためである。
That is, the inventors of the present invention have conducted various experiments,
When η ≧ 3 poise, the frequency f is 10 to 90 cpm, and the amplitude (X O −X
S) is 0.1mm or more and less than 1.0 mm, and can be continuously stably cast slab having a ratio V O / V S good surface 0.8 following the reverse speed V O and the forward velocity V S of the mold walls Found. Under other conditions, Q sum is small, leading to a restrictive breakout. Q sum even with a swing width of 1.0 mm or more
Is sufficient, but the reason why stable casting cannot be performed is that in the assembled mold, hot water is generated on the mating surfaces of the molds.

【0012】[0012]

【実施例】110mm厚、 400mm巾のSUS304、SS41スラブを
C = 0.8〜 2.0m/min 、で鋳造した。この時、長辺
側のみの鋳型壁を振動させつつ鋳造を行った。モールド
パウダーは1300℃での粘度4.1poise,凝固温度1000℃の
カーボンを含まない CaO/SiO2=1.0の酸化物系潤滑剤
を使った。
EXAMPLE A 110 mm thick, 400 mm wide SUS304, SS41 slab was cast at V C = 0.8 to 2.0 m / min. At this time, casting was performed while vibrating the mold wall only on the long side. The mold powder used was an oxide-based lubricant with a viscosity of 4.1 poise at 1300 ° C and carbon-free CaO / SiO 2 = 1.0 with a solidification temperature of 1000 ° C.

【0013】鋳造中には、鋳型壁内部の温度を計測し、
その温度挙動から拘束性ブレークアウト警報を発するよ
うにし、ブレークアウトの危険が発生したら鋳造を中断
するようにした。また、鋳造壁の移動速度VO /VS
振動数fを4〜110 cpm で変化させ振巾を 0.1mm以上
1.0mm未満に保って鋳造を行った。
During casting, the temperature inside the mold wall is measured,
A restraint breakout alarm was issued based on the temperature behavior, and casting was interrupted when a risk of breakout occurred. Further, the moving speed V O / V S of the casting wall,
Change the vibration frequency f from 4 to 110 cpm and make the amplitude 0.1mm or more.
Casting was performed while keeping the thickness to less than 1.0 mm.

【0014】長辺の鋳型壁1の振動方法は、図3に示す
ように、短辺2クランプ用油圧シリンダ4の開閉を油圧
回路に設けた上下のソレノイドバルブ5、6を通じて行
うことによって鋳型の移動を行うものである。7は油圧
モータ、8は油圧タンクを示す。なお、長辺1の移動パ
ターンは図1(C)のようにそれぞれ同時にほぼ直線的
に移動するよう制御した。
As shown in FIG. 3, the method of vibrating the long side mold wall 1 is to open and close the short side 2 clamping hydraulic cylinder 4 through upper and lower solenoid valves 5 and 6 provided in the hydraulic circuit. It is to move. Reference numeral 7 indicates a hydraulic motor, and 8 indicates a hydraulic tank. The movement pattern of the long side 1 was controlled so as to move substantially linearly at the same time, as shown in FIG.

【0015】鋳造結果を図2に示すように、VO /VS
≦ 0.8、f=10〜90cpm 、振巾 0.1mm以上 1.0mm未満
で、拘束性ブレークアウト警報もなく、安定して鋳造で
きることが明らかである。なお、VO /VS =1、f=
4〜110 cpm は従来法(縦方向振動なし)であるが不安
定な鋳造になることがわかった。また振巾が 0.1mm未満
又は 1.0mm以上の場合には他の条件を満足しても安定な
鋳造ができなかった。
[0015] The casting results as shown in FIG. 2, V O / V S
It is clear that ≤ 0.8, f = 10 to 90 cpm, swing width of 0.1 mm or more and less than 1.0 mm, there is no restraint breakout warning, and stable casting is possible. Note that V O / V S = 1 and f =
It was found that 4-110 cpm was the conventional method (no longitudinal vibration) but unstable casting. When the swing width was less than 0.1 mm or 1.0 mm or more, stable casting could not be achieved even if other conditions were satisfied.

【0016】鋳造した鋳片の短辺表面の湯じわの深さの
測定結果を表1に示す。比較のために縦振動のある場合
のオシレーションマーク深さを合わせて示した。本発明
の場合、表面の凹みは約0.10mmに対し、従来法−2では
0.35mmであり、表面が美麗であった。なお、従来法−1
の場合、凹み深さは本発明よりもさらに浅く改善されて
いるが、鋳造が不安定なために拘束性ブレークアウトア
ラームが発せられたので、工程的に採用することは危険
である。
Table 1 shows the measurement results of the depth of the wrinkle on the surface of the short side of the cast slab. For comparison, the depth of the oscillation mark with vertical vibration is also shown. In the case of the present invention, the surface depression is about 0.10 mm, whereas in the conventional method-2
It was 0.35 mm and the surface was beautiful. Conventional method-1
In the case of No. 3, the depth of the recess was improved to be shallower than that of the present invention, but the restraint breakout alarm was issued due to the instability of casting, so that it is dangerous to adopt it in the process.

【0017】[0017]

【表1】 [Table 1]

【0018】なお、本実施例では対向する長辺壁を同時
に対称に振動させたが、それぞれを本発明の条件内で独
立して振動させてもよい。
In this embodiment, the opposing long side walls are vibrated symmetrically at the same time, but they may be vibrated independently within the conditions of the present invention.

【0019】[0019]

【発明の効果】本発明では、安定した鋳造を行いつつオ
シレーションマークを無くし、浅い湯じわ程度の表面状
態の良好な鋳片の安定製造が可能になるので、鋳片圧延
前の鋳片表面手入れを無くす,あるいは軽減できるよう
になる。よって生産性や歩止り向上が達成できる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to eliminate the oscillation mark while performing stable casting, and to stably produce a slab having a good surface condition such as shallow wrinkle. The surface care can be eliminated or reduced. Therefore, productivity and yield improvement can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の説明断面図、(b)は(a)
のP部の拡大図、(c)は時間に対する潤滑剤の流入
量、鋳型壁の移動速度および変位を示すグラフである。
FIG. 1 (a) is an explanatory sectional view of the present invention, and FIG. 1 (b) is (a).
FIG. 3C is an enlarged view of the P part of FIG. 3C, and FIG. 6C is a graph showing the inflow amount of the lubricant, the moving speed and the displacement of the mold wall with respect to time.

【図2】振動数fとVO /VS の比がブレークアウト警
報発生に及ぼす状況を示すグラフである。
FIG. 2 is a graph showing a situation in which the ratio of frequency f and V O / V S influences the occurrence of a breakout alarm.

【図3】本発明に用いる装置の概念図である。FIG. 3 is a conceptual diagram of an apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1 長辺側鋳型壁 2 短辺側鋳型壁 3 シリンダー 4 油圧シリンダ 5 ソレノイドバルブ 6 ソレノイドバルブ 7 油圧モータ 8 油圧タンク 1 Long side mold wall 2 Short side mold wall 3 Cylinder 4 Hydraulic cylinder 5 Solenoid valve 6 Solenoid valve 7 Hydraulic motor 8 Hydraulic tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 4枚の鋳型壁面で矩形の鋳造空間を形成
してなる縦型の連続鋳造用鋳型を用いて1300℃における
粘度が3poise以上のモールドパウダーを用いて連続鋳造
するに際して、鋳型壁のいずれか一方の一対の相対する
面をそれぞれ鋳片引抜き方向と直交する方向に振動数10
〜90 cpm、振巾 0.1mm以上 1.0mm未満で、かつ鋳型壁の
後退速度VO と前進速度VS との比VO /VS が 0.8以
下で振動させつつ鋳造することを特徴とする良好な表面
を有する鋳片の連続鋳造方法。
1. When continuously casting a vertical continuous casting mold in which a rectangular casting space is formed by four mold wall surfaces with a mold powder having a viscosity at 1300 ° C. of 3 poise or more, the mold wall One of the pair of opposing surfaces is set to a frequency of 10 in the direction orthogonal to the slab drawing direction.
To 90 cpm, less than Fuhaba 0.1mm or 1.0 mm, and favorably the ratio V O / V S of the reverse speed V O and the forward velocity V S of the mold wall, characterized in that the casting with vibration 0.8 or less For continuous casting of slabs with smooth surface.
JP35793A 1993-01-05 1993-01-05 Method for continuously casting cast slab having good surface Pending JPH06198409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35793A JPH06198409A (en) 1993-01-05 1993-01-05 Method for continuously casting cast slab having good surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35793A JPH06198409A (en) 1993-01-05 1993-01-05 Method for continuously casting cast slab having good surface

Publications (1)

Publication Number Publication Date
JPH06198409A true JPH06198409A (en) 1994-07-19

Family

ID=11471567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35793A Pending JPH06198409A (en) 1993-01-05 1993-01-05 Method for continuously casting cast slab having good surface

Country Status (1)

Country Link
JP (1) JPH06198409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229737A (en) * 2006-02-28 2007-09-13 Nippon Steel Corp Vertical type continuous casting method of large cross-section cast slab for thick steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229737A (en) * 2006-02-28 2007-09-13 Nippon Steel Corp Vertical type continuous casting method of large cross-section cast slab for thick steel plate

Similar Documents

Publication Publication Date Title
EP0372506B1 (en) Method for oscillation of mold of vertical continuous caster
Yamamura et al. Formation of a solidified hook-like structure at the subsurface in ultra low carbon steel
CN101257988B (en) Method of continuous casting of steel
KR960000356A (en) How to Increase Heat Exchange in Increased Continuous-Casting Crystallizers and Continuous Casting Crystallizers
JPH06198409A (en) Method for continuously casting cast slab having good surface
EP0909597A1 (en) Crystalliser for the continuous casting of thin slabs
JP2005211936A (en) Method for continuously casting steel slab
JPH06114521A (en) Continuous casting method for cast slab having favorable surface
JPH02187239A (en) Pouring method into tundish
JP4448452B2 (en) Steel continuous casting method
JP2868174B2 (en) Continuous casting method for stainless steel
JPS6123559A (en) Oscillating method of mold for continuous casting of steel
EP0618023B1 (en) casting continuous slab in oscillated mold with horizontally retractable walls
JPH0356824B2 (en)
JP2003205349A (en) Method for continuously casting cast slab having little blow hole defect, and produced cast slab
JPH0238058B2 (en)
KR100201947B1 (en) Method of casting continuous slab
RU1806040C (en) Method of metal continuous casting
JP2539550B2 (en) Continuous casting slab casting method
JP2024035081A (en) Mold for continuous casting
SU1118710A1 (en) Steel us casting of ingots and device for efecting same
EP1934003B9 (en) Ingot mold for casting slabs
JP2000263198A (en) Method for continuously casting molten steel
JPS606248A (en) Oscillating method of continuous casting mold
SU273042A1 (en) METHOD OF CONTINUOUS STEEL CASTING