JP2539550B2 - Continuous casting slab casting method - Google Patents

Continuous casting slab casting method

Info

Publication number
JP2539550B2
JP2539550B2 JP3060075A JP6007591A JP2539550B2 JP 2539550 B2 JP2539550 B2 JP 2539550B2 JP 3060075 A JP3060075 A JP 3060075A JP 6007591 A JP6007591 A JP 6007591A JP 2539550 B2 JP2539550 B2 JP 2539550B2
Authority
JP
Japan
Prior art keywords
mold
casting
time period
time
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3060075A
Other languages
Japanese (ja)
Other versions
JPH04294851A (en
Inventor
誓司 糸山
宏一 戸沢
秀次 竹内
健一 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3060075A priority Critical patent/JP2539550B2/en
Publication of JPH04294851A publication Critical patent/JPH04294851A/en
Application granted granted Critical
Publication of JP2539550B2 publication Critical patent/JP2539550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属の連続鋳造、特に
縦型連続鋳造において、オシレーションマーク深さの低
減やマーク谷部の偏析が少ない鋳片を得ることができる
連鋳鋳片の鋳造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous cast slab capable of obtaining a slab with reduced oscillation mark depth and less segregation of mark troughs in continuous metal casting, particularly vertical continuous casting. The present invention relates to a casting method.

【0002】[0002]

【従来の技術】従来、連鋳鋳片表面の無手入れ化を目的
に特にステンレス鋼(SUS 304)の鋳造時において、
鋳片のブレークアウトの防止または鋳片表面のオシレー
ションマークの軽減を図るため、特開平2−290656号公
報において、二対の鋳型面で鋳造空間を作る連鋳鋳型の
縦振動におけるネガティブストリップ時間帯あるいは鋳
型下降時間帯のみに、一対の鋳型面を相対的に後退(離
隔)させる縦型連鋳鋳型の振動方法が提案されている。
2. Description of the Related Art Conventionally, when casting stainless steel (SUS 304) for the purpose of keeping the surface of continuously cast slabs untouched,
In order to prevent breakout of the slab or reduce oscillation marks on the surface of the slab, JP-A-2-290656 discloses a negative strip time in longitudinal vibration of a continuous casting mold that forms a casting space with two pairs of mold surfaces. A vibration method of a vertical continuous casting mold has been proposed in which a pair of mold surfaces are relatively retracted (separated) only in a band or a mold descending time period.

【0003】[0003]

【発明が解決しようとする課題】この方法は、単純な縦
振動のみの場合に比べると相当の効果のあることが認め
られているが、実験の結果鋳型の振動数fが小さい場合
効果が少ないことがわかった。従来法は、振動数fが大
きい条件で鋳造を行う方が効果が認められる。しかしな
がら、そのような方法ではモールドパウダの消費量が少
なくなり、拘束性ブレークアウトの問題が現れ却って安
定鋳造を阻害するという問題を引き起こす心配があっ
た。
This method is recognized to have a considerable effect as compared with the case of only simple longitudinal vibration, but as a result of experiments, the effect is small when the frequency f of the mold is small. I understand. The conventional method is more effective when casting is performed under the condition that the frequency f is large. However, in such a method, the consumption of the mold powder is reduced, and there is a concern that a problem of restraint breakout appears and a problem of hindering stable casting is caused.

【0004】本発明では、鋳型振動数fが大きくない、
いわゆる低サイクルにおいても、高サイクル条件と同様
に鋳片表面のオシレーションマーク谷部の偏析を著しく
減少させ、かつ安定鋳造を可能にする連鋳鋳片の引抜方
法を提供することを目的とするものである。
In the present invention, the mold frequency f is not large,
Even in so-called low cycle, similarly to high cycle conditions, segregation of oscillation mark valley portion of the slab surface is significantly reduced, and an object is to provide a continuous casting slab drawing method that enables stable casting. It is a thing.

【0005】[0005]

【課題を解決するための手段】従来のオシレーションマ
ーク谷部の偏析の発生機構・原因については、鋳型と凝
固シェル間の液相潤滑膜内に鋳型の縦振動によって負圧
が発生し、これが原因で凝固シェル表層部のデンドライ
ト樹枝間の未凝固濃化溶鋼がシェル表面に浸み出される
ことに起因しているといわれている。
[Means for Solving the Problems] Regarding the conventional mechanism and cause of segregation of valleys of oscillation marks, negative pressure is generated by longitudinal vibration of the mold in the liquid phase lubricating film between the mold and the solidification shell. It is said that the cause is that unsolidified concentrated molten steel between dendrite dendrites in the surface layer of the solidified shell is leached to the shell surface.

【0006】しかし、本発明者らは鋳片偏析部の調査を
した結果、上記の考え方とは違い偏析の原因は、シェル
に作用する引張力によるシェルの破断や圧縮力による座
屈により凝固シェルの連続的成長が阻害され、シェル破
断部や座屈部から濃化液がシェル表面に流出するためで
あることがわかった。従って、凝固初期におけるシェル
の破断・座屈を防止すること、つまりシェルに作用する
引張力と圧縮力を同時に低減することが偏析を防止する
手段になると考えた。
However, as a result of the investigation of the segregation portion of the cast slab, the present inventors found that the cause of the segregation is different from the above-mentioned idea. The cause of the segregation is the fracture of the shell due to the tensile force acting on the shell and the buckling due to the compressive force. It was found that this is because the continuous growth of the shell was hindered and the concentrated liquid flowed out to the shell surface from the shell breakage portion and the buckling portion. Therefore, it was considered that preventing the shell from breaking and buckling at the initial stage of solidification, that is, reducing the tensile force and the compressive force acting on the shell at the same time is a means for preventing segregation.

【0007】以上のような考え方から本発明は構成さ
れ、その要旨とするところは下記の通りである。すなわ
ち本発明は、二対の鋳型壁面で鋳造空間を形成して成る
縦型連続鋳造用鋳型を縦方向に振動させつつ鋳造するに
際して、ポジティブストリップ時間帯内の一時期および
ネガティブストリップ時間帯内の一時期は、少なくとも
一対の鋳型壁面を凝固シェルから遠ざけ、それ以外の時
期は遠ざけた鋳型壁面を凝固シェルに接近させる一連の
動作を連続鋳造中に繰り返すことを特徴とする連鋳鋳片
の鋳造方法である。
The present invention is constructed based on the above concept, and the gist thereof is as follows. That is, the present invention, during casting while vertically oscillating a vertical continuous casting mold formed by forming a casting space with two pairs of mold wall surface, one time in the positive strip time zone and one time in the negative strip time zone The casting method for continuous cast slabs, characterized in that at least a pair of mold wall surfaces are moved away from the solidification shell, and at other times a series of operations for moving the mold wall surfaces away from the solidification shell are repeated during continuous casting. is there.

【0008】また本発明では、二対の鋳型壁面で鋳造空
間を形成して成る縦型連続鋳造用鋳型を縦方向に振動さ
せつつネガティブストリップ時間帯のない条件で鋳造す
るに際して、鋳型が上昇する時間帯内の一時期および鋳
型が下降する時間帯内の一時期は、少なくとも一対の鋳
型壁面を凝固シェルから遠ざけ、それ以外の時期は遠ざ
けた鋳型壁面を凝固シェルに接近させる一連の動作を連
続鋳造中に繰り返すようにすることもできる。
Further, according to the present invention, when a vertical continuous casting mold having a casting space formed by two pairs of mold wall surfaces is vertically vibrated and is cast in a condition without a negative strip time zone, the mold is raised. During a period of time during the time period and during a period of time during which the mold is descending, at least one pair of mold wall surfaces is moved away from the solidification shell, and at other times the mold wall surfaces are moved away from the solidification shell. It can be repeated.

【0009】[0009]

【作 用】鋳型が最上点に達すると鋳型縦方向速度Vm
は0となり、鋳型が下降を始めると速度Vm は次第に速
くなり、鋳型が最下点に達すると速度Vm は0となる。
再び鋳型が上昇を始めると速度Vm は速さを増す。また
鋳型の縦振動と鋳片の引抜速度Vc との相互関係で、鋳
型の縦方向速度Vm が鋳片の引抜速度Vc より遅い時間
をポジティブストリップ時間TP 、逆に鋳片の引抜速度
c より速い時間をネガティブストリップ時間TN と称
している。
[Operation] When the mold reaches the highest point, the vertical speed V m of the mold
Becomes 0, the speed V m when the mold starts to descend gradually becomes faster, the speed V m when the mold reaches the lowermost point becomes zero.
Velocity V m when again the mold starts to increase increases the speed. Further, due to the mutual relationship between the vertical vibration of the mold and the withdrawal speed V c of the slab, the time when the vertical speed V m of the mold is slower than the withdrawal speed V c of the slab is the positive strip time T P , and vice versa. The time faster than the speed V c is called the negative strip time T N.

【0010】図1に示すように鋳型の縦振動時の凝固シ
ェルに引張力の作用するポジティブストリップ時間TP
における相対速度が大きい時間t1 からt2 までの一時
期に少なくとも一対の鋳型壁を相対的に凝固シェルから
遠ざかるように水平に後退させ、X0 の位置として開と
する。ネガティブストリップ時間TN がない場合(TN
=0)は、図2に示すように、鋳型が上昇する時間帯
(鋳型上昇期)における相対速度が大きい時間t4 から
5 までの一時期に少なくとも一対の鋳型壁を相対的に
遠ざけるように後退(離隔)させ、X0 の位置として開
とする。
As shown in FIG. 1, the positive strip time T P in which tensile force acts on the solidified shell during longitudinal vibration of the mold
In a period from time t 1 to time t 2 in which the relative velocity is high, at least a pair of mold walls are horizontally retracted relatively away from the solidification shell and opened as the position X 0 . When there is no negative strip time T N (T N
= 0), as shown in FIG. 2, at least one pair of mold walls are relatively separated from each other in one period from time t 4 to time t 5 when the relative velocity in the mold rising time period (mold rising period) is large. Retreat (separate) and open as the X 0 position.

【0011】このようにすることによって、図6に示す
ように鋳型壁9と凝固シェル12間の距離XS から距離X
0 に増大させ、鋳型壁9と凝固シェル12間に溶鋼11上の
モールドパウダ10を十分に流入させて、鋳型壁9と凝固
シェル間の摩擦力を低減させる。なおYは鋳片引抜方向
を示す。図1において、その後に続く、シェルに圧縮力
の作用するネガティブストリップ時間TN の相対速度の
大きい時間t3 からt4 までの一時期に、鋳型壁を相対
的に凝固シェルから遠ざけ、鋳型壁をX0 の位置として
開とする。また図2に示すようにネガティブストリップ
時間がない場合(TN =0)は、鋳型が下降する時間帯
(鋳型下降期)における相対速度の大きい時間t2 から
3 までの一時期に、鋳型壁を相対的に凝固シェルから
水平に遠ざけ鋳型壁をX0 の位置として開とする。この
ネガティブストリップのない場合には鋳型と凝固シェル
の相対速度は常に上向きに正となるため、シェルには圧
縮力が作用しないように考えられるが、鋳型内メニスカ
ス部の凝固シェルは連続して成長し、かつその位置が一
定であるので圧縮力がTN =0の場合でも作用する。
By doing so, as shown in FIG. 6, from the distance X S between the mold wall 9 and the solidification shell 12 to the distance X S.
0 to increase, by sufficiently flow into the mold powder 10 on the molten steel 11 between the solidified shell 12 and the mold wall 9, to reduce the frictional force between the mold wall 9 solidified shell. In addition, Y shows a slab drawing direction. In FIG. 1, the mold wall is relatively moved away from the solidified shell at a subsequent time period from time t 3 to time t 4 at which the relative speed of the negative strip time T N in which a compressive force acts on the shell is large, Open as the position of X 0 . Further, as shown in FIG. 2, when there is no negative strip time (T N = 0), the mold wall is changed at a certain time from the time t 2 to the time t 3 when the relative velocity is large in the time period when the mold is descending (mold descending period). Is relatively horizontally moved away from the solidified shell, and the mold wall is opened with the position of X 0 . In the absence of this negative strip, the relative velocity between the mold and the solidified shell is always positive upward, so it seems that no compressive force acts on the shell, but the solidified shell of the meniscus in the mold grows continuously. In addition, since the position is constant, it works even when the compression force is T N = 0.

【0012】そして上記以外の時間帯すなわち図1にお
ける時間t2 からt3 までおよび時間t4 からt5
で、また図2における時間t1 からt2 までおよび時間
3 からt4 までは、鋳型壁を前進させて凝固シェルに
接近させ鋳型壁をXS の位置として閉とする。つまり鋳
型と凝固シェル間の距離XをX0 とXS の位置の間に変
化させる。このような鋳型の壁面と凝固シェルとの距離
を変化させる鋳型水平振動を付与すると、特に鋳型メニ
スカス部の初期凝固シェルに作用する摩擦力は、鋳型と
凝固シェル間の摩擦力を考えると鋳型と凝固シェル間の
モールドパウダの剪断力として下記数1および数2から
推算できる。
In time zones other than the above, that is, from time t 2 to t 3 and time t 4 to t 5 in FIG. 1, and from time t 1 to t 2 and time t 3 to t 4 in FIG. The mold wall is advanced to approach the solidification shell and close the mold wall at the X S position. That is, the distance X between the mold and the solidified shell is changed between the positions X 0 and X S. When the mold horizontal vibration that changes the distance between the wall surface of the mold and the solidification shell is applied, the frictional force that acts on the initial solidification shell of the mold meniscus part is, in particular, the frictional force between the mold and the solidification shell. The shearing force of the mold powder between the solidified shells can be estimated from the following formulas 1 and 2.

【0013】[0013]

【数1】 [Equation 1]

【0014】モールドパウダの厚みが小さい場合には、
モールドパウダ内の速度変化が直線と仮定でき、〔数
1〕は〔数2〕に近似できる。
When the thickness of the mold powder is small,
The velocity change in the mold powder can be assumed to be a straight line, and [Equation 1] can be approximated to [Equation 2].

【0015】[0015]

【数2】 [Equation 2]

【0016】上記数2からわかるように、凝固シェルに
作用する摩擦力Fは鋳型と凝固シェル間に流入したモー
ルドパウダ厚みXt 、すなわち鋳型と凝固シェル間の距
離Xを大きくした時期に減少する。つまり、本発明によ
って凝固初期のメニスカス部のシェルに作用する引張力
と圧縮力は大きく低減でき、その結果凝固シェルの連続
性が維持されるのでオシレーションマーク深さが浅くな
り、かつマーク谷部にも偏析が形成される確率が従来の
技術以上に小さくなるのである。
As can be seen from the above equation 2, the frictional force F acting on the solidified shell decreases when the mold powder thickness X t flowing between the mold and the solidified shell, that is, the distance X between the mold and the solidified shell is increased. . That is, according to the present invention, the tensile force and the compressive force acting on the shell of the meniscus portion at the initial stage of solidification can be greatly reduced, and as a result, the continuity of the solidified shell is maintained, so that the oscillation mark depth becomes shallow and the mark valley portion Even so, the probability that segregation is formed is smaller than that of the conventional technique.

【0017】以上のような効果は、縦振動波形や鋳型壁
面を水平方向に前進・後退(閉、開)させる(以後、水
平振動と呼ぶ)波形に大きく左右されるものではなく、
図1に示す縦振動:サイン波、水平振動:台形波以外の
例えば非サイン波や三角波などの場合にも同様の効果が
ある。なお、水平振動の振幅は、鋳造する溶湯が鋳型隙
間に浸入して拘束性ブレークアウトが生じる危険を防ぐ
ため、1mm以内にするのが望ましい。
The above-mentioned effects are not greatly influenced by the longitudinal vibration waveform or the waveform for advancing / retracting (closing or opening) the wall surface of the mold in the horizontal direction (hereinafter referred to as horizontal vibration).
Similar effects can be obtained in the case of longitudinal vibration: sine wave, horizontal vibration: trapezoidal wave, for example, non-sine wave or triangular wave shown in FIG. The amplitude of horizontal vibration is preferably within 1 mm in order to prevent the risk that the molten metal to be cast penetrates into the mold gap to cause restraint breakout.

【0018】[0018]

【実施例】以下、本発明の実施例に基づいて説明する。実施例1 水平振動装置としては、一般にスラブ連続鋳造機では、
図3で示すように鋳型短辺2を鋳型長辺1で短辺クラン
プ用バネ3を介してクランプする方法が採られているの
で、本発明では短辺クランプ用油圧シリンダ4の開閉を
油圧回路に設けた上下のソレノイドバルブ5、6を通じ
て行うことによって鋳型の移動を行うものである。7は
油圧モータ、8は油圧タンクを示す。鋳造中に鋳型長辺
とモールド短辺間に隙間を余り生じさせると、溶鋼が隙
間に浸入してトラブルが生じ易い。このため鋳型の後退
量は1mm以内とする。
EXAMPLES Hereinafter, examples will be described based on the present invention. Example 1 As a horizontal vibration device, generally, in a slab continuous casting machine,
As shown in FIG. 3, since a method of clamping the short side 2 of the mold with the long side 1 of the mold via the spring 3 for clamping the short side is adopted, in the present invention, the hydraulic circuit for opening and closing the hydraulic cylinder 4 for short side clamping is opened and closed. By moving through the upper and lower solenoid valves 5 and 6 provided in the above, the mold is moved. Reference numeral 7 indicates a hydraulic motor, and 8 indicates a hydraulic tank. If a gap is left between the long side of the mold and the short side of the mold during casting, molten steel will easily penetrate into the gap and cause troubles. Therefore, the amount of mold retreat should be within 1 mm.

【0019】上記図3の鋳型壁の水平振動装置を適用
し、ステンレス鋼(SUS 304)の鋳片を連続鋳造した
場合の鋳片表面のオシレーションマーク13の深さd
1 (図4参照)と、オシレーションマーク部の偏析層深
さd2 を調査し、オシレーションマーク部偏析厚み(d
2 −d1 )を得た。比較のために従来の縦振動のみの場
合(サイン波)と、特開平2−290656号公報で開示され
ている図5(a)、(b)の振動波の場合の調査も行っ
た。なお図5(a)は鋳型の振動がネガティブストリッ
プ期間の間に鋳型壁を後方に移動させる場合であり、図
5(b)は鋳型の下降時に鋳型を後退させる場合であ
る。
The depth d of the oscillation mark 13 on the surface of the slab in the case of continuously casting a slab of stainless steel (SUS 304) by applying the horizontal vibration device for the mold wall shown in FIG.
1 (see FIG. 4) and the segregation layer depth d 2 of the oscillation mark part were investigated, and the segregation thickness of the oscillation mark part (d
2- d 1 ) was obtained. For comparison, investigations were also performed in the case of only conventional longitudinal vibration (sine wave) and the case of the vibration waves of FIGS. 5 (a) and 5 (b) disclosed in JP-A-2-290656. 5A shows the case where the vibration of the mold moves the mold wall backward during the negative strip period, and FIG. 5B shows the case where the mold moves backward when the mold descends.

【0020】なお、本発明の鋳造条件は、鋳片引抜速度
c = 1.2m/min 、鋳型縦振動数f= 150回/分、振
幅S= 5.3mm、縦振動波形=サイン、水平振動振幅=
0.3mm、水平振動パターンは台形波(図1参照)、鋳型
壁の開・閉のタイミングは角度換算(図1のVm が正に
最大の時をゼロ度とする)で、 105度から 130度まで
(図1における時間t2 〜t3 間)と 240度から 275度
まで(同図1における時間t4 〜t5 間)を閉(XS
置)、それ以外では開(X0 位置)となるようにした。
開から閉、あるいは閉から開への移動速度は50mm/sec
とした。使用したモールドパウダは1300℃での粘度が1.
1poise、凝固温度が 900℃の潤滑剤とした。
The casting conditions of the present invention are as follows: slab drawing speed V c = 1.2 m / min, mold longitudinal frequency f = 150 times / min, amplitude S = 5.3 mm, longitudinal vibration waveform = sign, horizontal vibration amplitude =
0.3 mm, horizontal vibration pattern is a trapezoidal wave (see Fig. 1), and the opening and closing timing of the mold wall is converted from an angle (when V m in Fig. 1 is positively maximum is zero degree) from 105 degrees to 130 degrees. until time from the 240 degrees (between time in FIG. 1 t 2 ~t 3) to 275 degrees (the same between time t 4 ~t 5 in FIG. 1) in the closed (X S position), the opening (X 0 position otherwise ).
Movement speed from open to closed or from closed to open is 50 mm / sec
And The mold powder used had a viscosity at 1300 ° C of 1.
A lubricant with a solidification temperature of 900 ° C and 1 poise was used.

【0021】実施例2 ネガティブストリップ時間がないTN =0の場合の例と
して鋳型縦振動の振幅S= 2.0mmとして水平の開閉タイ
ミングを図2のように 110〜160 度(図2の時間t1
2 間)と、 250〜290 度(同図2の時間t3 〜t4
とを閉、それ以外では開とした。その他の条件は実施例
1と同一とした。
Example 2 As an example in the case of T N = 0 where there is no negative strip time, the horizontal opening / closing timing is 110 to 160 degrees as shown in FIG. 2 (time t in FIG. 2) with the amplitude S of the mold longitudinal vibration S = 2.0 mm. 1 ~
Between t 2 ) and 250 to 290 degrees (time t 3 to t 4 in FIG. 2 were closed, and other than that were opened. Other conditions were the same as in Example 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1に前記の鋼片調査結果を実施例1、2
の場合と従来法とを比較して示した。表1より、本発明
によれば、従来法に比較してオシレーションマーク谷部
の偏析が厚みとなって現出する発生率が著しく減少し、
ほぼ皆無となることがわかる。
Table 1 shows the results of the steel slab surveys described in Examples 1 and 2.
The case is compared with the conventional method. From Table 1, according to the present invention, as compared with the conventional method, the incidence of occurrence of segregation of the valley portion of the oscillation mark as a thickness is significantly reduced,
It turns out that there is almost nothing.

【0024】[0024]

【発明の効果】初期凝固シェルに作用する圧縮力や引張
力を極力小さくできるように、鋳型の縦振動のタイミン
グに合わせて鋳型壁面を凝固シェルに対して水平方向に
開閉(前進・後退)する鋳型振動法を提供することによ
り、従来に比べて低い鋳型振動数において鋳片表面のオ
シレーションマーク谷部の偏析を著しく軽減できる。そ
の結果、 拘束性ブレークアウト発生の危険なハイサイクル鋳型
振動条件で、鋳造する必要がないので生産上のトラブル
が減少する。 ステンレス鋼SUS 304鋳片の場合、従来のように加
熱・圧延する前に鋳片表面の偏析をグラインダーで削除
する量が減少し、著しい場合には無手入れのままで次工
程に鋳片を送ることが可能なので、歩留りの向上が期待
できる。
[Effect of the Invention] In order to minimize the compressive force and tensile force acting on the initial solidification shell, the wall surface of the mold is opened and closed (forward / backward) horizontally with respect to the solidification shell at the timing of the vertical vibration of the mold. By providing the mold vibration method, the segregation of the valley portion of the oscillation mark on the surface of the slab can be remarkably reduced at a lower mold frequency than the conventional method. As a result, production troubles are reduced because it is not necessary to cast under high-cycle mold vibration conditions in which constrained breakout occurs. In the case of stainless steel SUS 304 slab, the amount of segregation on the surface of the slab that is removed by a grinder before heating and rolling as in the past is reduced, and if it is remarkable, the slab is sent to the next process without maintenance. Therefore, it is possible to expect an improvement in yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る鋳型の縦方向振動速度と
鋳型壁の水平方向変位の各経時変化を示すグラフであ
る。
FIG. 1 is a graph showing changes with time in a longitudinal vibration velocity of a mold and a horizontal displacement of a mold wall according to an example of the present invention.

【図2】本発明の他の実施例に係る鋳型の縦方向振動速
度と鋳型壁の水平方向変位の各経時変化を示すグラフで
ある。
FIG. 2 is a graph showing changes with time in vertical vibration velocity of a mold and horizontal displacement of a mold wall according to another embodiment of the present invention.

【図3】本発明の実施に用いた鋳型の水平移動装置を示
す概略斜視図である。
FIG. 3 is a schematic perspective view showing a horizontal moving device of a mold used for carrying out the present invention.

【図4】オシレーションマーク、偏析層を示す模式図で
ある。
FIG. 4 is a schematic diagram showing an oscillation mark and a segregation layer.

【図5】従来の鋳型の振動波形と、鋳型後退、前進のタ
イミングを示すグラフである。
FIG. 5 is a graph showing a vibration waveform of a conventional mold and timings of retreating and advancing the mold.

【図6】鋳型壁と凝固シェル間の模式図である。FIG. 6 is a schematic view between a mold wall and a solidification shell.

【符号の説明】[Explanation of symbols]

1 鋳型長辺 2 鋳型短辺 3 短辺クランプ用バネ 4 短辺クランプ用油圧シリンダ 5 上部ソレノイドバルブ 6 下部ソレノイドバルブ 7 油圧モータ 8 油圧タンク 11 溶鋼 12 凝固シェル 13 オシレーションマーク 14 偏析層 1 Mold long side 2 Mold short side 3 Short side clamping spring 4 Short side clamping hydraulic cylinder 5 Upper solenoid valve 6 Lower solenoid valve 7 Hydraulic motor 8 Hydraulic tank 11 Molten steel 12 Solidification shell 13 Oscillation mark 14 Segregation layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 反町 健一 千葉県千葉市川崎町1番地 川崎製鉄株 式会社 技術研究本部内 (56)参考文献 特開 平2−290656(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenichi Sorimachi, 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (56) Reference JP-A-2-290656 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二対の鋳型壁面で鋳造空間を形成して成
る縦型連続鋳造用鋳型を縦方向に振動させつつ鋳造する
に際して、 ポジティブストリップ時間帯内の一時期およびネガティ
ブストリップ時間帯内の一時期は、少なくとも一対の鋳
型壁面を凝固シェルから遠ざけ、それ以外の時期は、遠
ざけた鋳型壁面を凝固シェルに接近させる一連の動作を
連続鋳造中に繰り返すことを特徴とする連鋳鋳片の鋳造
方法。
1. When casting a vertical continuous casting mold having a casting space formed by two pairs of mold wall surfaces while vibrating in the vertical direction, one time period during a positive strip time period and one time period during a negative strip time period. The at least one pair of mold wall surfaces away from the solidification shell, at other times, a continuous casting slab casting method characterized by repeating a series of operations to move the mold wall surface away from the solidification shell during continuous casting .
【請求項2】 二対の鋳型壁面で鋳造空間を形成して成
る縦型連続鋳造用鋳型を縦方向に振動させつつネガティ
ブストリップ時間帯のない条件で鋳造するに際して、鋳
型が上昇する時間帯内の一時期および鋳型が下降する時
間帯内の一時期は、少なくとも一対の鋳型壁面を凝固シ
ェルから遠ざけ、それ以外の時期は遠ざけた鋳型壁面を
凝固シェルに接近させる一連の動作を連続鋳造中に繰り
返すことを特徴とする連鋳鋳片の鋳造方法。
2. When a vertical continuous casting mold comprising two pairs of mold wall surfaces forming a casting space is vertically vibrated and is cast in a condition without a negative strip time period, the mold rises within a time period. At least one pair of mold wall surfaces is moved away from the solidification shell for one time period and one time period during which the mold is descending, and a series of operations for moving the mold wall surfaces away from the solidification shell at other times are repeated during continuous casting. A method for casting a continuous cast slab, characterized by:
JP3060075A 1991-03-25 1991-03-25 Continuous casting slab casting method Expired - Lifetime JP2539550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3060075A JP2539550B2 (en) 1991-03-25 1991-03-25 Continuous casting slab casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3060075A JP2539550B2 (en) 1991-03-25 1991-03-25 Continuous casting slab casting method

Publications (2)

Publication Number Publication Date
JPH04294851A JPH04294851A (en) 1992-10-19
JP2539550B2 true JP2539550B2 (en) 1996-10-02

Family

ID=13131606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3060075A Expired - Lifetime JP2539550B2 (en) 1991-03-25 1991-03-25 Continuous casting slab casting method

Country Status (1)

Country Link
JP (1) JP2539550B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290656A (en) * 1988-05-17 1989-11-22 Mitsubishi Kasei Corp Ester derivative

Also Published As

Publication number Publication date
JPH04294851A (en) 1992-10-19

Similar Documents

Publication Publication Date Title
Sengupta et al. A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs
US4945975A (en) Method of oscillation of mold of vertical continuous caster
JP2539550B2 (en) Continuous casting slab casting method
JPH07106434B2 (en) Continuous casting method for metal ribbon
US5579824A (en) Continuous casting process with vertical mold oscillation
EP0618023B1 (en) casting continuous slab in oscillated mold with horizontally retractable walls
KR100201947B1 (en) Method of casting continuous slab
BR8807765A (en) METHOD AND DEVICE FOR DIRECT FOUNDRY OF METALLIC MATERIAL
US2747245A (en) Process for continuous casting of metal billets
JPH0399762A (en) Continuous casting method
WO1994006583A1 (en) Method of casting continuous slab
JPH10156505A (en) Method for oscillating mold for vertical type continuous casting
US4355680A (en) Method and apparatus for continuous casting of hollow articles
JPS6123559A (en) Oscillating method of mold for continuous casting of steel
SU1321517A1 (en) Method of die-casting with controllable pressure
RU2142864C1 (en) Method for production of continuous deformed castings
JPH084879B2 (en) Vibration method of continuous casting mold
KR20010020275A (en) Method for swaying a continuous casting mold
KR100333067B1 (en) Method for reducing oscillation marks on stainless steel strip
JPH04238647A (en) Method for oscillating mold in continuous casting
SU533129A1 (en) Method of metal continuous casting
JPH067911A (en) Continuous casting method
JP2663126B2 (en) Two-way drawing type horizontal continuous casting method
SU1118710A1 (en) Steel us casting of ingots and device for efecting same
JPH06198409A (en) Method for continuously casting cast slab having good surface