JPH06197471A - Charging controller - Google Patents

Charging controller

Info

Publication number
JPH06197471A
JPH06197471A JP4342585A JP34258592A JPH06197471A JP H06197471 A JPH06197471 A JP H06197471A JP 4342585 A JP4342585 A JP 4342585A JP 34258592 A JP34258592 A JP 34258592A JP H06197471 A JPH06197471 A JP H06197471A
Authority
JP
Japan
Prior art keywords
storage battery
voltage
temperature
generator
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4342585A
Other languages
Japanese (ja)
Other versions
JP2918755B2 (en
Inventor
Takahiko Ono
隆彦 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4342585A priority Critical patent/JP2918755B2/en
Publication of JPH06197471A publication Critical patent/JPH06197471A/en
Application granted granted Critical
Publication of JP2918755B2 publication Critical patent/JP2918755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To prevent a storage battery from being charged excessively or from being discharged excessively and to make the life of the storage battery long by a method wherein the output voltage of an AC generator is controlled to a value which is optimum for charging the storage battery. CONSTITUTION:A voltage regulating device 7, with a built-in microcomputer, which is connected across an AC generator 1A and a storage battery 3 estimates a storage-battery liquid temperature on the basis of detection signals from a terminal-voltage detection terminal 8 for the storage battery, from an intake air temperature sensor 9 and from a cooling-water temperature sensor 10. It controls that the AC generator generates a charging voltage which is optimum for the storage battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、充電制御装置、特に
車両に搭載された内燃機関によって駆動され且つ蓄電池
を充電する交流発電機の出力電圧を制御するマイクロコ
ンピュータ内蔵式充電制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge control device, and more particularly to a charge control device with a built-in microcomputer for controlling the output voltage of an alternator which is driven by an internal combustion engine mounted on a vehicle and charges a storage battery. is there.

【0002】[0002]

【従来の技術】図5は例えば実公昭61−14320号
公報や実公昭62−30480号公報に開示されたのと
同様な充電用交流発電機および従来の一般的な充電制御
装置を示す回路図である。図において1は車両に搭載さ
れた内燃機関(図示しない)によって駆動される充電用
交流発電機例えば三相交流発電機であって、三相星形結
線された電機子コイル101および界磁コイル102並
びに電機子コイル101の出力側で互いに並列接続され
て三相交流出力電圧を全波整流する第1整流器103お
よび第2整流器104を有している。105は交流発電
機1の界磁コイル102に接続されて発電開始時に界磁
コイル102に界磁電流を供給するのに用いられる初期
励磁用端子、そして106は第1整流器103の出力側
に接続されて交流発電機1の出力電圧で後述する蓄電池
を充電するのに用いられる充電用出力端子である。2は
交流発電機1と一体に取り付けられた充電制御装置とし
ての電圧調整器であって、蓄電池をあらかじめ設定され
た充電電圧に調整するために、蓄電池の端子電圧検出端
子201と、この端子電圧検出端子201を通して得ら
れる端子電圧レベルを用いて界磁コイル102に流れる
界磁電流を制御する電子回路202と、この電子回路2
02の出力側で界磁コイル102と直列に接続されて電
子回路202から出力された駆動信号によって界磁電流
をON/OFFスイッチングするパワートランジスタ2
03と、第2整流器104の出力側および電子回路20
2の入力側に接続されて第2整流器104から電圧が入
力される電圧入力端子204とを有している。3は車両
に搭載された蓄電池であって、その正極が充電用出力端
子106に接続され且つ負極がアースされている。4は
車両のキースイッチであって、その一端が蓄電池3の正
極に接続されている。5はキースイッチ4の他端と初期
励磁用端子105の間に接続されて交流発電機1の発電
状態を表示するチャージランプである。
2. Description of the Related Art FIG. 5 is a circuit diagram showing a charging AC generator similar to that disclosed in, for example, Japanese Utility Model Publication No. 61-14320 and Japanese Utility Model Publication No. 62-30480, and a conventional general charging control device. Is. In the figure, reference numeral 1 denotes a charging AC generator driven by an internal combustion engine (not shown) mounted on a vehicle, for example, a three-phase AC generator, and an armature coil 101 and a field coil 102, which are three-phase star-connected. Further, it has a first rectifier 103 and a second rectifier 104 which are connected in parallel with each other on the output side of the armature coil 101 and full-wave rectify the three-phase AC output voltage. Reference numeral 105 is an initial excitation terminal that is connected to the field coil 102 of the AC generator 1 and is used to supply a field current to the field coil 102 at the start of power generation, and 106 is connected to the output side of the first rectifier 103. It is a charging output terminal that is used to charge a storage battery, which will be described later, with the output voltage of the AC generator 1. Reference numeral 2 denotes a voltage regulator as a charging control device attached integrally with the alternator 1, and for adjusting the storage battery to a preset charging voltage, a terminal voltage detection terminal 201 of the storage battery and this terminal voltage An electronic circuit 202 for controlling the field current flowing in the field coil 102 using the terminal voltage level obtained through the detection terminal 201, and this electronic circuit 2
A power transistor 2 that is connected in series with the field coil 102 on the output side of 02 and switches the field current ON / OFF by a drive signal output from the electronic circuit 202.
03, the output side of the second rectifier 104 and the electronic circuit 20.
It has a voltage input terminal 204 which is connected to the input side of 2 and receives a voltage from the second rectifier 104. Reference numeral 3 denotes a storage battery mounted on a vehicle, the positive electrode of which is connected to the charging output terminal 106 and the negative electrode of which is grounded. Reference numeral 4 denotes a vehicle key switch, one end of which is connected to the positive electrode of the storage battery 3. Reference numeral 5 is a charge lamp connected between the other end of the key switch 4 and the initial excitation terminal 105 to display the power generation state of the AC generator 1.

【0003】次に動作について説明する。内燃機関を始
動させるためにキースイッチ4を閉じると、蓄電池3か
ら閉じたキースイッチ4、チャージランプ5、初期励磁
用端子105を通して交流発電機1の界磁コイル102
に界磁電流が供給される(初期励磁)。内燃機関が始動
した後は電機子コイル101に三相交流電圧が誘起さ
れ、この三相交流電圧は第1整流器103によって全波
整流されて直流電圧になった後に充電用出力端子106
から蓄電池3に供給されてこれを充電する。同時に、第
2整流器104で整流された出力電圧によって初期励磁
用端子105での電圧が蓄電池端子電圧まで上昇する
と、蓄電池3からチャージランプ5を経由した電流は流
れなくなるとともに、第2整流器104から界磁コイル
102に励磁電流が供給されるようになる(自己励
磁)。以降、内燃機関が回転している間、交流発電機1
は自己励磁で発電する。尚、界磁電流供給時、パワート
ランジスタ203はON(閉)である。
Next, the operation will be described. When the key switch 4 is closed to start the internal combustion engine, the field coil 102 of the alternator 1 is passed from the storage battery 3 through the closed key switch 4, the charge lamp 5, and the initial excitation terminal 105.
A field current is supplied to (initial excitation). After the internal combustion engine is started, a three-phase AC voltage is induced in the armature coil 101, and the three-phase AC voltage is full-wave rectified by the first rectifier 103 to become a DC voltage, and then the charging output terminal 106.
Is supplied to the storage battery 3 to charge it. At the same time, when the voltage at the initial excitation terminal 105 rises to the storage battery terminal voltage due to the output voltage rectified by the second rectifier 104, the current from the storage battery 3 via the charge lamp 5 stops flowing and the current from the second rectifier 104 disappears. An exciting current is supplied to the magnetic coil 102 (self-excitation). After that, while the internal combustion engine is rotating, the AC generator 1
Generates power by self-excitation. The power transistor 203 is ON (closed) when the field current is supplied.

【0004】蓄電池3の充電電圧の制御は電圧調整器2
によって行われ、端子電圧検出端子201での蓄電池3
の端子電圧レベルと電子回路202にあらかじめ設定さ
れた出力電圧値(目標充電電圧値)とを電子回路202
にて比較して、蓄電池3の端子電圧が目標充電電圧値よ
り低い場合は、電子回路202がパワートランジスタ2
03をON(閉)にし続けることで界磁コイル102に
界磁電流が供給され、ひいては電機子コイル101が発
電してその出力電圧で蓄電池3を充電する。蓄電池3の
端子電圧が目標充電電圧値より高い場合は、電子回路2
02がパワートランジスタ203をOFF(開)にする
ことで界磁コイル102への電流を遮断し、交流発電機
1の発電を停止させて蓄電池3への充電を停止する。こ
のように、電圧調整器2は蓄電池3の端子電圧を検出し
て目標充電電圧値と比較し、その結果によってパワート
ランジスタをON/OFFすることで界磁コイル102
への電流を制御し、所定の交流発電機出力電圧が得られ
るようにしている。
The voltage regulator 2 controls the charging voltage of the storage battery 3.
Storage battery 3 at the terminal voltage detection terminal 201
Of the output voltage value (target charging voltage value) preset in the electronic circuit 202
In comparison, if the terminal voltage of the storage battery 3 is lower than the target charging voltage value, the electronic circuit 202 causes the power transistor 2
By continuing to turn ON (close) 03, a field current is supplied to the field coil 102, and the armature coil 101 then generates power to charge the storage battery 3 with the output voltage. If the terminal voltage of the storage battery 3 is higher than the target charging voltage value, the electronic circuit 2
02 turns off (opens) the power transistor 203 to cut off the current to the field coil 102, stop the power generation of the AC generator 1, and stop the charging of the storage battery 3. In this way, the voltage regulator 2 detects the terminal voltage of the storage battery 3, compares it with the target charging voltage value, and turns on / off the power transistor according to the result, thereby turning on and off the field coil 102.
Is controlled so that a predetermined AC generator output voltage can be obtained.

【0005】[0005]

【発明が解決しようとする課題】従来の充電制御装置
は、上述したように構成され、蓄電池の充電特性が温度
によって変化するのを補償するために温度補償回路(図
示しない)を内蔵することがある。しかしながら、充電
制御装置と蓄電池の設置場所によっては大きな温度差が
あり或は両者の熱容量に大きな差があるため、温度上昇
の相関性がくずれることが多く、交流発電機の出力電圧
を蓄電池の充電に最適な値に制御することは困難であ
り、蓄電池の過充電或は充電不足を引き起こし、結果的
に蓄電池の寿命が短くなるといった問題点があった。こ
の発明の目的は、このような問題点を解決出来る充電制
御装置を提供することにある。
The conventional charge control device is constructed as described above, and may include a temperature compensation circuit (not shown) to compensate for the change in the charging characteristic of the storage battery depending on the temperature. is there. However, there is a large temperature difference depending on the installation location of the charging control device and the storage battery, or there is a large difference in the heat capacities of both, so the correlation of the temperature rise is often broken, and the output voltage of the alternator is used to charge the storage battery. It is difficult to control the optimum value for the storage battery, and the storage battery is overcharged or insufficiently charged, resulting in a short life of the storage battery. An object of the present invention is to provide a charge control device that can solve such problems.

【0006】[0006]

【課題を解決するための手段】この発明に係る充電制御
装置は、蓄電池の端子電圧、内燃機関の吸気温度、冷却
水温度をそれぞれ検出するセンサ手段と、これらセンサ
手段の検出値から前記蓄電池の最適充電電圧を求め、交
流発電機の界磁コイルに供給される界磁電流を制御する
ことにより前記交流発電機の出力電圧を前記最適充電電
圧に制御するマイクロコンピュータ内蔵電圧調整装置と
を設けたものである。
SUMMARY OF THE INVENTION A charge control device according to the present invention comprises sensor means for detecting a terminal voltage of a storage battery, an intake air temperature of an internal combustion engine, and a cooling water temperature, respectively, and the storage battery of the storage battery based on detection values of these sensor means. A microcomputer-equipped voltage adjusting device for controlling the output voltage of the AC generator to the optimum charging voltage by determining the optimum charging voltage and controlling the field current supplied to the field coil of the AC generator is provided. It is a thing.

【0007】[0007]

【作用】この発明では、内燃機関の吸気温と冷却水温に
よって蓄電池液温を演算し、ひいては蓄電池の最適充電
電圧を求め、交流発電機の出力電圧を前記最適充電電圧
に制御する。
According to the present invention, the storage battery liquid temperature is calculated according to the intake air temperature and the cooling water temperature of the internal combustion engine, and the optimum charging voltage of the storage battery is obtained, and the output voltage of the AC generator is controlled to the optimum charging voltage.

【0008】[0008]

【実施例】実施例1.以下、この発明の一実施例を図に
ついて説明する。図1はこの発明に係る充電制御装置の
実施例1を示す回路図であり、充電用交流発電機1Aは
図5の交流発電機1と違って、第2整流器104および
初期励磁用端子105を有さず、また電圧調整器2も一
体に取り付けられていない。従って、第1整流器103
を以後、単に整流器と呼び、界磁コイル102を充電用
出力端子106と図5中のパワートランジスタ203と
同様なスイッチング素子6との間に接続し、更に1個の
電機子コイル101の一端から交流発電機1Aの発電状
態を検出する発電検出線107を取り出す。なお、3,
4,5は図5に示したそれぞれ蓄電池、キースイッチ、
チャージランプである。7はマイクロコンピュータ(図
示しない)を内蔵した電圧調整装置であって、以後、マ
イコン内蔵電圧調整装置と呼ぶ。8はこのマイコン内蔵
電圧調整装置7と蓄電池3の正極との間に接続されて蓄
電池の端子電圧を検出する手段例えば端子電圧検出端
子、そして9,10はそれぞれ内燃機関の吸気温度を検
出する吸気温センサ、冷却水温度を検出する冷却水温セ
ンサであって、マイコン内蔵電圧調整装置7と電気的に
接続されている。
EXAMPLES Example 1. An embodiment of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 is a circuit diagram showing a first embodiment of a charge control device according to the present invention. A charging AC generator 1A differs from the AC generator 1 of FIG. 5 in that a second rectifier 104 and an initial excitation terminal 105 are provided. There is not, and the voltage regulator 2 is not attached integrally. Therefore, the first rectifier 103
Is hereinafter simply referred to as a rectifier, and the field coil 102 is connected between the charging output terminal 106 and the switching element 6 similar to the power transistor 203 in FIG. 5, and further from one end of one armature coil 101. The power generation detection line 107 for detecting the power generation state of the AC generator 1A is taken out. In addition, 3,
4 and 5 are the storage battery, key switch, and
It is a charge lamp. Reference numeral 7 denotes a voltage adjusting device having a microcomputer (not shown) built therein, which is hereinafter referred to as a microcomputer built-in voltage adjusting device. Reference numeral 8 is a means for detecting the terminal voltage of the storage battery, such as a terminal voltage detection terminal, which is connected between the microcomputer built-in voltage adjusting device 7 and the positive electrode of the storage battery 3, and 9 and 10 are intake and exhaust terminals for detecting the intake air temperature of the internal combustion engine. An air temperature sensor and a cooling water temperature sensor for detecting the cooling water temperature, which are electrically connected to the microcomputer built-in voltage adjusting device 7.

【0009】以上のように構成された図1の装置の動作
を次に説明する。先ず、内燃機関を始動させるためにキ
ースイッチ4を閉じると、蓄電池3よりキースイッチ4
を通ってマイコン内蔵電圧調整装置7に電源が供給さ
れ、マイコンが動作状態となる。マイコン内蔵電圧調整
装置7は、先ず、チャージランプ5を点灯させ、次に端
子電圧検出端子8、吸気温センサ9、冷却水温センサ1
0よりそれぞれの検出情報を取り込み、これらの検出値
を基に蓄電池液温を演算し、演算された蓄電池液温に最
適な蓄電池充電電圧Vregを決定する。この状態で内
燃機関が始動して交流発電機1Aが駆動されると、マイ
コン内蔵電圧調整装置7は発電検出線107より交流発
電機1Aの発電を検出し、チャージランプ5を消灯さ
せ、蓄電池3の端子電圧Vbが最適充電電圧Vregと
なるようにスイッチング素子6に制御信号を与えて交流
発電機1Aの出力電圧を制御する。そして、内燃機関の
運転中、上述したセンサ信号の検出、演算、スイッチン
グ素子6の制御を繰り返し、端子電圧が常に最適充電電
圧となるよう制御する。
The operation of the apparatus of FIG. 1 constructed as above will be described below. First, when the key switch 4 is closed to start the internal combustion engine, the key switch 4 is pushed from the storage battery 3.
Power is supplied to the microcomputer built-in voltage adjusting device 7 through this, and the microcomputer is brought into an operating state. The voltage adjustment device 7 with a built-in microcomputer first turns on the charge lamp 5, and then the terminal voltage detection terminal 8, the intake air temperature sensor 9, and the cooling water temperature sensor 1.
Each detection information is fetched from 0, the storage battery liquid temperature is calculated based on these detection values, and the storage battery charging voltage Vreg optimal for the calculated storage battery liquid temperature is determined. When the internal combustion engine is started in this state and the AC generator 1A is driven, the microcomputer built-in voltage adjusting device 7 detects the power generation of the AC generator 1A from the power generation detection line 107, turns off the charge lamp 5, and turns off the storage battery 3 The output voltage of the AC generator 1A is controlled by giving a control signal to the switching element 6 so that the terminal voltage Vb of the AC voltage becomes the optimum charging voltage Vreg. Then, during the operation of the internal combustion engine, the detection of the sensor signal, the calculation, and the control of the switching element 6 are repeated to control the terminal voltage to be always the optimum charging voltage.

【0010】次に、最適充電電圧Vregをどのように
決定するかについて説明する。蓄電池3には温度特性が
あり、最適充電電圧Vregは蓄電池液温の上昇に反比
例して低くすることが望ましいことは良く知られてい
る。例えば、図2に示す蓄電池液温/蓄電池充電電圧曲
線のように蓄電池液温に対して適正な充電電圧があり、
充電電圧を上げすぎると蓄電池3は過充電、下げすぎる
と過放電すなわち充電不足となる。ここで、蓄電池液温
に対して充電電圧をこの適正範囲内に維持することが蓄
電池3の長寿命化に効果を発揮する。
Next, how to determine the optimum charging voltage Vreg will be described. It is well known that the storage battery 3 has a temperature characteristic, and it is desirable that the optimum charging voltage Vreg be lowered in inverse proportion to the rise of the storage battery liquid temperature. For example, there is an appropriate charging voltage for the storage battery liquid temperature as shown in the storage battery liquid temperature / storage battery charging voltage curve shown in FIG.
If the charging voltage is too high, the storage battery 3 is overcharged, and if it is too low, it is overdischarged, that is, insufficiently charged. Here, maintaining the charging voltage within the appropriate range with respect to the storage battery liquid temperature is effective in extending the life of the storage battery 3.

【0011】また、蓄電池液温の熱時定数は蓄電池容量
によって多少異なるものの通常、数時間以上あり、吸気
温や冷却水温に比べるとその変化速度は非常にゆっくり
している。そこで、これらの温度変化を時間の経過に対
して比較すると、図3のようになり、この図から、3つ
の領域に分けて考えることが出来る。つまり、吸気温T
a、冷却水温Tw、蓄電池液温Tbの全てが低い第1領
域、吸気温Ta、冷却水温Twは飽和しているが、蓄電
池液温Tbはまだ飽和していない第2領域、そして吸気
温Ta、冷却水温Tw、蓄電池液温Tbの全てが飽和し
ている第3領域である。
The thermal time constant of the storage battery liquid temperature is usually several hours or more, though it varies somewhat depending on the storage battery capacity, and the rate of change is very slow compared to the intake air temperature and the cooling water temperature. Then, when these temperature changes are compared with respect to the passage of time, it becomes as shown in FIG. 3, and from this figure, it can be considered by dividing into three regions. That is, the intake air temperature T
a, the first region where the cooling water temperature Tw and the storage battery liquid temperature Tb are all low, the intake air temperature Ta and the cooling water temperature Tw are saturated, but the storage battery liquid temperature Tb is not yet saturated, and the intake air temperature Ta. , The cooling water temperature Tw, and the storage battery liquid temperature Tb are all saturated in the third region.

【0012】この発明による充電制御装置は、吸気温T
aと冷却水温Twを基にこれら3つの領域を判別し、そ
れぞれの領域に対応した演算係数によって蓄電池液温T
bを演算(推定)し、蓄電池3に最適な充電電圧を決定
してその端子電圧がこの最適充電電圧となるようにスイ
ッチング素子6を制御する。これによって交流発電機1
Aの出力電圧は、常に蓄電池3に最適な充電電圧に維持
されることになる。
The charge control device according to the present invention is provided with an intake air temperature T
These three regions are discriminated based on a and the cooling water temperature Tw, and the storage battery liquid temperature T is calculated by the calculation coefficient corresponding to each region.
b is calculated (estimated), the optimum charging voltage for the storage battery 3 is determined, and the switching element 6 is controlled so that its terminal voltage becomes the optimum charging voltage. This allows the alternator 1
The output voltage of A is always maintained at the optimum charging voltage for the storage battery 3.

【0013】次に上述したマイコンの動作を図4のフロ
ーチャートに基づいて補足説明する。先ず、ステップS
100〜ステップS102にて端子電圧Vb、吸気温T
a、冷却水温Twを検出し、ステップS103にて検出
された吸気温Taを平均化する(吸気温Ta→平均吸気
温Taバー)。この吸気温Taの平均化処理は、車速や
内燃機関回転数、或いは、車両が走行する道路の環境の
変化に伴う吸気温Taの変動を緩慢化するために行う。
次に、ステップS104にて、冷却水温Twが飽和温度
T1に達しているかどうかを判定する。もし冷却水温T
wが飽和温度T1に達していない場合には、上述した第
1領域に在ると判別し、つまり、吸気温Ta、冷却水温
Tw、蓄電池液温Tbともに低いと判別し、この第1領
域の特性に応じて予め決められている蓄電池液温演算係
数W1、A1がステップS105にて与えられる。そし
て、ステップS106にて冷却水温飽和後の経過時間を
計上するタイムカウンタ(図示しない)をリセットし、
ステップS111へ進む。このステップS111では、
冷却水温Twとその演算係数W1、平均吸気温Taバー
とその演算係数A1によって蓄電池液温Tbを演算する
(Tb=W1・Tw+A1・Taバー)。そして、ステ
ップS112においては、図2の充電特性を基に、求め
られた蓄電池液温Tbから蓄電池3の最適充電電圧Vr
egを決定し、ステップS113にて蓄電池3の端子電
圧Vbが最適充電電圧Vregに維持されるようにマイ
コン内蔵電圧調整装置7はスイッチング素子6を制御す
る。
Next, the operation of the above-mentioned microcomputer will be supplementarily described with reference to the flowchart of FIG. First, step S
From 100 to step S102, terminal voltage Vb, intake air temperature T
a, the cooling water temperature Tw is detected, and the intake air temperature Ta detected in step S103 is averaged (intake air temperature Ta → average intake air temperature Ta bar). This intake air temperature Ta averaging process is performed in order to slow down fluctuations in the intake air temperature Ta due to changes in the vehicle speed, the internal combustion engine speed, or the environment of the road on which the vehicle travels.
Next, in step S104, it is determined whether the cooling water temperature Tw has reached the saturation temperature T1. If the cooling water temperature T
When w has not reached the saturation temperature T1, it is determined that it is in the above-mentioned first region, that is, it is determined that the intake air temperature Ta, the cooling water temperature Tw, and the storage battery liquid temperature Tb are all low, and this first region Storage battery liquid temperature calculation coefficients W1 and A1 that are predetermined according to the characteristics are given in step S105. Then, in step S106, a time counter (not shown) that counts the elapsed time after the saturation of the cooling water temperature is reset,
It proceeds to step S111. In this step S111,
The storage battery liquid temperature Tb is calculated based on the cooling water temperature Tw and its calculation coefficient W1, and the average intake air temperature Ta bar and its calculation coefficient A1 (Tb = W1 · Tw + A1 · Ta bar). Then, in step S112, the optimum charging voltage Vr of the storage battery 3 is calculated from the calculated storage battery liquid temperature Tb based on the charging characteristics of FIG.
Then, in step S113, the microcomputer built-in voltage adjusting device 7 controls the switching element 6 so that the terminal voltage Vb of the storage battery 3 is maintained at the optimum charging voltage Vreg in step S113.

【0014】ところで、ステップS104において冷却
水温Twが飽和温度T1に達していた場合にはステップ
S107に進む。このステップS107では、蓄電池液
温Tbが飽和しているか否かの判定を冷却水温飽和後の
経過時間を計上するタイムカウンタ(図示しない)の値
によって判別する。もしタイムカウンタの値が蓄電池液
温Tbの飽和時定数以下であるならば、上述した第2領
域に在ると判別し、つまり、冷却水温Twは飽和してい
るが、蓄電池液温Tbは飽和していないと判別し、ステ
ップS108にて、この第2領域の特性に応じて予め決
められている蓄電池液温演算係数W=W2、A=A2が
与えられる。そして、ステップS109にて上述のタイ
ムカウンタ(冷却水温飽和後の経過時間)をインクリメ
ントし、ステップS111へと進む。
If the cooling water temperature Tw has reached the saturation temperature T1 in step S104, the process proceeds to step S107. In this step S107, it is determined whether or not the storage battery liquid temperature Tb is saturated by the value of a time counter (not shown) that counts the elapsed time after the saturation of the cooling water temperature. If the value of the time counter is less than or equal to the saturation time constant of the storage battery liquid temperature Tb, it is determined that the time is in the second region described above, that is, the cooling water temperature Tw is saturated, but the storage battery liquid temperature Tb is saturated. If it is determined that it has not been performed, in step S108, storage battery fluid temperature calculation coefficients W = W2 and A = A2, which are predetermined according to the characteristics of the second region, are given. Then, in step S109, the time counter (elapsed time after saturation of the cooling water temperature) is incremented, and the process proceeds to step S111.

【0015】もしステップS107にてタイムカウンタ
の値が所定値以上であれば、冷却水温Twも蓄電池液温
Tbも飽和している第3領域に在ると判別し、ステップ
S110にて、この第3領域の特性に応じて予め決めら
れている蓄電池液温演算係数W=W3、A=A3が与え
られ、ステップS111へと進む。以降、第1領域での
場合の処理と同様に、ステップS111にて蓄電池液温
Tbを演算し、ステップS112にて蓄電池液温Tbに
応じた最適充電電圧Vregを決定し、そしてステップ
S113にて蓄電池3の端子電圧Vbが最適充電電圧V
regに維持されるようにスイッチング素子6が制御さ
れるのである。
If the value of the time counter is equal to or greater than the predetermined value in step S107, it is determined that the cooling water temperature Tw and the storage battery liquid temperature Tb are in the third region where they are saturated, and in step S110, this Storage battery liquid temperature calculation coefficients W = W3 and A = A3, which are predetermined according to the characteristics of the three regions, are given, and the process proceeds to step S111. Thereafter, as in the case of the processing in the first region, the storage battery liquid temperature Tb is calculated in step S111, the optimum charging voltage Vreg corresponding to the storage battery liquid temperature Tb is determined in step S112, and then in step S113. The terminal voltage Vb of the storage battery 3 is the optimum charging voltage V
The switching element 6 is controlled so as to be maintained at reg.

【0016】以後、これらの一連の処理を繰り返すこと
で、走行状態にかかわらず常に蓄電池3に最適な充電電
圧を設定でき、蓄電池3の過充電、或いは、充電不足を
防止することが出来る。
After that, by repeating a series of these processes, it is possible to always set the optimum charging voltage for the storage battery 3 regardless of the running state, and prevent the storage battery 3 from being overcharged or insufficiently charged.

【0017】なお、上述した実施例では、マイコン内蔵
電圧調整装置とスイッチング素子とを別に構成したが、
これらを一体に構成しても良い。
In the above-described embodiment, the microcomputer built-in voltage regulator and the switching element are separately configured.
You may comprise these integrally.

【0018】また、この発明の充電制御装置を内燃機関
制御コンピュータ上で実現すれば、従来、内燃機関制御
コンピュータが持ち合わせている吸気温センサ情報や冷
却水温センサ情報をそのまま流用でき、ワイヤーハーネ
スの削減にもなる。
Further, if the charge control device of the present invention is realized on an internal combustion engine control computer, the intake air temperature sensor information and the cooling water temperature sensor information which the internal combustion engine control computer has conventionally can be used as they are, and the wire harness can be reduced. It also becomes.

【0019】[0019]

【発明の効果】以上のように、この発明は、蓄電池の端
子電圧、内燃機関の吸気温度、冷却水温度をそれぞれ検
出するセンサ手段と、これらセンサ手段の検出値から前
記蓄電池の最適充電電圧を求め、交流発電機の界磁コイ
ルに供給される界磁電流を制御することにより前記交流
発電機の出力電圧を前記最適充電電圧に制御するマイク
ロコンピュータ内蔵電圧調整装置とを備えているので、
蓄電池の過充電或は過放電を防止し、蓄電池の長寿命化
を図れるという効果を奏する。
As described above, according to the present invention, the sensor means for detecting the terminal voltage of the storage battery, the intake air temperature of the internal combustion engine and the cooling water temperature, respectively, and the optimum charging voltage of the storage battery from the detected values of these sensor means. Since it is provided with a microcomputer built-in voltage adjusting device that controls the output voltage of the AC generator to the optimum charging voltage by controlling the field current supplied to the field coil of the AC generator.
This has the effect of preventing overcharging or overdischarging of the storage battery and extending the life of the storage battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による充電制御装置を示す
回路図である。
FIG. 1 is a circuit diagram showing a charge control device according to an embodiment of the present invention.

【図2】蓄電池液温に対する適正充電電圧特性図であ
る。
FIG. 2 is a diagram of a proper charging voltage characteristic with respect to a storage battery liquid temperature.

【図3】内燃機関の吸気温、冷却水温、および蓄電池液
温の特性図である。
FIG. 3 is a characteristic diagram of an intake air temperature of an internal combustion engine, a cooling water temperature, and a storage battery liquid temperature.

【図4】マイコン内蔵電圧調整装置中のマイコンのフロ
ーチャートである。
FIG. 4 is a flowchart of a microcomputer in the voltage adjustment device with a built-in microcomputer.

【図5】交流発電機および蓄電池並びに従来の充電制御
装置を示す回路図である。
FIG. 5 is a circuit diagram showing an AC generator, a storage battery, and a conventional charge control device.

【符号の説明】[Explanation of symbols]

1A 交流発電機 101 電機子コイル 102 界磁コイル 103 整流器 3 蓄電池 7 マイコン内蔵電圧調整装置 8 端子電圧検出端子 9 吸気温センサ 10 冷却水温センサ 1A AC generator 101 Armature coil 102 Field coil 103 Rectifier 3 Storage battery 7 Voltage regulator with built-in microcomputer 8 Terminal voltage detection terminal 9 Intake air temperature sensor 10 Cooling water temperature sensor

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年4月16日[Submission date] April 16, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】次に上述したマイコンの動作を図4のフロ
ーチャートに基づいて補足説明する。先ず、ステップS
100〜ステップS102にて端子電圧Vb、吸気温T
a、冷却水温Twを検出し、ステップS103にて検出
された吸気温Taを平均化する(吸気温Ta→平均吸気
温Taバー)。この吸気温Taの平均化処理は、車速や
内燃機関回転数、或いは、車両が走行する道路の環境の
変化に伴う吸気温Taの変動を緩慢化するために行う。
次に、ステップS104にて、冷却水温Twが飽和温度
T1に達しているかどうかを判定する。もし冷却水温T
wが飽和温度T1に達していない場合には、上述した第
1領域に在ると判別し、つまり、吸気温Ta、冷却水温
Tw、蓄電池液温Tbがそれぞれの飽和温度よりも低い
と判別し、この第1領域の特性に応じて予め決められて
いる蓄電池液温演算係数W1、A1がステップS105
にて与えられる。そして、ステップS106にて冷却水
温飽和後の経過時間を計上するタイムカウンタ(図示し
ない)をリセットし、ステップS111へ進む。このス
テップS111では、冷却水温Twとその演算係数W
1、平均吸気温Taバーとその演算係数A1によって蓄
電池液温Tbを演算する(Tb=W1・Tw+A1・T
aバー)。そして、ステップS112においては、図2
の充電特性を基に、求められた蓄電池液温Tbから蓄電
池3の最適充電電圧Vregを決定し、ステップS11
3にて蓄電池3の端子電圧Vbが最適充電電圧Vreg
に維持されるようにマイコン内蔵電圧調整装置7はスイ
ッチング素子6を制御する。
Next, the operation of the above-mentioned microcomputer will be supplementarily described with reference to the flowchart of FIG. First, step S
From 100 to step S102, terminal voltage Vb, intake air temperature T
a, the cooling water temperature Tw is detected, and the intake air temperature Ta detected in step S103 is averaged (intake air temperature Ta → average intake air temperature Ta bar). This intake air temperature Ta averaging process is performed in order to slow down fluctuations in the intake air temperature Ta due to changes in the vehicle speed, the internal combustion engine speed, or the environment of the road on which the vehicle travels.
Next, in step S104, it is determined whether the cooling water temperature Tw has reached the saturation temperature T1. If the cooling water temperature T
When w has not reached the saturation temperature T1, it is determined that it is in the above-mentioned first region, that is, it is determined that the intake air temperature Ta, the cooling water temperature Tw, and the storage battery liquid temperature Tb are lower than the respective saturation temperatures. , The storage battery fluid temperature calculation coefficients W1 and A1 which are predetermined according to the characteristics of the first region are calculated in step S105.
Given in. Then, in step S106, a time counter (not shown) that counts the elapsed time after the cooling water temperature is saturated is reset, and the process proceeds to step S111. In this step S111, the cooling water temperature Tw and its calculation coefficient W
1. The storage battery fluid temperature Tb is calculated by the average intake air temperature Ta bar and its calculation coefficient A1 (Tb = W1 · Tw + A1 · T
a bar). Then, in step S112, as shown in FIG.
The optimum charging voltage Vreg of the storage battery 3 is determined from the calculated storage battery liquid temperature Tb based on the charging characteristics of the step S11.
3, the terminal voltage Vb of the storage battery 3 is the optimum charging voltage Vreg.
The voltage regulator 7 with a built-in microcomputer controls the switching element 6 so as to be maintained at.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蓄電池の両端間に接続されて前記蓄電池
から界磁電流が供給される界磁コイル、内燃機関によっ
て駆動され前記界磁電流の供給で交流電圧を発生する電
機子コイル、およびこの電機子コイルに接続されてその
交流電圧を直流電圧に変換して出力する整流器を有する
交流発電機から前記蓄電池への充電を制御するものにお
いて、 前記蓄電池の端子電圧、前記内燃機関の吸気温度、冷却
水温度をそれぞれ検出するセンサ手段と、 これらセンサ手段の検出値から前記蓄電池の最適充電電
圧を求め、前記界磁電流を制御することにより前記交流
発電機の出力電圧を前記最適充電電圧に制御するマイク
ロコンピュータ内蔵電圧調整装置と、 を備えたことを特徴とする充電制御装置。
1. A field coil connected between both ends of a storage battery and supplied with a field current from the storage battery, an armature coil driven by an internal combustion engine to generate an AC voltage by the supply of the field current, and In controlling charging of the storage battery from an AC generator having a rectifier connected to an armature coil and converting the AC voltage to a DC voltage and outputting the DC voltage, the terminal voltage of the storage battery, the intake air temperature of the internal combustion engine, Controlling the output voltage of the alternator to the optimum charging voltage by detecting the cooling water temperature and the optimum charging voltage of the storage battery from the detection values of these sensor means and controlling the field current. A charging control device, comprising:
JP4342585A 1992-12-22 1992-12-22 Charge control device Expired - Lifetime JP2918755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4342585A JP2918755B2 (en) 1992-12-22 1992-12-22 Charge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4342585A JP2918755B2 (en) 1992-12-22 1992-12-22 Charge control device

Publications (2)

Publication Number Publication Date
JPH06197471A true JPH06197471A (en) 1994-07-15
JP2918755B2 JP2918755B2 (en) 1999-07-12

Family

ID=18354910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4342585A Expired - Lifetime JP2918755B2 (en) 1992-12-22 1992-12-22 Charge control device

Country Status (1)

Country Link
JP (1) JP2918755B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014383A (en) * 2004-06-22 2006-01-12 Nissan Motor Co Ltd Controller of generator for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014383A (en) * 2004-06-22 2006-01-12 Nissan Motor Co Ltd Controller of generator for vehicle
JP4529555B2 (en) * 2004-06-22 2010-08-25 日産自動車株式会社 Control device for vehicle generator

Also Published As

Publication number Publication date
JP2918755B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP3997987B2 (en) Power generation control system
EP0963027B1 (en) Vehicle AC generator control system
JP2651030B2 (en) Generator control device and control method, and vehicular generator control device and control method using the same
US8041470B2 (en) Fan operation control method and apparatus
JP3262571B2 (en) Alternator control device
US7105936B2 (en) Generator control apparatus and method for automotive vehicle
JPH04271236A (en) Method of controlling voltage while depending upon state of battery charge and controller
US5754030A (en) Duty ratio control for a vehicular generator responsive to low and high power loads
EP0210819B1 (en) Control apparatus for vehicular generator
US6353306B1 (en) Battery charger apparatus
US6954052B2 (en) Control apparatus and control method of generator for vehicle
JP3305850B2 (en) Alternator control device
JP2918755B2 (en) Charge control device
JP3475894B2 (en) Apparatus for determining full charge of vehicle secondary battery and apparatus for calculating remaining capacity
JP3916302B2 (en) Vehicle charging control device
JP3423022B2 (en) Idling speed control system for internal combustion engine
JP3010719B2 (en) Automotive power supply
JP4325070B2 (en) Control device for vehicle generator
JPH0538076A (en) Voltage controller for vehicle generator
JP2503996B2 (en) Control method for vehicle charging generator
JPS627339A (en) Charge/discharge controller for vehicle
JPH0528905Y2 (en)
JPS63240334A (en) Controller of vehicle generator
JPH07274597A (en) Power source controller
JP2504014B2 (en) Battery charge control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14